SEARCH

Search Details

OZAWA Seiichi
Center for Mathematical and Data Sciences
Professor

  • Profile

    Seiichi Ozawa received Dr. Eng. in computer science from Kobe University. He is currently the director of The Center for Mathematical and Data Sciences, Kobe University. He is also a full professor with Department of Electrical and Electronic Engineering, Graduate School of Engineering and The Center for Advanced Medical Engineering Research & Development, Kobe University, Japan. His current research interests are machine learning, incremental learning, big data analytics, cybersecurity, text mining, computer vision, and privacy-preserving machine learning. He published more than 160 journal and conference papers, and book chapters/monographs. He is currently an associate editor of IEEE Trans. on Cybernetics and 2 international journals. He is the Vice-President of International Neural Network Society and the Immdiate-Past President of Asia Pacific Neural Network Society. He is a member of Neural Networks TC and Smart World TC of IEEE CI Society.

Researcher basic information

■ Research Keyword
  • Machine Learning
  • Big Data Analysis
  • Federated Learning
  • continual learning
  • privacy-preserving machine learning
  • AI for security / Security for AI
  • text mining
  • smart agriculture
■ Research Areas
  • Informatics / Information security / cybersecurity
  • Informatics / Intelligent informatics / machine learning
  • Informatics / Soft computing / neural network
■ Committee History
  • Dec. 2023 - Present, The 31th International Conference on Neural Information Processing (ICONIP2024), Honorary Chair
  • Jun. 2023 - Present, The Institute of Systems, Control and Information Engineers, Vice President
  • Jun. 2021 - Present, IEEE World Congress on Computational Intelligence (WCCI) 2024, Financial Chair / IJCNN Technical Co-Chair
  • Jan. 2019 - Present, International Neural Network Society (INNS), Vice-President
  • Jan. 2017 - Present, IEEE CIS Smart World Technical Committee, Member
  • Jan. 2017 - Present, IEEE Trans on Cybernetics, Associate Editor
  • Jul. 2012 - Present, Pattern Analysis and Applications (Springer), Associate Editor
  • Jan. 2010 - Present, IEEE CIS Neural Networks Technical Committee (NNTC), Member
  • Sep. 2009 - Present, Evolving Systems (Springer), Editorial Board Member
  • Jan. 2023 - Dec. 2023, Asia Pacific Neural Network Society (APNNS), Immedate Past President
  • Dec. 2022 - Nov. 2023, The 30th International Conference on Neural Information Processing (ICONIP2023), Advisory Chair
  • Jun. 2021 - May 2023, The Institute of Systems, Control and Information Engineers, Board of Governor
  • Mar. 2021 - Feb. 2023, Japan Neural Network Scoiecy, Vice-President
  • Apr. 2022 - Dec. 2022, The 29th International Conference on Neural Information Processing (ICONIP 2022), General Co-Chair
  • Jan. 2022 - Dec. 2022, Artificial Intelligence and Cloud Computing Conference (AICCC 2022), General Co-Chair
  • Jan. 2021 - Dec. 2022, Asia Pacific Neural Network Society (APNNS), President
  • Jan. 2018 - Dec. 2022, IEEE Trans on Neural Networks and Learning Systems, Associate Editor
  • Sep. 2020 - Jul. 2021, International Conference on Neural Networks (IJCNN) 2021, Program Co-Chairs
  • Jun. 2020 - May 2021, The Institute of Systems, Control and Information Engineers, Board of Governor

Research activity information

■ Award
  • Oct. 2023 Information Processing Society of Japan, CSS2023 Incentive award, Towards Modeling the Visual Recognition for Human Security Countermeasures Using Large-Scale Language Models
    鍛冶佳佑, 中野瑠人, 山田 明, 小澤 誠一

  • Oct. 2022 Information Processing Society of Japan, CSEC Excellent Research Award, 機械学習を用いた悪性TLS通信の検知と通信特徴の推移に関する考察
    Kaisei Fujiwara, Seiichi Ozawa, Hiroyuki Kaisei, Chanho Park

  • Oct. 2020 Information Processing Society of Japan, CSS2020 Concept Research Award, Darknet Scan Packet Analysis Using Port Embedding Vector
    Shintaro Ishikawa, Tao Ban, Seiichi Ozawa

  • Dec. 2019 Asia Pacific Neural Network Society, APNNS Excellent Service Award
    Seiichi Ozawa

  • Apr. 2011 IEEE Computational Intelligence Society, EAIS 2011 Outstanding Paper Award, "Incremental Recursive Fisher Linear Discriminant for Online Feature Extraction"に関する研究
    OZAWA Seiichi, OHTA Ryohei

■ Paper
  • Satoshi Fukui, Lihua Wang, Seiichi Ozawa
    May 2025, Applied Sciences
    Scientific journal

  • Takeshi Urade, Nobuaki Yamasaki, Munenori Uemura, Junichiro Hirata, Yasuyoshi Okamura, Yuki Mitani, Tatsuya Hattori, Kaito Nanchi, Seiichi Ozawa, Yasuo Chihara, Kiyoyuki Chinzei, Masato Fujisawa, Takumi Fukumoto
    PURPOSE: Surgeons' adaptability to robotic manipulation remains underexplored. This study evaluated the participants' first-touch robotic training skills using the hinotori surgical robot system and its simulator (hi-Sim) to assess adaptability. METHODS: We enrolled 11 robotic surgeons (RS), 13 laparoscopic surgeons (LS), and 15 novices (N). After tutorial and training, participants performed pegboard tasks, camera and clutch operations, energizing operations, and suture sponge tasks on hi-Sim. They also completed a suture ligation task using the hinotori surgical robot system on a suture simulator. Median scores and task completion times were compared. RESULTS: Pegboard task scores were 95.0%, 92.0%, and 91.5% for the RS, LS, and N groups, respectively, with differences between the RS group and LS and N groups. Camera and clutch operation scores were 93.1%, 49.7%, and 89.1%, respectively, showing differences between the RS group and LS and N groups. Energizing operation scores were 90.9%, 85.2%, and 95.0%, respectively, with a significant difference between the LS and N groups. Suture sponge task scores were 90.6%, 43.1%, and 46.2%, respectively, with differences between the RS group and LS and N groups. For the suture ligation task, completion times were 368 s, 666 s, and 1095 s, respectively, indicating differences among groups. Suture scores were 12, 10, and 7 points, respectively, with differences between the RS and N groups. CONCLUSION: First-touch simulator-based robotic skills were partially influenced by prior robotic surgical experience, while suturing skills were affected by overall surgical experience. Thus, robotic training programs should be tailored to individual adaptability.
    Nov. 2024, Langenbeck's archives of surgery, 409(1) (1), 332 - 332, English, International magazine
    [Refereed]
    Scientific journal

  • 村中建太, 小澤誠一
    Nov. 2024, システム制御情報学会論文誌, 37(11) (11), 275 - 282, Japanese
    [Refereed]
    Scientific journal

  • Miha Ozbot, Seiichi Ozawa, Igor Skrjanc
    Jul. 2024, Proc. of 2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1 - 8, English
    [Refereed]
    International conference proceedings

  • Samuel Ndichu, Tao Ban, Takeshi Takahashi, Akira Yamada, Seiichi Ozawa, Daisuke Inoue
    2024, Proceedings - 2024 IEEE Cyber Science and Technology Congress, CyberSciTech 2024, 115 - 124, English
    [Refereed]
    International conference proceedings

  • Muhammad Fakhrur Rozi, Tao Ban, Seiichi Ozawa, Akira Yamada, Takeshi Takahashi, Daisuke Inoue
    Institute of Electrical and Electronics Engineers (IEEE), 2024, IEEE Access, 12, 142101 - 142126, English
    [Refereed]
    Scientific journal

  • Le Trieu Phong, Tran Thi Phuong, Lihua Wang, Seiichi Ozawa
    Last, Jan. 2024, IEICE Trans. Inf. Syst., 107(1) (1), 2 - 12, Japanese
    [Refereed][Invited]
    Scientific journal

  • Enna Hirata, Takahiro Yamashita, Seiichi Ozawa
    Last, Jul. 2023, Journal of Advanced Computational Intelligence and Intelligent Informatics, 27(4) (4), 603 - 608
    [Refereed][Invited]
    Scientific journal

  • Cesare Alippi, Seiichi Ozawa
    Jan. 2023, Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition, 251 - 267, English
    [Refereed][Invited]
    In book

  • Muhammad Fakhrur Rozi, Tao Ban, Seiichi Ozawa, Akira Yamada, Takeshi Takahashi, Sangwook Kim, Daisuke Inoue
    2023, IEEE Access, 11, 102727 - 102745, English
    [Refereed]
    Scientific journal

  • Muhammad Fakhrur Rozi, Seiichi Ozawa, Tao Ban, Sangwook Kim, Takeshi Takahashi, Daisuke Inoue
    Corresponding, Dec. 2022, Applied Sciences, English
    [Refereed]
    Scientific journal

  • Septiviana Savitri Asrori, Lihua Wang, Seiichi Ozawa
    Corresponding, Dec. 2022, ICONIP (3), 683 - 692, English
    [Refereed]
    International conference proceedings

  • Fuki Yamamoto, Seiichi Ozawa, Lihua Wang 0001
    Corresponding, Apr. 2022, IEEE Access, 10, 43954 - 43963, English
    [Refereed]
    Scientific journal

  • Sachiko Kanamori, Taeko Abe, Takuma Ito, Keita Emura, Lihua Wang, Shuntaro Yamamoto, Le Trieu Phong, Kaien Abe, Sangwook Kim, Ryo Nojima, Seiichi Ozawa, Shiho Moriai
    Information Processing Society of Japan, 2022, Journal of Information Processing, 30, 789 - 795, English
    [Refereed][Invited]
    Scientific journal

  • Parichehr Behjati, Pau Rodríguez, Carles Fernández Tena, Armin Mehri, F. Xavier Roca, Seiichi Ozawa, Jordi Gonzàlez 0001
    2022, IEEE Access, 10, 57383 - 57397, English
    [Refereed]
    Scientific journal

  • Nitta, Akihiro, Yuya Chonan, Satoshi Hayashi, Takuji Nakamura, Hiroyuki Tsuji, Noriyuki Murakami, Ryo Nishide, Takenao Ohkawa, Seiichi Ozawa
    MDPI, Nov. 2021, Engineering Proceedings, 9(1) (1), 1 - 4, English
    [Refereed]
    Scientific journal

  • Diego A. Velazquez, Josep M. Gonfaus, Pau Rodríguez, F. Xavier Roca, Seiichi Ozawa, Jordi Gonzàlez
    Jul. 2021, IEEE Access, 9, 106998 - 107011, English
    [Refereed]
    Scientific journal

  • Kengo Itokazu, Lihua Wang, Seiichi Ozawa
    Corresponding, IEEE, Jul. 2021, International Joint Conference on Neural Networks(IJCNN), 1 - 7, English
    [Refereed]
    International conference proceedings

  • Muhammad Fakhrur Rozi, Tao Ban, Seiichi Ozawa, Sangwook Kim, Takeshi Takahashi, Daisuke Inoue
    Corresponding, Jul. 2021, Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science, 13109, 669 - 680, English
    [Refereed]
    International conference proceedings

  • Shintaro Ishikawa, Seiichi Ozawa, Tao Ban
    Corresponding, Springer International Publishing, Dec. 2020, In: Yang H., Pasupa K., Leung A.CS., Kwok J.T., Chan J.H., King I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science, vol 12533. Springer, Cham., 593 - 603
    [Refereed]
    In book

  • Fuki Yamamoto, Lihua Wang, Seiichi Ozawa
    Corresponding, Springer International Publishing, Dec. 2020, In: Yang H., Pasupa K., Leung A.CS., Kwok J.T., Chan J.H., King I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science, vol 12533. Springer, Cham., 558 - 569, English
    [Refereed]
    In book

  • Pau Rodriguez, Diego Velazquez, Guillem Cucurull, Josep M. Gonfaus, F. Xavier Roca, Seiichi Ozawa, Jordi Gonzalez
    Nov. 2020, APPLIED SCIENCES-BASEL, 10(22) (22), English
    [Refereed]
    Scientific journal

  • Samuel Ndichu, Sangwook Kim, Seiichi Ozawa
    Corresponding, Sep. 2020, CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 5(3) (3), 184 - 192, English
    [Refereed]
    Scientific journal

  • Muhammad Fakhrur Rozi, Sangwook Kim, Seiichi Ozawa
    Corresponding, Jul. 2020, 2020 International Joint Conference on Neural Networks (IJCNN), 1 - 8, English
    [Refereed]
    International conference proceedings

  • Muhammad Taufiq Pratama, Sangwook Kim, Seiichi Ozawa, Takenao Ohkawa, Yuya Chona, Hiroyuki Tsuji, Noriyuki Murakami
    Corresponding, Jul. 2020, 2020 International Joint Conference on Neural Networks (IJCNN), 1 - 7, English
    [Refereed]
    International conference proceedings

  • Seiichi Ozawa, Tao Ban, Naoki Hashimoto, Junji Nakazato, Jumpei Shimamura
    Feb. 2020, INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 19(1) (1), 83 - 92, English, International magazine
    [Refereed]
    Scientific journal

  • t-Distributed Stochastic Neighbor Embedding Spectral Clustering using higher order approximations.
    Nicoleta Rogovschi, Sarah Zouinina, Basarab Matei, Issam Falih, Nistor Grozavu, Seiichi Ozawa
    Dec. 2019, Aust. J. Intell. Inf. Process. Syst., 17(1) (1), 78 - 86, English
    [Refereed]
    Scientific journal

  • Yuki Kawaguchi, Seiichi Ozawa
    Corresponding, Dec. 2019, In: Gedeon T., Wong K., Lee M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science, vol 11955. Springer, Cham., 319 - 327, English
    [Refereed]
    In book

  • Takehiro Tezuka, Lihua Wang, Takuya Hayashi, Seiichi Ozawa
    Corresponding, IEEE, Nov. 2019, 2019 International Conference on Data Mining Workshops (ICDMW), 37 - 44, English
    [Refereed]
    International conference proceedings

  • Samuel Ndichu, Sangwook Kim, Seiichi Ozawa, Takeshi Misu, Kazuo Makishima
    Corresponding, Nov. 2019, APPLIED SOFT COMPUTING, 84, English, International magazine
    [Refereed]
    Scientific journal

  • Kurumi Higashiyama, Ryo Nishide, Takenao Ohkawa, Yuya Chonan, Satoshi Hayashi, Takuji Nakamura, Hiroyuki Tsuji, Noriyuki Murakami, Seiichi Ozawa
    Sep. 2019, ICISIP 2019 : The 7th IIAE International Conference on Intelligent Systems and Image Processing 2019, 278 - 285, English
    [Refereed]
    International conference proceedings

  • Feature Selection and Grouping of Cultivation Environment Data to Extract High/Low Yield Inhibition Factor of Soybeans
    Katsuhiro Nagata, Midori Namba, Seiichi Ozawa, Yuya Chonan, Satoshi Hayashi, Takuji Nakamura, Hiroyuki Tsuji, Noriyuki Murakami, Ryo Nishide, Takenao Ohkawa
    Jun. 2019, 12th European Federation for Information Technology in Agriculture, Food and the Environment (EFITA) International Conference, English
    [Refereed]
    International conference proceedings

  • OMURA Kazuki, YAHATA So, OZAWA Seiichi, OHKAWA Takenao, CHONAN Yuya, TSUJI Hiroyuki, MURAKAMI Noriyuki
    Recently, smart agriculture, a new approach to farming using ICT, has been received great attention. To control cultivate condition precisely, it is important to capture the growth state of plants as well as environmental factors such as temperature, moisture, solar radiation, etc. In this paper, we propose an image sensing method to detect soy flowers and seedpods as growth fa
    IEEE SMC, Oct. 2018, Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics, 1 - 6, English
    [Refereed]
    International conference proceedings

  • Detection of Malicious JavaScript Contents Using Doc2vec Feature Learning
    WANGAR Samuel Ndichu, OZAWA Seiichi, MUSU Takesh, OKADA Kouichirou
    To add more functionality and enhance usability of web applications, JavaScript (JS) is frequently used. Even with many advantages and usefulness of JS, an annoying fact is that many recent cyberattacks such as drive-by-download attacks exploit vulnerability of JS codes. In general, malicious JS codes are not easy to detect, because they sneakily exploit vulnerabilities of brow
    IEEE, Jul. 2018, Proc. of 2018 International Joint Conference on Neural Networks, 1 - 7, English
    [Refereed]
    International conference proceedings

  • Optimal pattern Discovery to Reveal the High Yield Inhibition Factor of Soybeans
    NAMBA Midori, UMEJIMA Kohei, NISHIDE Ryo, OHKAWA Takenao, OZAWA Seiichi, MURAKAMI Noriyuki, TSUJI Hiroyuki
    Our research group is working on soybeans which the quantity of yielding is difficult to predict. We focus on the common characteristics observed at multiple cultivation points, in order to examine methods to acquire new knowledge in deciding the work based on the amount of yields. Our previous study has examined a method to discover optimal patterns using qualitative value of
    Apr. 2018, Journal of the Institute of Industrial Applications Engineers (Web), 6(2) (2), 66‐72 (WEB ONLY), English
    [Refereed][Invited]
    Scientific journal

  • Cesare Alippi, Seiichi Ozawa
    Elsevier, Jan. 2018, Artificial Intelligence in the Age of Neural Networks and Brain Computing, 245 - 263, English
    In book

  • Samuel Ndichu, Seiichi Ozawa, Takeshi Misu, Kouichirou Okada
    Corresponding, 2018, 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018-July, 1 - 8, English
    [Refereed]
    International conference proceedings

  • Igor Skrjanc, Seiichi Ozawa, Tao Ban, Dejan Dovzan
    Jan. 2018, APPLIED SOFT COMPUTING, 62, 592 - 601, English
    [Refereed]
    Scientific journal

  • Kazuki Omura, So Yahata, Seiichi Ozawa, Takenao Ohkawa, Yuya Chonan, Hiroyuki Tsuji, Noriyuki Murakami
    2018, 2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 1693 - 1698, English
    [Refereed]
    International conference proceedings

  • Naoki Hashimoto, Seiichi Ozawa, Tao Ban, Junji Nakazato, Jumpei Shimamura
    Corresponding, 2018, INNS CONFERENCE ON BIG DATA AND DEEP LEARNING, 144(144) (144), 118 - 123, English
    [Refereed]
    International conference proceedings

  • Sangwook Kim, Masahiro Omori, Takuya Hayashi, Toshiaki Omori, Lihua Wang, Seiichi Ozawa
    Corresponding, 2018, NEURAL INFORMATION PROCESSING (ICONIP 2018), PT IV, 11304, 349 - 358, English
    [Refereed]
    International conference proceedings

  • Optimal Pattern Discovery based on Cultivation Data for Elucidation of High Yield Inhibition Factor of Soybean
    NAMBA Midori, UMEJIMA Kohei, NISHIDE Ryo, OHKAWA Takenao, OZAWA Seiichi, MURAKAMI Noriyuki, TSUJI Hiroyuki
    Sep. 2017, Proceedings of IIAE International Conference on Intelligent Systems and Image Processing (Web), 5th, 209‐216 (WEB ONLY), English
    [Refereed]
    International conference proceedings

  • Midori Namba, Kohei Umejima, Ryo Nishide, Takenao Ohkawa, Seiichi Ozawa, Noriyuki Murakami, Hiroyuki Tsuji
    There is a high demand to promote efficiency in agriculture, as the number of workers engaging in agriculture has been decreasing and aging in recent years. Our research group is working on soybeans which the quantity of yielding is difficult to predict. We focus on the common characteristics observed at multiple cultivation points, in order to examine methods to acquire new kn
    The Institute of Industrial Applications Engineers, Jul. 2017, The 5th IIAE International Conference on Intelligent Systems and Image Processing 2017 (ICISIP2017), 209 - 216, English
    [Refereed]
    International conference proceedings

  • Nicoleta Rogovschi, Jun Kitazono, Nistor Grozavu, Toshiaki Omori, Seiichi Ozawa
    2017, 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017-May, 1628 - 1632, English
    [Refereed]
    International conference proceedings

  • So Yahata, Tetsu Onishi, Kanta Yamaguchi, Seiichi Ozawa, Jun Kitazono, Takenao Ohkawa, Takeshi Yoshida, Noriyuki Murakami, Hiroyuki Tsuji
    2017, 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 1787 - 1793, English
    [Refereed]
    International conference proceedings

  • Yuki Kawaguchi, Akira Yamada, Seiichi Ozawa
    2017, NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 10638(5) (5), 888 - 896, English
    [Refereed]
    International conference proceedings

  • Shohei Kuri, Takuya Hayashi, Toshiaki Omori, Seiichi Ozawa, Yoshinori Aono, Le Trieu Phong, Lihua Wang, Shiho Moriai
    2017, 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017(2) (2), 1350 - 1357, English
    [Refereed]
    International conference proceedings

  • Igor Skrjanc, Seiichi Ozawa, Dejan Dovzan, Ban Tao, Junji Nakazato, Jumpei Shimamura
    Corresponding, 2017, 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2018-January, 1 - 7, English
    [Refereed]
    International conference proceedings

  • Kohei Umejima, Noriyuki Murakami, Fumihito Arimitsu, Hiroyuki Tsuji, Seiichi Ozawa, Takenao Ohkawa
    Association for Computing Machinery, Dec. 2016, ACM International Conference Proceeding Series, 19 - 24, English
    [Refereed]
    International conference proceedings

  • Siti Hajar Aminah Ali, Kiminori Fukase, Seiichi Ozawa
    Sep. 2016, EVOLVING SYSTEMS, 7(3) (3), 173 - 186, English
    [Refereed]
    Scientific journal

  • Siti Hajar Aminah Ali, Kiminori Fukase, Seiichi Ozawa
    Springer Verlag, Sep. 2016, Evolving Systems, 7(3) (3), 173 - 186, English
    [Refereed]
    Scientific journal

  • Narutaka Awaya, Jun Kitazono, Toshiaki Omori, Seiichi Ozawa
    Corresponding, Jul. 2016, 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 60th, 3364 - 3370, English
    [Refereed]
    International conference proceedings

  • Annie Anak Joseph, Takaomi Tokumoto, Seiichi Ozawa
    Corresponding, Mar. 2016, EVOLVING SYSTEMS, 7(1) (1), 15 - 27, English
    [Refereed]
    Scientific journal

  • 吉田舜, 北園淳, 小澤誠一, 菅原貴弘, 芳賀達也
    In recent years, along with the popularization of SNS, the incidents, which are called flaming, that the number of negative comments surges are on the increase. This becomes a problem for companies because flamings hurt companies' reputation. In order to minimalize the damage of reputation, we propose the method that detects flamings by estimating the sentiment polarities of SNS comments. Because of the unique SNS characteristics such as repetition of same comments, the polarities of words are sometimes wrongly estimated. To alleviate this problem, transfer learning is introduced. In this research, the sentiment polarities of words are trained in every domain. This will enable to extract the words that are domain-specific and dictate the polarity of comments. These words are occurred in retweets. Transfer learning is implemented to non-extracted words by averaging the occurrence probabilities in other domains. These processes keep the polarities of important words that dictate the polarity of comments and modify the wrongly estimated polarities of words. The experimental results show that the proposed method improves the performance of estimating the sentiment polarity of comments. Moreover, flamings can be detected without missing by monitoring time course of the number of negative comments.
    Corresponding, The Institute of Electrical Engineers of Japan, Mar. 2016, 電気学会論文誌 C, 136(3) (3), 340 - 347, Japanese
    [Refereed]
    Scientific journal

  • Siti Hajar Aminah Ali, Seiichi Ozawa, Tao Ban, Junji Nakazato, Jumpei Shimamura
    Corresponding, 2016, 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016-, 2979 - 2985, English
    [Refereed]
    International conference proceedings

  • Jun Kitazono, Nistor Grozavu, Nicoleta Rogovschi, Toshiaki Omori, Seiichi Ozawa
    2016, NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 9949, 119 - 128, English
    [Refereed]
    International conference proceedings

  • Kohei Umejima, Fumihito Arimitsu, Seiichi Ozawa, Noriyuki Murakami, Hiroyuki Tsuji, Takenao Ohkawa
    2016, PROCEEDINGS OF THE WORKSHOP ON TIME SERIES ANALYTICS AND APPLICATIONS (TSAA'16), 19 - 24, English
    [Refereed]
    International conference proceedings

  • Seiichi Ozawa, Shun Yoshida, Jun Kitazono, Takahiro Sugawara, Tatsuya Haga
    2016, PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 1 - 7, English
    [Refereed]
    International conference proceedings

  • Naoki Murata, Jun Kitazono, Seiichi Ozawa
    Multi-dimensional Unfolding (MU) is a method to visualize relevance data between two sets (e.g., preference data) as a single scatter plot. Usually, in the analysis of relevance data, users are interested in which elements are strongly related to each other (e.g., how much an individual likes an item), and not in which elements are irrelevant to each other. However, the convent
    ACM, 2016, ICMLC 2017 Proceedings of the 9th International Conference on Machine Learning and Computing, 60th, 4p - 252, Japanese

  • Siti-Hajar-Aminah Ali, Seiichi Ozawa, Junji Nakazato, Tao Ban, Jumpei Shimamura
    Institute of Electrical and Electronics Engineers Inc., Sep. 2015, Proceedings of the International Joint Conference on Neural Networks, 2015-, 1 - 7, English
    [Refereed]
    International conference proceedings

  • A Non-Destructive Measurement Method for Agricultural Plants Using Image Sensing
    ARAKAWA Shuhei, YOSHIDA Takeshi, OZAWA Seiichi, FUKAO Takanori, OHKAWA Takenao, MURAKAMI Noriyuki, TSUJI Hiroyuki
    This paper presents a non-destructive image sensing method to estimate the height of agricultural plants. In this method, several images are taken by moving a digital camera attached to a single-axis robot, and the two consecutive images with a plant tip are automatically matched using SIFT keypoints. Then, the plant height is estimated from the two images based on the triangul
    Sep. 2015, Proc. of Int. Symposium on Applied Electromagnetics and Mechanics, 1 - 2, English
    [Refereed]
    International conference proceedings

  • Ali Siti-Hajar-Aminah, Furutani Nobuaki, Ozawa Seiichi, Nakazato Junji, Ban Tao, Shimamura Jumpei
    神戸大学大学院工学研究科, 2015, Memoirs of the Graduate Schools of Engineering and System Informatics Kobe University, 7, 8 - 13, English

  • An Autonomous Online Malicious Spam Email Detection System Using Extended RBF Network
    Siti-Hajar-Aminah Ali, Seiichi Ozawa, Junji Nakazato, Tao Ban, Jumpei Shimamura
    2015, 2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), English
    [Refereed]
    International conference proceedings

  • ALI Siti, Hajar Aminah, OZAWA Seiichi, NAKAZATO Junji, BAN Tao, SHIMAMURA Jumpei
    In this paper, we propose a new online system that can quickly detect malicious spam emails and adapt to the changes in the email contents and the Uniform Resource Locator (URL) links leading to malicious websites by updating the system daily. We introduce an autonomous function for a server to generate training examples, in which double-bounce emails are automatically collecte
    Scientific Research Publishing, 2015, Journal of Intelligent Learning Systems and Applications,, 7, 42 - 57, English
    [Refereed]
    Scientific journal

  • Hironori Nishikaze, Seiichi Ozawa, Jun Kitazono, Tao Ban, Junji Nakazato, Jumpei Shimamura
    2015, INNS CONFERENCE ON BIG DATA 2015 PROGRAM, 53, 175 - 182, English
    [Refereed]
    International conference proceedings

  • Nobuaki Furutani, Jun Kitazono, Seiichi Ozawa, Tao Ban, Junji Nakazato, Jumpei Shimamura
    2015, NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 9492, 376 - 383, English
    [Refereed]
    International conference proceedings

  • Yonghwa Choi, Seiichi Ozawa, Minho Lee
    Jun. 2014, NEUROCOMPUTING, 134, 280 - 288, English
    [Refereed]
    Scientific journal

  • JOSEPH Anak Annie, JANG Young-Min, OZAWA Seiichi, LEE Minho
    In real life, data are not always generated under stationary environments. However, traditional learning systems have normally assumed that the property of data streams is stationary over time, and this sometimes leads to the degradation in the system performance when there are some hidden contexts changes (e.g. changes in class boundaries and temporal trends in time series). S
    Institute of Systems, Control and Information Engineers, Apr. 2014, Trans. of Institute of Systems, Control and Information Engineers, 27(4) (4), 133 - 140, English
    [Refereed][Invited]
    Scientific journal

  • Joseph Annie anak, Ozawa Seiichi
    神戸大学大学院工学研究科, 2014, Memoirs of the Graduate Schools of Engineering and System Informatics Kobe University, 6, 13 - 17, English

  • Daisuke Higuchi, Seiichi Ozawa
    2014, SMART DIGITAL FUTURES 2014, 262, 402 - 411, English
    [Refereed]
    International conference proceedings

  • Annie Anak Joseph, Seiichi Ozawa
    2014, PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 3135 - 3142, English
    [Refereed]
    International conference proceedings

  • Nobuaki Furutani, Tao Ban, Junji Nakazato, Jumpei Shimamura, Jun Kitazono, Seiichi Ozawa
    2014, 2014 NINTH ASIA JOINT CONFERENCE ON INFORMATION SECURITY (ASIA JCIS), 39 - 43, English
    [Refereed]
    International conference proceedings

  • Detecting Backscatter of DDoS Attacks from Darknet Traffic
    古谷暢章, BAN Tao, 中里純二, 島村隼平, 北園淳, 小澤誠一
    In this work, we propose a method to quickly discriminate DDoS backscatter packets from those of other traffic observed by darknet sensors (i.e., backscatter or non-backscatter). Upon the packets that are sent by a host towards the monitored darknet during a short time-window, we define 12 descriptive features, which are then input to an SVM classifier for classification.In the experiments, we use TCP packets sent from port 80 and UDP packets sent from port 53 as the training and testing data, because of the easiness to label them based on domain knowledge. Experiments showed promising results on these two ports.
    The Institute of Electronics, Information and Communication Engineers, 2014, 電子情報通信学会技術研究報告, 114(340(ICSS2014 51-62)) (340(ICSS2014 51-62)), 49 - 53, Japanese

  • Shun Yoshida, Jun Kitazono, Seiichi Ozawa, Takahiro Sugawara, Tatsuya Haga, Shogo Nakamura
    2014, 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIG DATA (CIBD), 20 - 25, English
    [Refereed]
    International conference proceedings

  • Yuli Dai, Shunsuke Tada, Tao Ban, Junji Nakazato, Jumpei Shimamura, Seiichi Ozawa
    2014, NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 8836, 365 - 372, English
    [Refereed]
    International conference proceedings

  • Ryohei Ohta, Seiichi Ozawa
    Apr. 2013, ELECTRONICS AND COMMUNICATIONS IN JAPAN, 96(4) (4), 29 - 40, English
    [Refereed]
    Scientific journal

  • Daijiro Aoki, Toshiaki Omori, Seiichi Ozawa
    2013, 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 1 - 8, English
    [Refereed]
    International conference proceedings

  • Daijiro Aoki, Toshiaki Omori, Seiichi Ozawa
    2013, 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 1 - 8, English
    [Refereed]
    International conference proceedings

  • Daisuke Higuchi, Seiichi Ozawa
    2013, ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2013, 8131, 162 - 169, English
    [Refereed]
    International conference proceedings

  • Aminah Ali Siti Hajar, Kiminori Fukase, Seiichi Ozawa
    Springer, 2013, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8226(1) (1), 369 - 376, English
    [Refereed]
    International conference proceedings

  • Fast Incremental Principal Component Analysis and Its Application to Face Image Recognition
    AOKI Daijiro, OZAWA SEIICHI
    In the conventional Incremental Principal Component Analysis (IPCA), an eigenvalue problem has to be solved whenever one or a small number of training data are given in sequence. Since the eigenvalue decomposition requires high computational costs in general, solving the eigenvalue problem repeatedly results in the deterioration in the real-time learning property of IPCA. Hence
    THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, Jun. 2012, TECHNICAL REPORT OF IEICE, 112(108) (108), 1 - 6, Japanese
    Symposium

  • 小澤誠一
    Along with the development of the network technology and high-performance small devices such as surveillance cameras and smart phones, various kinds of multimodal information (texts, images, sound, etc.) are captured real-time and shared among systems through networks. Such information is given to a system as a stream of data. In a person identification system based on face recognition, for example, image frames of a face are captured by a video camera and given to the system for an identification purpose. Those face images are considered as a stream of data. Therefore, in order to identify a person more accurately under realistic environments, a high-performance feature extraction method for streaming data, which can be autonomously adapted to the change of data distributions, is solicited. In this review paper, we discuss a recent trend on online feature extraction for streaming data. There have been proposed a variety of feature extraction methods for streaming data recently. Due to the space limitation, we here focus on the incremental principal component analysis.
    The Institute of Electrical Engineers of Japan, 2012, 電気学会論文誌 C, 132(1) (1), 6 - 13, Japanese

  • Takaomi Tokumoto, Seiichi Ozawa
    IEEE, 2012, 2012 IEEE Conference on Evolving and Adaptive Intelligent Systems, EAIS 2012 - Proceedings, 7 - 10, English
    [Refereed]
    International conference proceedings

  • Annie Anak Joseph, Young-Min Jang, Seiichi Ozawa, Minho Lee
    2012, NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 7664, 640 - 647, English
    [Refereed]
    International conference proceedings

  • Tomoyasu Takata, Daisuke Higuchi, Seiichi Ozawa
    2012, 2012 IEEE INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING AND EPIGENETIC ROBOTICS (ICDL), 1 - 2, English
    [Refereed]
    International conference proceedings

  • Simeng Yue, Seiichi Ozawa
    2012, 2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 671 - 674, English
    [Refereed]
    International conference proceedings

  • Seiichi Ozawa, Hisashi Handa
    Dec. 2011, Evolving Systems, 2(4) (4), 215 - 217, English
    [Refereed]
    Scientific journal

  • Young-Min Jang, Minho Lee, Seiichi Ozawa
    Dec. 2011, Evolving Systems, 2(4) (4), 261 - 272, English
    [Refereed]
    Scientific journal

  • Hitoshi Nishikawa, Seiichi Ozawa
    Jun. 2011, NEURAL PROCESSING LETTERS, 33(3) (3), 283 - 299, English
    [Refereed]
    Scientific journal

  • Seiichi Ozawa, Ryohei Ohta
    2011, IEEE SSCI 2011: Symposium Series on Computational Intelligence - EAIS 2011: 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems, 70 - 76, English
    [Refereed]
    International conference proceedings

  • Yonghwa Choi, Takaomi Tokumoto, Minho Lee, Seiichi Ozawa
    2011, 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, pp. 1493 - 1496, 1493 - 1496, English
    [Refereed]
    International conference proceedings

  • 太田良平, 小澤誠一
    This paper proposes a new online feature extraction method called Incremental Recursive Fisher Linear Discriminant (IRFLD) whose batch learning algorithm called RFLD has been proposed by Xiang et al. In the conventional Linear Discriminant Analysis (LDA), the number of discriminant vectors is limited to the number of classes minus one due to the rank of the between-class covariance matrix. However, RFLD and the proposed IRFLD can break this limit; that is, an arbitrary number of discriminant vectors can be obtained. In the proposed IRFLD, the Pang et al.'s Incremental Linear Discriminant Analysis (ILDA) is extended such that effective discriminant vectors are recursively searched for the complementary space of a conventional discriminant subspace. In addition, to estimate a suitable number of effective discriminant vectors, the classification accuracy is evaluated with a cross-validation method in an online manner. For this purpose, validation data are obtained by performing the k-means clustering against incoming training data and previous validation data. The performance of IRFLD is evaluated for 16 benchmark data sets. The experimental results show that the final classification accuracies of IRFLD are always better than those of ILDA. We also reveal that this performance improvement is attained by adding discriminant vectors in a complementary LDA subspace.
    The Institute of Electrical Engineers of Japan, 2011, 電気学会論文誌 C, 131(7) (7), 1368 - 1376, Japanese

  • Chunyu Liu, Young-Min Jang, Seiichi Ozawa, Minho Lee
    2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), pp. 2911-2916, 2911 - 2916, English
    [Refereed]
    International conference proceedings

  • Takaomi Tokumoto, Seiichi Ozawa
    2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), pp. 2881-2888, 2881 - 2888, English
    [Refereed]
    International conference proceedings

  • Tomoyasu Takata, Seiichi Ozawa
    2011, Proceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011, 2, 35 - 40, English
    [Refereed]
    International conference proceedings

  • Fast Variable Selection by Block Addition and Block Deletion
    Nagatani Takashi, Ozawa Seiichi, Abe Shigeo
    Dec. 2010, Journal of Intelligent Learning Systems and Applications, Vol. 2, No. 4, pp. 200-211, English
    [Refereed]
    Scientific journal

  • An Autonomous Incremental Learning Algorithm for Radial Basis Function Networks
    Ozawa Seiichi, Tabuchi Toshihisa, Nakasaka Sho, Roy Asim
    Dec. 2010, Journal of Intelligent Learning Systems and Applications, Vol. 2, No. 4, pp. 179-189, English
    [Refereed]
    Scientific journal

  • Masayuki Hisada, Seiichi Ozawa, Kau Zhang, Nikola Kasabov
    Aug. 2010, Evolving Systems, 1(1) (1), 17 - 27, English
    [Refereed]
    Scientific journal

  • A REINFORCEMENT LEARNING MODEL USING DETERMINISTIC STATE-ACTION SEQUENCES
    Makoto Murata, Seiichi Ozawa
    Feb. 2010, INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 6(2) (2), 577 - 590, English
    [Refereed]
    Scientific journal

  • Online Feature Extraction by Incremental Kernel Principal Component Analysis
    OZAWA Seiichi, TAKEUCHI Yohei, ABE Shigeo
    本論文では,初期データにのみ教師情報が与えられる「準教師付き学習タスク」において,ストリーミングデータからオンラインで非線形な特徴を抽出できる追加学習型カーネル主成分分析(IKPCA)を提案する.提案するIKPCAでは,学習データが入力されるたびにカーネル主成分分析の固有値問題を更新し,それを解くことで固有ベクトルの更新を行う.特徴固有空間で一次独立なデータを選択して固有ベクトルを表現するため,データの一次独立性を判定する必要がなく,追加学習時に保持するデータ数が少なくなって学習が高速化される.ベンチマークデータを用いた評価実験において,主成分分析(PCA)と追加学習型主成分分析(IPCA),更にカーネル主成分分析(KPCA)と比較し,IKPCAで得られる特徴量の評価を行った.その結果,IKPCAによってバッチ学習のKPCAと同等の認識性能が得られ,安定した追加学習が行われることを示した.このことは,IKPCAとKPCAにおいて,固有ベクトルや固有値の一致度を調べた実験からも確認された.また,多くの評価データでPCAやIPCAよりも,認識性能の優れた特徴が得られることを示した.
    The Institute of Electronics, Information and Communication Engineers, 2010, The IEICE transactions on information and systems, J93-D(6) (6), 826 - 836, Japanese

  • An Autonomous Incremental Learning Algorithm of Resource Allocating Network for Online Pattern Recognition
    Seiichi Ozawa, Sho Nakasaka, Asim Roy
    2010, 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, pp. 706-71, English
    [Refereed]
    International conference proceedings

  • 小澤誠一, 岡本圭介
    To avoid the catastrophic interference in incremental learning, we have proposed Resource Allocating Network with Long Term Memory (RAN-LTM). In RAN-LTM, not only new training data but also some memory items stored in long-term memory are trained either by a gradient descent algorithm or by solving a linear regression problem. In the latter approach, radial basis function (RBF) centers are not trained but selected based on output errors when connection weights are updated. The proposed incremental learning algorithm belongs to the latter approach where the errors not only for a training data but also for several retrieved memory items and pseudo training data are minimized to suppress the catastrophic interference. The novelty of the proposed algorithm is that connection weights to be learned are restricted based on RBF activation in order to improve the efficiency in learning time and memory size. We evaluate the performance of the proposed algorithm in one-dimensional and multi-dimensional function approximation problems in terms of approximation accuracy, learning time, and average memory size. The experimental results demonstrate that the proposed algorithm can learn fast and have good performance with less memory size compared to memory-based learning methods.
    The Institute of Electrical Engineers of Japan, 2010, 電気学会論文誌 C, 130(9) (9), 1667 - 1673, Japanese

  • Young-Min Jang, Seiichi Ozawa, Minho Lee
    2010, PRICAI 2010: TRENDS IN ARTIFICIAL INTELLIGENCE, 6230, 445 - +, English
    [Refereed]
    International conference proceedings

  • Seiichi Ozawa, Yohei Takeuchi, Shigeo Abe
    2010, PRICAI 2010: TRENDS IN ARTIFICIAL INTELLIGENCE, 6230, 487 - 497, English
    [Refereed]
    International conference proceedings

  • 津守研二, 小澤誠一
    When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.
    The Institute of Electrical Engineers of Japan, 2010, 電気学会論文誌 C, 130(1) (1), 21 - 28, Japanese

  • Seiichi Ozawa, Asim Roy, Dmitri Roussinov
    Mar. 2009, IEEE TRANSACTIONS ON NEURAL NETWORKS, 20(3) (3), 430 - 445, English
    [Refereed]
    Scientific journal

  • Hiroshi Onda, Seiichi Ozawa
    Institute of Electrical Engineers of Japan, 2009, IEEJ Transactions on Electronics, Information and Systems, 129(4) (4), 21 - 743, English
    [Refereed]
    Scientific journal

  • Shaoning Pang, Seiichi Ozawa, Nik Kasabov
    2009, IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, pp. 2401-2408, 1616 - +, English
    [Refereed]
    International conference proceedings

  • Ryohei Ohta, Seiichi Ozawa
    2009, IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, pp. 2310-2315, 2671 - 2676, English
    [Refereed]
    International conference proceedings

  • Seiichi Ozawa, Yuki Kawashima, Shaoning Pang, Niko La Kasabov
    2009, IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, pp. 2394-2400, 2889 - +, English
    [Refereed]
    International conference proceedings

  • Seiichi Ozawa, Kazuya Matsumoto, Shaoning Pang, Nikola Kasabov
    2009, ADVANCES IN NEURO-INFORMATION PROCESSING, PT I, 5506, 1196 - +, English
    [Refereed]
    International conference proceedings

  • Masayuki Hisada, Seiichi Ozawa, Kau Zhang, Shaoning Pang, Nikola Kasabov
    2009, ADVANCES IN NEURO-INFORMATION PROCESSING, PT I, 5506, 1163 - +, English
    [Refereed]
    International conference proceedings

  • Hitoshi Nishikawa, Seiichi Ozawa, Asim Roy
    2009, ADVANCES IN NEURO-INFORMATION PROCESSING, PT I, 5506, 821 - +, English
    [Refereed]
    International conference proceedings

  • Kazuya Morikawa, Seiichi Ozawa, Shigeo Abe
    2009, Memetic Computing, 1(3) (3), 221 - 228, English
    [Refereed]
    Scientific journal

  • Hiroshi Onda, Seiichi Ozawa
    2009, 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 6 pages, 3088 - 3093, English
    [Refereed]
    International conference proceedings

  • Toshihisa Tabuchi, Seiichi Ozawa, Asim Roy
    2009, INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, PROCEEDINGS, 5788, 134 - +, English
    [Refereed]
    International conference proceedings

  • Seiichi Ozawa, Keisuke Okamoto
    2009, NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 5863, 562 - 569, English
    [Refereed]
    International conference proceedings

  • Seiichi Ozawa, Shaoning Pang, Nikola Kasabov
    Jun. 2008, IEEE TRANSACTIONS ON NEURAL NETWORKS, 19(6) (6), 1061 - 1074, English
    [Refereed]
    Scientific journal

  • An Incremental Principal Component Analysis Based on Dynamic Accumulation Ratio
    Seiichi Ozawa, Kazuya Matsumoto, Shaoning Pang, Nikola Kasabov
    2008, 2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2370 - +, English
    [Refereed]
    International conference proceedings

  • Seiichi Ozawa, Shaoning Pang, Nikola Kasabov
    2008, NEURAL INFORMATION PROCESSING, PART II, 4985, 396 - +, English
    [Refereed]
    International conference proceedings

  • Seiichi Ozawa, Asim Roy
    2008, SEVENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, pp. 747- 751, 747 - +, English
    [Refereed]
    International conference proceedings

  • Hiroki Takabatake, Manabu Kotani, Seiichi Ozawa
    Nov. 2007, ELECTRICAL ENGINEERING IN JAPAN, 161(2) (2), 25 - 32, English
    [Refereed]
    Scientific journal

  • Shinji Kita, Seiichi Ozawa, Satoshi Maekawa, Shigeo Abe
    Nov. 2007, IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, E90D(11) (11), 1853 - 1863, English
    [Refereed]
    Scientific journal

  • Yohei Takeuchi, Seiichi Ozawa, Shigeo Abe
    2007, IEEE International Conference on Neural Networks - Conference Proceedings, 2346 - 2351, English
    [Refereed]
    International conference proceedings

  • An online face recognition system with incremental learning ability
    Seiichi Ozawa, Michiro Hirai, Shigeo Abe
    2007, PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 1963 - 1966, English
    [Refereed]
    International conference proceedings

  • Yohei Takeuchi, Seiichi Ozawa, Shigeo Abe
    2007, 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, CD-ROM (6 pages), 2346 - 2351, English
    [Refereed]
    International conference proceedings

  • Boosting Kernel Discriminant Analysis for pattern classification
    Shinji Kita, Seiichi Ozawa, Satoshi Maekawa, Shigeo Abe
    2007, 2007 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, VOLS 1 AND 2, CD-ROM (4 pages), 674 - +, English
    [Refereed]
    International conference proceedings

  • TAKABATAKE Hiroki, KOTANI Manabu, OZAWA Seiichi
    Independent component analysis (ICA) is a technique of transforming observation signals into their unknown independent components; hence ICA has been often applied to blind signal separation problems. In this application, it is expected that the obtained independent components extract essential information of independent signal sources from input data in an unsupervised fashion. Based on such characteristics, ICA is recently utilized as a feature extraction method for images and sounds for recognition purposes. However, since ICA is an unsupervised learning, the obtained independent components are not always useful in recognition. To overcome this problem, we propose a supervised approach to ICA using category information. The proposed method is implemented in a conventional three-layered neural network, but its objective function to be minimized is defined for not only the output layer but also the hidden layer. The objective function consists of the following two terms: one evaluates the kurtosis of hidden unit outputs and the other evaluates the error between output signals and their teacher signals. The experiments are performed for some standard datasets to evaluate the proposed algorithm. It is verified that higher recognition accuracy is attained by the proposed method as compared with a conventional ICA algorithm.
    The Institute of Electrical Engineers of Japan, Apr. 2006, IEEJ Transactions on Electronics, Information and Systems, 126(4) (4), 542 - 547, Japanese

  • On-line feature selection for adaptive evolving connectionist systems
    Seiichi Ozawa, Shaoning Pang, Nikola Kasabov
    Feb. 2006, INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2(1) (1), 181 - 192, English
    [Refereed]
    Scientific journal

  • Takuya Kidera, Seiichi Ozawa, Shigeo Abe
    Institute of Electrical and Electronics Engineers Inc., 2006, IEEE International Conference on Neural Networks - Conference Proceedings, 3421 - 3427, English
    International conference proceedings

  • Incremental kernel PCA for online learning of feature space
    Shosuke Kimura, Seiichi Ozawa, Shigeo Abe
    2006, INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 1, PROCEEDINGS, Vol. 1, pp. 595-600, 595 - +, English
    [Refereed]
    International conference proceedings

  • Incremental Learning of Feature Space and Classifier for On-Line Pattern Recognition
    OZAWA Seiichi, PANG Shaoning, KASABOV Nikola
    Jan. 2006, International Journal of Knowledge-Based & Intelligent Engineering Systems, Vol. 10, No. 1, pp. 57-65, English
    [Refereed]
    Scientific journal

  • Seiichi Ozawa, Shaoning Pang, Nikola Kasabov
    2006, 2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, pp. 10493-10500, 2278 - +, English
    [Refereed]
    International conference proceedings

  • An incremental learning algorithm of ensemble classifier systems
    Takuya Kidera, Seiichi Ozawa, Shigeo Abe
    2006, 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, pp. 6453-6459, 3421 - +, English
    [Refereed]
    International conference proceedings

  • S Pang, S Ozawa, N Kasabov
    Oct. 2005, IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 35(5) (5), 905 - 914, English
    [Refereed]
    Scientific journal

  • M Kotani, S Ozawa
    Oct. 2005, NEURAL PROCESSING LETTERS, 22(2) (2), 113 - 124, English
    [Refereed]
    Scientific journal

  • S Ozawa, SL Toh, S Abe, SN Pang, N Kasabov
    Jun. 2005, NEURAL NETWORKS, 18(5-6) (5-6), 575 - 584, English
    [Refereed]
    Scientific journal

  • KOTANI Manabu, KINUKAWA Shuhei, OZAWA Seiichi
    Applications of independent component analysis (ICA) to feature extraction have been a topic of research interest. However, the effectiveness of pattern features extracted by conventional ICA algorithms greatly depends on datasets in general. As one of the reasons, we have pointed out that conventional ICA features are obtained by increasing only their independence even if class information is available. In this paper, we propose a supervised learning approach to ICA to extract useful and robust features. The proposed method consists of several modules, each of which is responsible for extracting features for each class and identifying the class labels using the k nearest neighbor classifier. All the module outputs are combined to identify final results based on a majority rule. We evaluate the performance of the proposed method in several recognition tasks. From these results, we confirm the effectiveness of the recognition method using independent components for each class.
    The Institute of Electrical Engineers of Japan, May 2005, IEEJ Transactions on Electronics, Information and Systems, 125(5) (5), 807 - 812, Japanese

  • Boosting Kernel discriminant analysis with adaptive Kernel selection
    S Kita, S Maekawa, S Ozawa, S Abe
    2005, Adaptive and Natural Computing Algorithms, 429 - 432, English
    [Refereed]
    International conference proceedings

  • Chunk incremental LDA computing on data streams
    S Pang, S Ozawa, N Kasabov
    2005, ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 2, PROCEEDINGS, 3497, 51 - 56, English
    [Refereed]
    Scientific journal

  • S Ozawa, SL Toh, S Abe, SN Pang, N Kasabov
    2005, Proceedings of the International Joint Conference on Neural Networks (IJCNN), 5, 3174 - 3179, English
    [Refereed]
    International conference proceedings

  • M Kotani, M Katsura, S Ozawa
    Dec. 2004, NEUROCOMPUTING, 62, 427 - 440, English
    [Refereed]
    Scientific journal

  • OKAMOTO Keisuke, OZAWA Seiichi, ABE Shigeo
    When training samples are given incrementally, neural networks often suffer from the catastrophic interference, which results in forgetting input-output relationships acquired in the past. To avoid the catastrophic interference, we have proposed Resource Allocating Network with Long-Term Memory (RAN-LTM). In RAN-LTM, not only a new training sample but also some memory items stored in long-term memory are used for training based on a gradient descent algorithm. In general, the gradient descent algorithm is usually slow and can be easily fallen into local minima. In this paper, to alleviate these problems, we introduce a linear regression approach into the learning of RAN-LTM, in which its centers are not trained but selected based on output errors in an incremental fashion. In this approach, the regression is carried out for not only a training sample and memory items but also pseudodata that are selected around the centers of hidden units based on the complexity of an approximated function. This selection reduces the total number of pseudodata at each learning step; as a result, fast incremental learning is realized in RAN-LTM. Since only memory items are stored in memory, the proposed RAN-LTM does not need so much memory capacity when the incremental learning is carried out. This property is useful especially for small-scale systems. To verify these characteristics of RAN-LTM, we apply it to several function approximation problems, in which the performance in approximation accuracy, learning time, and needed memory capacity are investigated by comparison with some conventional models. Moreover, when extending the learning domain with time, the increase trends in learning time and needed memory capacity are investigated. From the experimental results, it is verified that the proposed model can learn fast and accurately, and that it needs rather small memory capacity so far as the learning domain is not too large.
    The Society of Instrument and Control Engineers, 2004, Transactions of the Society of Instrument and Control Engineers, 40(12) (12), 1227 - 1235, Japanese

  • SAKAGUCHI Yoshinori, OZAWA Seiichi, KOTANI Manabu
    Recently, Independent Component Analysis (ICA) has been applied to not only problems of blind signal separation, but also feature extraction of patterns. However, the effectiveness of pattern features extracted by conventional ICA algorithms depends on pattern sets; that is, how patterns are distributed in the feature space. As one of the reasons, we have pointed out that ICA features are obtained by increasing only their independence even if the class information is available. In this context, we can expect that more high-performance features can be obtained by introducing the class information into conventional ICA algorithms.
    In this paper, we propose a supervised ICA (SICA) that maximizes Mahalanobis distance between features of different classes as well as maximize their independence. In the first experiment, two-dimensional artificial data are applied to the proposed SICA algorithm to see how maximizing Mahalanobis distance works well in the feature extraction. As a result, we demonstrate that the proposed SICA algorithm gives good features with high separability as compared with principal component analysis and a conventional ICA. In the second experiment, the recognition performance of features extracted by the proposed SICA is evaluated using the three data sets of UCI Machine Learning Repository. From the results, we show that the better recognition accuracy is obtained using our proposed SICA. Furthermore, we show that pattern features extracted by SICA are better than those extracted by only maximizing the Mahalanobis distance.
    The Institute of Electrical Engineers of Japan, Jan. 2004, IEEJ Transactions on Electronics, Information and Systems, 124(1) (1), 157 - 163, Japanese

  • A Memory-based Reingorcement Learning Model Utilizing Macro-Actions
    MURATA Makoto, OZAWA Seiichi
    2004, Proc.of 7th International Conference on Adaptive and Natural Computing Algorithm, English
    [Refereed]
    International conference proceedings

  • A memory-based neural network model for efficient adaptation to dynamic environments
    S Ozawa, K Tsumori
    2004, 2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 437 - 442, English
    [Refereed]
    International conference proceedings

  • Supervised independent component analysis with class information
    M Kotani, H Takabatake, S Ozawa
    2004, NEURAL INFORMATION PROCESSING, 3316, 1052 - 1057, English
    [Refereed]
    Scientific journal

  • One-pass incremental membership authentication by face classification
    SN Pang, S Ozawa, N Kasabov
    2004, BIOMETRIC AUTHENTICATION, PROCEEDINGS, 3072, 155 - 161, English
    [Refereed]
    Scientific journal

  • A modified incremental principal component analysis for on-line learning of feature space and classifier
    S Ozawa, SN Pang, N Kasabov
    2004, PRICAI 2004: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 3157, 231 - 240, English
    [Refereed]
    Scientific journal

  • KOTANI Manabu, ARIMOTO Takahiko, OZAWA Seiichi
    It is important to detect gas leakage sounds from pipes in petroleum refining plants and chemical plants, as often the gas used in these plants are flammable or poisonous. In order to detect the leakage accurately, we should select a feature extraction method for sounds properly. The purpose of this paper is to examine whether independent component analysis (ICA) is useful as a feature extraction method. Several experiments are performed in a plant using an artificial gas leakage device under various experimental conditions. A separating matrix that separates the independent components from collected leakage sounds and background noises is trained by an ICA algorithm. Through several simulations, we find that most basis functions acquired from this training are localized in frequency. Furthermore, there are remarkable differences in amplitude of some independent components between leakage sounds and background noises. From these results, we confirm that the feature extraction using the ICA algorithm is very useful for detecting gas leakage sounds.
    THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE), Oct. 2003, Transactions of the Institute of Systems, Control and Information Engineers, 16(10) (10), 539 - 547, Japanese

  • A Fast Incremental Learning Algorithm of RBF Networks with Long-Term Memory
    Keisuke Okamoto, Seiichi Ozawa, Shigeo Abe
    Sep. 2003, Proceedings of the International Joint Conference on Neural Networks, 1, 102 - 107

  • OZAWA Seiichi, SHIRAGA Naoto
    In reinforcement learning problems, the agent learns what to do so as to maximize numerical rewards. In many cases, the agent learns its proper actions through the estimation of an action-value function. When the agent's states are continuous, the action-value function cannot be represented by a lookup table in general. A solution for this problem is that a neural network is utilized for approximating it. However, when neural networks are trained incrementally, input-output relationships that are trained formerly tend to be collapsed by given new data. This phenomenon is called “interference”. Since the rewards are incrementally given from the environment, the interference could be also serious in reinforcement learning problems. To solve this problem, we propose a memory-based reinforcement learning model that is composed of Resource Allocating Network and memory. The distinctive feature of the proposed model is that it needs quite a small main memory to execute the accurate learning of action-value functions. To examine this feature, the proposed model is applied to the two conventional problems: Random Walk Task and Extended Mountain-Car Task. In these tasks, the learning domains are temporally expanded in order to evaluate the incremental learning ability. In the simulations, we verify that the proposed model can approximate proper action-value functions with quite a small main memory as compared with the conventional approaches.
    The Society of Instrument and Control Engineers, 2003, Transactions of the Society of Instrument and Control Engineers, 39(12) (12), 1129 - 1135, Japanese

  • Tsumori Kenji, Ozawa Seiichi, Abe Shigeo
    When the environment is dynamically changed for agents, knowledge acquired from an environment might be useless in the future environments. Therefore, agents should not only acquire new knowledge but also modify or delete old knowledge. However, this modification and deletion are not always efficient in learning. Because the knowledge once acquired in the past can be useful again in the future when the same environment reappears. To learn efficiently in this situation, agents should have memory to store old knowledge. In this paper, we propose an agent architecture that consists of four modules: resource allocating network (RAN), long-term memory (LTM), association buffer (A-Buffer), and environmental change detector (ECD). To evaluate the adaptability in a class of dynamic environments, we apply this model to a simple problem that some target functions to be approximated are changed in turn.
    The Institute of Systems, Control and Information Engineers, 2003, Proceedings of the Annual Conference of the Institute of Systems, Control and Information Engineers, 3(0) (0), 5506 - 5506, English

  • A Face Recognition System Using Neural Networks with Incremental Learning Ability.
    Soon Lee Toh, OZAWA Seiichi
    2003, Proc. ANZIIS 2003, 155-161, English
    [Refereed]
    International conference proceedings

  • ABE Shigeo, HIROKAWA Youichi, OZAWA Seiichi
    Since the training of support vector machines needs to solve the dual problem with the number of variables equal to the number of training data, the training becomes slow when the number of training data is large. To speed up training the Sequential Minimal Optimization (SMO) technique has been proposed, in which two data are optimized simultaneously. In this paper, we propose to extend SMO so that more than two data are optimized simultaneously. Namely, we select a working set including variables, solve the equality constraint for one variable included in the working set, and substitute it into the objective function. Then we solve the subproblem related to the working set by calculating the inverse of the Hessian matrix. We evaluate our method for the five benchmark data sets and show the speed-up of training over SMO.
    THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE), Nov. 2002, Transactions of the Institute of Systems, Control and Information Engineers, 15(11) (11), 607 - 614, Japanese

  • N. Shiraga, S. Ozawa, S. Abe
    Jan. 2002, ICONIP 2002 - Proceedings of the 9th International Conference on Neural Information Processing: Computational Intelligence for the E-Age, 5, 2566 - 2570

  • Kotani Manabu, Ozawa Seiichi
    In this paper, an approach to feature extraction utilizing independent component analysis (ICA) is pro-posed. In our approach, input patterns are transformed into feature vectors using ICA-bases that are obtained through two-layer neural network learning. A k-NN classifier is applied to these ICA feature vectors when the recognition accuracy is evaluated. Hand-written digits in MNIST database are used as target characters. Fast ICA algorithm is applied to these images in order to learn ICA-bases. In recognition experiments, we demonstrate that the ICA approach realizes a potential feature extraction method for hand-written digits. Furthermore, we show the addition of noise patterns to training data is effective for elimination of redundant basis functions.
    The Institute of Electrical Engineers of Japan, 2002, IEEJ Transactions on Electronics, Information and Systems, 122(3) (3), 465 - 470, Japanese

  • KOBAYASHI Masataka, OZAWA Seiichi, ABE Shigeo
    When neural networks are trained incrementally, input-output relations that are trained formerly tend to be collapsed by the learning of new data. This phenomenon is often called interference. To suppress the interference efficiently, we propose an incremental learning model, in which Long-Term Memory (LTM) is introduced into Resource Allocating Network (RAN) proposed by Platt. This type of memory is utilized for storing useful training data (called LTM data) that are generated adaptively in the learning phase. When a new training datum is given, the proposed system searches several LTM data that are useful for suppressing the interference. The retrieved LTM data as well as the new training datum are trained simultaneously in RAN. In the simulations, the proposed model is applied to various incremental learning problems to evaluate the function approximation accuracy and the learning speed. From the simulation results, we certify that the proposed model can attain good approximation accuracy with small computation costs.
    The Society of Instrument and Control Engineers, 2002, Transactions of the Society of Instrument and Control Engineers, 38(9) (9), 792 - 799, Japanese

  • Learning action-value functions using neural networks with incremental learning ability
    N Shiraga, S Ozawa, S Abe
    2001, KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 69, 22 - 26, English
    [Refereed]
    International conference proceedings

  • Reducing computations in incremental learning for feedforward neural network with long-term memory
    M. Kobayashi, A. Zamani, S. Ozawa, S. Abe
    Jan. 2001, Proceedings of the International Joint Conference on Neural Networks, 3, 1989 - 1994

  • Park Jungpil, Ozawa Seiichi, Abe Shigeo
    A main problem with dynamical associative memories (DAMs) is that when memory patterns are stored, pseudo-memories (false fixed points and limit cycles) are also generated and they hinder proper association of input patterns. To overcome this problem, Hassoun proposed a heuristic method of reducing pseudo-memories. In this method, DAMs are constructed such that a zero vector called “ground state” as well as stored patterns is stabilized and sparsely activated states (sparse patterns) converge to the ground state. Such dynamical properties of neural networks can be described with linear inequalities, and connection weights of networks are obtained by solving these inequalities using the Ho-Kashyap algorithm. In this paper, we propose an extended Hassoun model in which network dynamics are modified such that dense patterns, mix-ture patterns and inhibition patterns are also converged to the ground state. In simulations, we compare association performance of this extended Hassoun model with conventional associative memory models, and demonstrate the usefulness of our proposed model as a dynamical associative memory.
    The Institute of Electrical Engineers of Japan, 2001, IEEJ Transactions on Electronics, Information and Systems, 121(5) (5), 899 - 905, Japanese

  • KOTANI Manabu, MIYATA Takeo, OZAWA Seiichi, AKAZAWA Kenzo
    The detection of gas leakage sound from pipes is important in petroleum refining plants and chemical plants, as often the gas used in these plants are flammable or poisonous. In order to establish the acoustic diagnosis technique for the leakage sound, we examined the application of modular neural networks to the stable detection. The modular neural network has the ability to adapt its structure according to the environment. Experiments were performed for an artificial gas leakage device with various experimental conditions to imitate the change of environment for a long term. The discrimination accuracy with the proposed network was observed to be about 93%. From the results, we confirmed the effectiveness for the application of the modular neural network to the detection of the leakage sound for the practical use.
    The Society of Instrument and Control Engineers, Sep. 2000, Transactions of the Society of Instrument and Control Engineers, 36(9) (9), 797 - 803, Japanese

  • TSUCHIYA Naoki, OZAWA Seiichi, ABE Shigeo
    In this paper we discuss training of three-layered neural network classifiers by solving inequalities. Namely, first we represent each class by the center of the training data belonging to the class, and determine the set of hyperplanes that separate each class (i.e., each center) into a single region. Then according to whether the center is on the positive or negative side of the hyperplane, we determine the target values of each class for the hidden neurons (i.e., hyperplanes). Since the convergence condition of the neural network classifier is now represented by the two sets of inequalities, we solve the sets successively by the Ho-Kashyap algorithm. We demonstrate the advantage of our method over the backpropagation algorithm using several benchmark data sets.
    THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE), Jun. 2000, Transactions of the Institute of Systems, Control and Information Engineers, 13(6) (6), 276 - 283, Japanese

  • Training three-layer neural network classifiers by solving inequalities
    N Tsuchiya, S Ozawa, S Abe
    2000, IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL III, 3, 555 - 560, English
    International conference proceedings

  • OZAWA Seiichi, TSUTSUMI Kazuyoshi, BABA Norio
    In this paper, we propose an evolutionary approach to architecture design of modular dynamical neural networks. As one of modular dynamical neural networks, we adopt Cross-Coupled Hopfield Nets (CCHN) in which plural Hopfield networks are coupled to each other. The architecture of CCHN is represented by some structural-parameters such as the number of modules, the numbers of units per module, the module connectivity, and so forth. In the proposed design method, these structural-parameters are treated as phenotype of an individual, and suitable modular architecture is searched through the evolution of its genetic representation (genotype) by using genetic algorithms. Based on a simple direct coding method, the order of length of genetic representation for the structural-parameters can be estimated to be O(N2) where N is the total number of units. On the other hand, the order of genetic representation proposed here is O(N). To verify the usefulness of proposed method, we apply a CCHN to associative memories. Here, the fitness of an individual is defined so as to be larger when a CCHN has a simpler architecture as well as when the association performance is higher. As the result of simulations, we certify that the proposed design method can find high-performance CCHN with simple modular architectures.
    The Society of Instrument and Control Engineers, 2000, Transactions of the Society of Instrument and Control Engineers, 36(3) (3), 298 - 305, Japanese

  • KOTANI Manabu, MAEKAWA Satoshi, OZAWA Seiichi, AKAZAWA Kenzo
    We describe what characteristics an independent component analysis can extract from Japanese continuous speech. Speech data was selected from ATR database uttered by a female speaker. The data was recorded at 20kHz sampling frequency and was pre-processed with a whitening filter. The learning algorithm of a network was an information-maximization approach proposed by Bell and Sejnowski. After the learning, most of the basis functions that are columns of a mixing matrix were localized in both time and frequency. Furthermore, we confirmed that there were some basis functions to extract the acoustic feature such as the pitch and the formant of each vowel.
    The Society of Instrument and Control Engineers, 2000, Transactions of the Society of Instrument and Control Engineers, 36(5) (5), 456 - 458, Japanese

  • Manabu Kotani, Yasunobu Shirata, Maekawa Satoshi, Seiichi Ozawa, Kenzo Akazawa
    It was reported that a sparse coding algorithm produced a set of basis functions being spatially localized, oriented, and bandpass for natural images. The application of Independent Component Analysis (ICA) to the natural images has shown to be similar results to the sparse coding's result. However, the ICA can be applied in the case of basis function matrices to be non-singular and invertible. There are not such limitations in the sparse coding algorithm. This property allows that the code is overcomplete, that is, the number of code elements is greater than the effective dimensionality of the input space. The purpose of this paper is to examine what characteristics of speech the sparse coding algorithm extracts from natural sounds. Speech data was Japanese five vowels uttered by a female speaker during about 1sec. Most of the basis functions were localized in frequency after the training. Some basis functions only shifted in time and resembled each other. Each basis function was compared with the speech data and the result was that some basis functions responded selectively to each vowel. The frequency analysis for the basis function showed that some basis functions extracted the pitch frequency and the formant of each vowel.
    The Institute of Electrical Engineers of Japan, 2000, IEEJ Transactions on Electronics, Information and Systems, 120(12) (12), 1996 - 2002, Japanese

  • Evolution of a dynamical modular neural network and its application to associative memories
    Seiichi Ozawa, Kazuyoshi Tsutsumi, Norio Baba
    IEEE, 1999, International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 145 - 148, English
    Scientific journal

  • Application of independent component analysis to feature extraction of speech
    Manabu Kotani, Yasunobu Shirata, Satoshi Maekawa, Seiichi Ozawa, Kenzo Akazawa
    IEEE, 1999, Proceedings of the International Joint Conference on Neural Networks, 5, 2981 - 2984, English
    International conference proceedings

  • Emergence of feature extraction function using genetic programming
    Manabu Kotani, Seiichi Ozawa, Masaki Nakai, Kenzo Akazawa
    IEEE, 1999, International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 149 - 152, English
    Scientific journal

  • Application of independent component analysis to hand-written Japanese character recognition
    Seiichi Ozawa, Toshihide Tsujimoto, Manabu Kotani, Norio Baba
    IEEE, 1999, Proceedings of the International Joint Conference on Neural Networks, 4, 2867 - 2871, English
    International conference proceedings

  • Seiichi Ozawa, Kazuyoshi Tsutsumi, Norio Baba
    Kluwer Academic Publishers, 1999, Neural Processing Letters, 10(2) (2), 97 - 109, English
    [Refereed]
    Scientific journal

  • Seiichi Ozawa, Kazuyoshi Tsutsumi, Norio Baba
    John Wiley and Sons Inc., 1998, Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), 125(2) (2), 27 - 34, English
    Scientific journal

  • Seiichi Ozawa, Kazuyoshi Tsutsumi, Norio Baba
    Springer Verlag, 1998, Biological Cybernetics, 78(1) (1), 19 - 36, English
    [Refereed]
    Scientific journal

  • OZAWA Seiichi, TSUTSUMI Kazuyoshi, BABA Norio
    In this paper, we propose a new autoassociative memory model which is derived from Cross-Coupled Hopfield Nets (CCHN). The CCHN is a modular neural network in which plural Hopfield networks are mutually connected via feedforward neural networks. The CCHN's architecture is determined by the following structural parameters : the number of modules, the numbers of units in the modules, the contribution of the module information processings and the interactions to the whole network information processing, and the module connectivity. If these parameters are changed, the network dynamics are also changed; therefore, it may be possible to implement a great number of autoassociative memories with different nature. Through some computer simulations, we will discuss a diversity of association properties in the proposed model.
    THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE), Dec. 1997, Transactions of the Institute of Systems, Control and Information Engineers, 10(12) (12), 668 - 678, Japanese

  • Ozawa Seiichi, Tsutsumi Kazuyoshi, Baba Norio
    In this paper, the association characteristics of Cross-Coupled Hopfield Nets (CCHN) proposed as a modular neural network model are discussed in an analytical way. In the CCHN, an arbitrary number of modules (Hopfield networks) can be mutually connected via feedforward networks called “internetworks”, whose outputs generate the interactions among module networks. To evaluate the CCHN as a modular neural network, it has been applied to associative memories so far. Although its excellent association performance is supported by many simulation results, it is still difficult to compute the memory capacity exactly and examine the dynamical properties rigorously, because the information processing of the CCHN includes strong nonlinearity. Hence, as the first step to the analytical approach, this paper focuses on a 1-module CCHN whose interaction is realized by a two-layered feedforward internetwork. In this case, the connection matrix of the CCHN degenerates into a single square-matrix like a conventional auto-association type of associative memory. Through the eigenvalue analysis for the connection matrix, we reveal that the essential differences between the association characteristics of the CCHN and a conventional auto-correlation associative memory originate from the dynamics in the noise-space which is the orthogonal complement of the subspace generated from memory patterns.
    The Institute of Electrical Engineers of Japan, 1997, IEEJ Transactions on Electronics, Information and Systems, 117(9) (9), 1253 - 1258, Japanese

  • A Multi-Module Neural Network Model and the Estimate of Its Nature as Associative Memory
    OZAWA Seiichi, TSUTSUMI Kazuyoshi
    本論文では,モジュール構造をもつニューラルネット(モジュール化ニューラルネット)のモデル化手法として,情報処理様式をエネルギー関数で記述する方法を採用する.この一モデルとして,モジュールネットの情報処理とモジュールネット間の相互作用に対するエネルギー関数を線形に加算し,更にモジュールネットの状態間に多対多の写像関係がある場合でも適用可能としたCross-Coupled Nets With Many-to-Many Mapping Internetworks(CCHN-MMMI)を提案する.また,CCHN-MMMIのネットワークダイナミックスを導出し,モジュール数が2であるCCHN-MMMIの想起特性とその連想記億能力をシミュレーション実験により調べる.シミューレーション実験では,モジュール構造が明示的に与えられることによる効果を,その想起過程から従来の自己相関型連想記億モデルとの比較により考察する.次に,文字パターン対の連想を例にとり,モジュールネットの状態間に多対多の写像関係がある場合でも正しく動作することを確認する.また,基本記憶をランダムに選んだとき,その数の増加に伴う想起ダイナミックスの劣化を定量的に調べ,連想記憶モデルとしての評価を行う.その結果,さまざまな基本記憶に対し,CCHN-MMMIはモジュールネットの状態間に多対多の写像関係がある場合でも正しく動作し,その相互作用は偽記憶の想起を妨げるよう機能することがわかった.特に,モジュールネット間の写像関係を多層ネットワークで学習するCCHN-MMMIでは,自己相関型連想記憶モデルに比べ大幅に連想能力が改善され,モジュールネット間に非線形な相互作用をもつことの効果が確認された.
    The Institute of Electronics, Information and Communication Engineers, Jun. 1994, The Transactions of the Institute of Electronics,Information and Communication Engineers., 77(6) (6), 1135 - 1145, Japanese

■ MISC
  • Data Generation Model for Evasion of Fraud Detection in Financial Transactions
    Akitaka TSUJITA, Hiroaki INOUE, Chawthetza, Yusuke MARUYAMA, Seiichi OZAWA
    Last, 07 Mar. 2025, IEICE Technical Report, 124(422) (422), 375 - 382, Japanese
    Technical report

  • Label Correction for Machine Learning-Based Cyber Attack Detection Assuming Uncertainty in Data Labels
    浦川, 遥輝, 山田, 明, Joo, Suwon, Vestin, Simon, Wang, Hui, Park, Chanho, 小澤, 誠一, Haruki, Urakawa, Akira, Yamada, Seiich, Ozawa
    機械学習は,さまざまな課題においてデータに基づいてモデル構築を実現しているが,サイバー攻撃検知において正確なラベルが付与されないため高い精度を実現できない問題がある.本稿では,不確実なデータラベルを前提とした機械学習によるサイバー攻撃検知のための誤ラベル訂正手法を提案する.従来手法であるConfident Learningは,画像分類など汎用的なタスクにおいてクラスの組ごとに独立に誤ラベルが発生する場合に対応できる.しかしながら,サイバー攻撃検知においては,正例と負例の均衡がとれていない場合が多い.また,インシデントに基づいて運用者がラベル付けを行うため,時刻がずれることによって発生する誤ラベルが多い.本稿では,Confident Learningを拡張して,データセットの不均衡性と時刻のずれに対して頑強な誤ラベル訂正手法を提案する.提案手法の有効性を検証するために,公開されているCICIDS2017データセットおよび,企業ネットワークに設置された侵入検知システムのログを用いて評価した.その結果,提案手法は,従来手法に比べて高い精度で誤ラベルを訂正できることが分かった.また,侵入検知システムのログにおいて,ラベル時刻のずれを訂正できることを確認した. Machine learning has enabled model development based on data across various domains. However, in cyber-attack detection, the lack of accurate labels hinders high accuracy. This paper proposes a method for correcting mislabeled data in cyber-attack detection using machine learning, assuming uncertain data labels. Confident Learning, a conventional method, can handle situations where label errors occur independently within each class in general tasks such as image classification. However, in cyber-attack detection, there is often a significant imbalance between positive and negative labels. Additionally, since labels are assigned by operators based on incidents, mislabeling regarding time discrepancies frequently occurs. This paper proposes an extension of Confident Learning that provides a robust method for correcting mislabeled data, addressing both dataset imbalance and time discrepancies. To validate the effectiveness of the proposed method, we evaluated it using the publicly available CICIDS2017 dataset and logs from an IDS(Intrusion Detection System) deployed in an enterprise network. The results demonstrate that the proposed method can correct mislabeled data with higher accuracy compared to conventional methods. Furthermore, we confirmed that the method can correct time discrepancies in the labels within the IDS logs.
    15 Oct. 2024, コンピュータセキュリティシンポジウム2024論文集, 76 - 83, Japanese

  • 組織間水平連合学習による社会実装
    小澤誠一
    Lead, 01 May 2024, オペレーションズ・リサーチ, 69(5) (5), 241 - 246, Japanese
    [Refereed][Invited]
    Introduction scientific journal

  • Efficient Replay Data Selection in Continual Federated Learning Model
    北野優斗, WANG Lihua, 小澤誠一
    Last, Mar. 2024, 電子情報通信学会技術研究報告(Web), 123(423(IT2023 117-135)) (423(IT2023 117-135)), Japanese
    Technical report

  • Towards Modeling the Visual Recognition for Human Security Countermeasures Using Large-Scale Language Models
    鍛冶, 佳佑, 中野, 瑠人, 山田, 明, 小澤, 誠一
    フィッシングのようなサイバー攻撃では,ユーザ自身による対策が求められる.セキュリティ教育において,フィッシングの場合は,攻撃の特徴を記憶し,それらとWebサイトを比較することによって攻撃を判断するように教育される.しかし,日々進化するサイバー攻撃への対策として,新しい攻撃手法を学び直し続けることはユーザの大きな負担となる.本稿では,大規模言語モデル(LLM:Large Largeage Models)によるセキュリティ対策における視覚的認知メカニズムのモデル化に向けた分析方式を提案する.近年,LLMは,人間のフィードバックによるファインチューニングによって因果推論タスクが可能になってきている.しかし,LLMは,言語によって記述されていないタスクの取り扱いが難しい.そこで,提案方式は,視覚的認知の情報を言語化することによって,LLMによる視覚的認知メカニズムのモデル化を目指す.提案方式の有効性を検証するために,フィッシングサイトと正規サイトをそれぞれ110件用いて評価を行った.その結果,大規模言語モデルと視覚情報だけを用いて,適合率98.2\%,再現率83.7\%の精度でフィッシングサイトを検知できた.さらに,フィッシング対策の文書をLLMに与えて判定過程を観察することによって,人間の認知メカニズムとLLMの振る舞いの関連性を調査した.また,フィッシング判定以外の複数のセキュリティ判定タスクに対するLLMの有効性を明らかにした.今後は,ユーザを狙うさまざまなサイバー攻撃に本手法を拡大して,視覚的認知メカニズムをモデル化することによってセキュリティ対策および教育への応用を検討する. Cyber attacks such as phishing require users to take their own countermeasures. In security education, in the case of phishing, users are taught to memorize the characteristics of the attack and to judge the attack by comparing the attack with the website. However, it is a heavy burden for users to keep learning and relearning new attack methods to counter cyber attacks that are evolving day by day. In this paper, we propose an analysis method for modeling visual cognitive mechanisms in security countermeasures using large language model. Recently, large language model have become capable of performing causal inference tasks through fine tuning with human feedback. However, large language model have difficulty in handling tasks that are not described by language. Therefore, the proposed method aims at modeling visual cognition mechanisms using language model by converting visual cognition information into language. To verify the effectiveness of the proposed method, we conducted an evaluation using 110 phishing sites and legitimate sites, respectively. The results showed that the proposed method was able to detect phishing sites with an accuracy of 98.2\% and 83.7\% using only a large language model and visual information.Furthermore, we investigated the relevance to human cognitive mechanisms by qualitatively comparing the phishing decision process with a large language model given an anti-phishing document. We also clarified the effectiveness of the model in phishing attacks other than phishing sites. In the future, we will apply the model to security attacks other than phishing to realize security countermeasures and education based on cognitive mechanisms.
    Last, 23 Oct. 2023, コンピュータセキュリティシンポジウム2023論文集, 1536 - 1543, Japanese
    Summary national conference

  • Mohammad Tanveer, Sonali Agarwal, Seiichi Ozawa, Asif Ekbal, Adam Jatow
    Springer, Apr. 2023, Lecture Notes in Computer Science, 13625, English
    [Invited]
    Summary international conference

  • Mohammad Tanveer, Sonali Agarwal, Seiichi Ozawa, Asif Ekbal, Adam Jatow
    Springer, Apr. 2023, Lecture Notes in Computer Science, 13624, English
    [Refereed]

  • Mohammad Tanveer, Sonali Agarwal, Seiichi Ozawa, Asif Ekbal, Adam Jatow
    Springer International Publishing, Apr. 2023, Lecture Notes in Computer Science, 13624, English
    [Refereed]

  • Mohammad Tanveer, Sonali Agarwal, Seiichi Ozawa, Asif Ekbal, Adam Jatow
    Springer, Apr. 2023, Lecture Notes in Computer Science, 1794, English
    [Refereed]

  • Mohammad Tanveer, Sonali Agarwal, Seiichi Ozawa, Asif Ekbal, Adam Jatow
    Springer, Apr. 2023, Lecture Notes in Computer Science, 1792, English
    [Refereed]

  • Mohammad Tanveer, Sonali Agarwal, Seiichi Ozawa, Asif Ekbal, Adam Jatow
    Springer, Apr. 2023, Lecture Notes in Computer Science, 1791, English
    [Refereed]

  • ESG Topic Analysis of News Articles Using ChatGPT.
    小杉樹来, 小澤誠一, 廣瀬勇秀, 池田佳弘, 中川憲保, 飯塚正昭, 西田大輔
    2023, 人工知能学会第二種研究会資料(Web), 2023(FIN-031) (FIN-031)

  • Instrument Detection and Segmentation in Suturing Task with the Surgical Robot hinotori Using YOLOv8 Fine-Tuning
    服部達也, 南地海音, 三谷祐貴, 植村宗則, 鎮西清行, 福本巧, 小澤誠一, 福本巧, 小澤誠一, 小澤誠一
    2023, 日本コンピュータ外科学会誌(Web), 25(3) (3)

  • Skill Evaluation by Utilizing the Logs of the Medical Robot Hinotori
    三谷祐貴, 服部達也, 南地海音, 植村宗則, 鎮西清行, 福本巧, 福本巧, 小澤誠一, 小澤誠一, 小澤誠一
    2023, 日本コンピュータ外科学会誌(Web), 25(3) (3)

  • Time Synchronization of Procedure Videos and Operation Logs in Robot-Assisted Surgery
    南地海音, 服部達也, 三谷祐貴, 植村宗則, 鎮西清行, 福本巧, 小澤誠一, 福本巧, 小澤誠一, 小澤誠一
    2023, 日本コンピュータ外科学会誌(Web), 25(3) (3)

  • Scandalous Article Classification with Contrastive Learning BERT and Study of Sentence Embedded Representation
    高須悠一朗, 小澤誠一, 廣瀬勇秀, 池田佳弘, 中川憲保, 飯塚正昭, 西田大輔
    2023, 人工知能学会全国大会論文集(Web), 37th

  • Mohammad Tanveer, Sonali Agarwal, Seiichi Ozawa, Asif Ekbal, Adam Jatow
    Springer, 2023, Lecture Notes in Computer Science, 1793, English
    [Refereed]

  • Detecting Malicious TLS Communications Using Machine Learning and Considerations on the Transition of Communication Characteristics
    藤原魁成, 小澤誠一, 春木博行, PARK Chanho
    2022, 情報処理学会研究報告(Web), 2022(DPS-190) (DPS-190)

  • プライバシー保護連合学習による組織間ビッグデータ解析とその応用
    小澤誠一, 小澤誠一
    2022, インテリジェント・システム・シンポジウム(CD-ROM), 30th

  • Federated Continuous Learning of Gradient Boosting Decision Trees Using Dynamic Sampling
    三浦啓吾, 井上広明, KIM S., WANG L., 小澤誠一
    2022, インテリジェント・システム・シンポジウム(CD-ROM), 30th

  • Analyst Reports Analysis And Investment Decision Rating Prediction Using Machine Learning
    鈴木章悟, 小澤誠一, 小澤誠一, 渡辺一男, 廣瀬勇秀, 池田佳弘, 飯塚正昭, 西田大輔
    2022, 人工知能学会第二種研究会資料(Web), 2022(FIN-028) (FIN-028)

  • ESG-related text extraction from news articles for investment support
    吉田朋弘, 小澤誠一, 渡辺一男, 廣瀬勇秀, 池田佳弘, 飯塚正昭, 西田大輔
    2022, 人工知能学会第二種研究会資料(Web), 2022(FIN-028) (FIN-028)

  • Light-weight Deep Learning Model for Implementation of Super Security Gate
    村中建太, 中谷透大, 小澤誠一, 西村祐太郎, 坂倉涼太, 鈴木章吾, 木村建次郎, 美馬勇輝, 木村憲明
    2021, システム制御情報学会研究発表講演会講演論文集(CD-ROM), 65th

  • Scan Packet Analysis by Port-number Embedding Vector Considering Large-scale Survey Packets in Darknet
    石川真太郎, 中藤大暉, 班涛, 小澤誠一
    2021, 情報処理学会研究報告(Web), 2021(CSEC-92) (CSEC-92)

  • Development of Flower Counting System for Soybeans Using Object Detection and Tracking
    織部慧次朗, 小澤誠一
    2021, 知能システムシンポジウム講演資料(CD-ROM), 48th (Web)

  • Extraction of Soil Moisture Environment Affecting Soybean Yield Based on Co-occurrence of Time Series Patterns
    逸見聡, 東山久瑠実, 長南友也, 林怜史, 中村卓司, 辻博之, 村上則幸, 西出亮, 大川剛直, 小澤誠一
    2021, 情報科学技術フォーラム講演論文集, 20th

  • Advancement of Magnetic Field Distribution Image Analysis for Super Security Gate Using Deep Learning
    中谷透大, 美馬勇輝, 鈴木章吾, 坂倉涼太, 木村建次郎, 小澤誠一
    2020, システム制御情報学会研究発表講演会講演論文集(CD-ROM), 64th

  • Privacy-Preserving Technologies in Data Analysis and Its Applications
    小澤誠一
    2020, システム制御情報学会研究発表講演会講演論文集(CD-ROM), 64th

  • Masquerade Detection Based on Users’ Command Logs Using Deep Learning Models
    安達貴洋, 小澤誠一, 春木博行
    2020, 情報処理学会研究報告(Web), 2020(CSEC-88) (CSEC-88)

  • Discovering Malicious Websites from Access Logs of URLs Using Deep Learning Model
    前橋祐斗, 小澤誠一, 山田明
    2020, 情報処理学会研究報告(Web), 2020(CSEC-88) (CSEC-88)

  • AI×セキュリティの現状と期待
    小澤誠一
    2019, 計測自動制御学会制御部門マルチシンポジウム(CD-ROM), 6th

  • Advancement of Network Scanning Monitoring Using Association Rule Mining and Darknet Analysis
    橋本直輝, BAN Tao, 島村隼平, 小澤誠一
    2019, システム制御情報学会研究発表講演会講演論文集(CD-ROM), 63rd

  • Automatic Soybean Growth Factor Acquisition Using RetinaNet and Object Tracking Method
    大村和暉, 小澤誠一, 大川剛直, 長南友也, 辻博之, 村上則幸
    2019, システム制御情報学会研究発表講演会講演論文集(CD-ROM), 63rd

  • Extraction of Important Sentences in Financial Documents Based on Business Confidence Information Using LSTM with Self-Attention Mechanism
    山岡周平, 小澤誠一, 小澤誠一, 廣瀬勇秀, 飯塚正昭
    2019, 人工知能学会全国大会(Web), 33rd

  • Efficient Privacy-Preserving Prediction for Three-Layer Feedforward Neural Networks Using Ring-LWE-based Homomorphic Encryption
    手塚雄大, WANG Lihua, WANG Lihua, 林卓也, KIM Sangwook, 為井智也, 大森敏明, 小澤誠一
    2019, 人工知能学会全国大会(Web), 33rd

  • Business Confidence Prediction for Analyst Report using Convolutional Neural Networks
    高山将丈, 小澤誠一, 小澤誠一, 廣瀬勇秀, 飯塚正昭
    2019, 人工知能学会全国大会(Web), 33rd

  • Exploring Malicious URL in Dark Web Using Tor Crawler
    川口雄己, 小澤誠一
    2019, 電子情報通信学会技術研究報告, 118(478(ISEC2018 81-134)) (478(ISEC2018 81-134))

  • Advancement of DDoS Monitoring Using Machine Learning and Darknet Analysis
    畑中拓哉, 小澤誠一, BAN Tao, 島村隼平
    2019, システム制御情報学会研究発表講演会講演論文集(CD-ROM), 63rd

  • Akira Hirose, Alessio Micheli, Artur S. d'Avila Garcez, Choon Ki Ahn, Gang Pan, Hamid Reza Karimi, Jianbing Shen, José de Jesús Rubio, Lei Zhang, Lingjia Liu 0001, Lorenzo Livi, Nian Zhang, Nishchal K. Verma, Pedro Antonio Gutiérrez, Qi Tian 0001, Qinglai Wei, Seiichi Ozawa, Stuart H. Rubin, Wei-Neng Chen, Xi Li, Xiaofeng Liao, Youmin Zhang 0001, Zhen Ni, Haibo He
    2019, IEEE Trans. Neural Networks Learn. Syst., 30(1) (1), 2 - 10
    [Refereed]

  • Seiichi Ozawa
    Lead, 一般社団法人 システム制御情報学会, 2019, システム/制御/情報, 63(2) (2), 84 - 84, Japanese
    [Invited]
    Book review

  • 北海道における薬害によるダイズの分枝発達抑制
    辻博之, 村上則幸, 中村卓司, 長南友也, 小澤誠一, 大川剛直
    2018, 日本作物学会講演会要旨集, 245th

  • ダークネットトラフィックデータの頻出パターン解析
    橋本直輝, 小澤誠一, BAN Tao, 中里純二, 島村隼平
    2017, 情報処理学会シンポジウムシリーズ(CD-ROM), 2017(2) (2)

  • Development of an Image Sensing Method to Automatically Obtain Soybean Growth Condition
    八幡壮, 小澤誠一, 吉田武史, 大川剛直, 村上則幸, 辻博之
    2017, 人工知能学会全国大会論文集(CD-ROM), 31st

  • 匿名ネットワークTorにおけるマーケット商品とセキュリティ事件との関連性に関する考察
    川口雄己, 山田彰, 小澤誠一
    2017, 情報処理学会シンポジウムシリーズ(CD-ROM), 2017(2) (2)

  • ダークネットトラフィックの可視化とオンライン更新によるモニタリング
    畑中拓哉, 北園淳, 小澤誠一, 班涛, 中里純二, 島村隼平
    2016, 情報処理学会シンポジウムシリーズ(CD-ROM), 2016(2) (2)

  • An Autonomous DDoS Backscatter Detection System from Darknet Traffic
    宇川雄樹, 北園淳, 小澤誠一, BAN Tao, 中里純二, 島村隼平
    2016, 情報処理学会研究報告(Web), 2016(SPT-17) (SPT-17)

  • OZAWA Seiichi
    THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS, 2016, SYSTEMS, CONTROL AND INFORMATION, 60(3) (3), 120 - 125, Japanese

  • ダークネットトラフィックに基づく学習型DDoS攻撃監視システムの開発
    古谷暢章, 北園淳, 小澤誠一, BAN Tao, 中里純二, 島村隼平
    2015, 情報処理学会シンポジウムシリーズ(CD-ROM), 2015(3) (3)

  • ダークネットトラフィックに基づいたDDoSバックスキャッタ判定
    古谷暢章, BAN Tao, 中里純二, 島村隼平, 北園淳, 小澤誠一
    2015, システム制御情報学会研究発表講演会講演論文集(CD-ROM), 59th

  • A Neural Network Model for Incremental Learning of Large-Scale Stream Data
    Aminah Ali Siti Hajar, Fukase Kiminori, Ozawa Seiichi
    システム制御情報学会, 21 May 2014, システム制御情報学会研究発表講演会講演論文集, 58, 6p, English

  • Fast Online Feature Extraction Using Chunk Incremental Kernel Principal Component Analysis
    Joseph Annie anak, Ozawa Seiichi
    システム制御情報学会, 21 May 2014, システム制御情報学会研究発表講演会講演論文集, 58, 4p, English

  • ダークネットパケットに対するDDoS攻撃によるバックスキャッター判定に関する研究
    古谷暢章, BAN Tao, 中里純二, 島村隼平, 小澤誠一
    2014, システム制御情報学会研究発表講演会講演論文集(CD-ROM), 58th

  • OZAWA Seiichi
    THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS, 2014, SYSTEMS, CONTROL AND INFORMATION, 58(1) (1), 46 - 46, Japanese

  • Handling Concept Drift Using Incremental Linear Discriminant Analysis with Knowledge Transfer in Non-stationary Data Streams
    Joseph Annie anak, Ozawa Seiichi
    システム制御情報学会, 15 May 2013, システム制御情報学会研究発表講演会講演論文集, 57, 3p, English

  • ダークネットトラフィックデータの解析によるサブネットの脆弱性判定に関する研究
    西風宗典, BAN Tao, 小澤誠一
    2013, 情報処理学会シンポジウムシリーズ(CD-ROM), 2013(4) (4)

  • Ozawa Seiichi
    複数のパター認識を同時または逐次的に学習する問題は,マルチタスクパターン認識問題と呼ばれる.この問題では,同一の入力に対して複数のクラスラベルが割り当てられ,システムは訓練データを学習しながら,複数の認識概念を自律的に獲得することを求められる.本研究では,タスクおよび訓練データがどちらも逐次的に与えられる追加学習の設定で,タスク変動検知機能,知識移転機能,タスクの誤分類訂正機能をもつ追加学習型ニューラルネットモデルを紹介する.
    The Institute of Systems, Control and Information Engineers, 2010, Proceedings of the Annual Conference of the Institute of Systems, Control and Information Engineers, SCI10, 301 - 301, Japanese

  • Ozawa Seiichi
    インターネットの発達により,高次元かつ大量のデータが時々刻々と蓄積されるようになった.このような環境で認識,予測,診断などを効率よく行っていくには,時間的に変化するデータ群に適応して次元削減を行い,システムの追加学習が行われる必要がある.次元削減にはオンライン型の主成分分析アルゴリズムなどが提案されている.本発表では,オンライン型主成分分析と追加学習型ニューラルネットを組み合わせた学習モデルを紹介する.
    The Institute of Systems, Control and Information Engineers, 2007, Proceedings of the Annual Conference of the Institute of Systems, Control and Information Engineers, SCI07, 164 - 164, Japanese

  • OZAWA Seiichi
    THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS, 2005, SYSTEMS, CONTROL AND INFORMATION, 49(10) (10), 424 - 425, Japanese

  • 椹木 哲夫, 小澤 誠一, 諏訪 晴彦
    一般社団法人 システム制御情報学会, 2005, システム/制御/情報, 49(12) (12), 488 - 488, Japanese

  • On the Special Issue of the 2003 Kansai-Section Joint Convention of Institutes of Electrical Engineering Japan
    OZAWA Seiichi
    01 Nov. 2004, 電気学会論文誌. C, 電子・情報・システム部門誌 = The transactions of the Institute of Electrical Engineers of Japan. C, A publication of Electronics, Information and System Society, 124(11) (11), 2201 - 2201, Japanese

  • OZAWA Seiichi
    The Society of Instrument and Control Engineers, 10 Sep. 2004, Journal of The Society of Instrument and Control Engineers, 43(9) (9), 723 - 723, Japanese

  • 独立成分分析を用いた個人性抽出に関する基礎研究
    小澤 誠一
    2003, 実吉奨学会研究報告集, 20,27-30, Japanese
    Others

  • OZAWA Seiichi
    The Society of Instrument and Control Engineers, 10 Dec. 2002, Journal of The Society of Instrument and Control Engineers, 41(12) (12), 888 - 893, Japanese

  • Independent Component Analysis
    小澤 誠一, 小谷 学
    10 Aug. 2000, 計測と制御 = Journal of the Society of Instrument and Control Engineers, 39(8) (8), 522 - 522, Japanese

  • BABA Norio, OZAWA Seiichi
    The Robotics Society of Japan, 15 Jan. 1993, Journal of the Robotics Society of Japan, 11(1) (1), 44 - 48, Japanese

  • ニューラルネットワーク応用の最新動向
    小谷 学, 小澤 誠一
    システム制御情報学会, 15 Oct. 1992, システム/制御/情報 : システム制御情報学会誌 = Systems, control and information, 36(10) (10), 669 - 677, Japanese

  • 「ニューロメール」 について
    小澤 誠一
    15 Oct. 1992, システム/制御/情報 : システム制御情報学会誌 = Systems, control and information, 36(10) (10), 679 - 679, Japanese

  • Dynamical Equations of Multi-Module Neural Networks
    Ozawa Seiichi
    Nara National College of Technology, 1992, Research reports of Nara Technical College, (28) (28), p41 - 44, Japanese

  • The Self-Organized Neural Network with an Ability of Regularizing The Temporal Elasticity
    Ozawa seiichi
    Nara National College of Technology, 1990, Research reports of Nara Technical College, (26) (26), p61 - 67, Japanese

  • The CV Syllable Recognition Using Multi-Layered Kohonen Net
    Ozawa Seiichi, Tsutsumi Kazuyoshi, Matsumoto Haruya
    Nara National College of Technology, 1989, Research reports of Nara Technical College, (25) (25), p57 - 62, Japanese

■ Books And Other Publications
  • データサイエンスの考え方 : 社会に役立つAI×データ活用のために
    小澤, 誠一, 齋藤, 政彦
    オーム社, Nov. 2021, Japanese, ISBN: 9784274227974

  • データサイエンス基礎
    齋藤, 政彦, 小澤, 誠一, 羽森, 茂之, 南, 知惠子, 平田, 燕奈, 光明, 新, 小川, 賢, 為井, 智也, 上田, 修功, 森永, 聡, 本村, 陽一
    培風館, Mar. 2021, Japanese, ISBN: 9784563016104

  • Neural Information Processing - 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part VII
    CHENG Long, LEUNG Andrew Chi-Sing, OZAWA Seiichi
    Joint editor, Springer, Dec. 2018, English, ISBN: 9783030042394
    Others

  • Neural Information Processing - 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part VI
    CHENG Long, LEUNG Andrew Chi-Sing, OZAWA Seiichi
    Joint editor, Springer, Dec. 2018, English, ISBN: 9783030042240
    Others

  • Neural Information Processing - 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part V
    CHENG Long, LEUNG Andrew Chi-Sing, OZAWA Seiichi
    Joint editor, Springer, Dec. 2018, English, ISBN: 9783030042219
    Others

  • Neural Information Processing - 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part IV
    CHENG Long, LEUNG Andrew Chi-Sing, OZAWA Seiichi
    Joint editor, Springer, Dec. 2018, English, ISBN: 9783030042127
    Others

  • Neural Information Processing - 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part III
    CHENG Long, LEUNG Andrew Chi-Sing, OZAWA Seiichi
    Joint editor, Springer, Dec. 2018, English, ISBN: 9783030041823
    Others

  • Neural Information Processing - 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part II
    CHENG Long, LEUNG Andrew Chi-Sing, OZAWA Seiichi
    Joint editor, Springer, Dec. 2018, English, ISBN: 9783030041793
    Others

  • Neural Information Processing - 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I
    CHENG Long, LEUNG Andrew Chi-Sing, OZAWA Seiichi
    Joint editor, Springer, Dec. 2018, English, ISBN: 9783030041670
    Others

  • INNS Conference on Big Data and Deep Learning
    OZAWA Seiichi, TAN Ah-Hwee, ANGELOV P. Plamen, ROY Asim, PRATAMA Mahardhika
    Joint editor, Elsevier, Dec. 2018, English
    Others

  • Artificial Intelligence in the Age of Neural Networks and Brain Computing (Chapter 12 - Computational Intelligence in the Time of Cyber-Physical Systems and the Internet of Things)
    ALIPPI Cesare, OZAWA Seiichi
    Others, Elsevier, Nov. 2018, English, The emergence of non-trivial embedded sensor units and cyber-physical systems and the Internet of Things has made possible the design and implementation of sophisticated applications where large amounts of real-time data are collected, possibly to constitute a big data picture as time passes. Within this framework, in-telligence mechanisms based on machine learning, neural netw, ISBN: 9780128154809
    Scholarly book

  • Neural Information Processing
    HIROSE AKIRA, OZAWA SEIICHI, DOYA Kenji, IKEDA Kazushi, LEE Minho, LIU Derong
    Joint editor, Springer International Publishing AG, Oct. 2016, English, The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitues the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement, ISBN: 9783319466712
    Scholarly book

  • Neural information processing : 23rd International Conference, ICONIP 2016, Kyoto, Japan, October 16-21, 2016, Proceedings
    International Conference on Neural Information Processing, 廣瀬, 明, 小澤, 誠一, 銅谷, 賢治, 池田, 和司, Lee, Minho, Liu, Derong
    Springer, 2016, English, ISBN: 9783319466743

  • State of the Art in Face Recognition
    Julio Ponce, Adem Karahoca, Seiichi Ozawa
    Joint work, IN-TECH, Jan. 2009, English
    Scholarly book

  • 人工知能学辞典
    OZAWA Seiichi
    Joint work, 共立出版, Dec. 2005, Japanese
    Scholarly book

  • Neural Networks Applications in Information Technology and Web Engineering
    OZAWA Seiichi, ABE Shigeo
    Joint work, Borneo Publishing Co., 2005, English
    Scholarly book

  • Neural Information Processing: Research and Development
    OZAWA Seiichi
    Joint work, Springer-Verlag, 2004, English
    Scholarly book

  • Dynamic Systems Approach for Embodiment and Sociality
    OZAWA Seiichi
    Joint work, Advanced Knowledge International, 2003, English
    Scholarly book

  • ニューラルネットと計測制御
    NISHIKAWA Yoshikazu, KITAMURA Shinzo, OZAWA Seiichi
    Joint work, 朝倉書店, 1995, Japanese
    Scholarly book

  • ニューラルネットの基礎と応用
    BABA Norio, KOJIMA Fumio, OZAWA Seiichi
    Joint work, 共立出版, 1994, Japanese, ISBN: 4320027140
    Scholarly book

■ Lectures, oral presentations, etc.
  • AIセキュリティと安全性評価への課題
    小澤誠一
    電子情報通信学会 総合大会, Mar. 2025, Japanese
    [Invited]
    Nominated symposium

  • Proposal of a Continual Learning Model for Privacy-Preserving Federated Learning
    Yuto Kitano, Hiroaki Inoue, Lihua Wang, Seiichi Ozawa
    2025 Symposium on Cryptography and Information Security, Jan. 2025, Japanese
    Public symposium

  • Navigating Responsible AI: Opportunities, Threats, and Ethical Boundaries
    Irwin King, Giovanni Russello, Seiichi Ozawa, Kaizhu Huang, Alexander Sumich
    The 2024 International Conference on Neural Information Processing (ICONIP2024), Dec. 2024, English
    [Invited]
    Nominated symposium

  • AIを安全に利用する技術的課題と対策
    小澤誠一
    コンピュータセキュリティシンポジウム2024, AWS/PWS共同企画「AIガバナンスに向けた政策と技術の動向について」, Oct. 2024, Japanese
    [Invited]
    Nominated symposium

  • Label Correction for Machine Learning-Based Cyber Attack Detection Assuming Uncertainty in Data Labels
    Haruki Urakawa, Akira Yamada, Joo Suwon, Vestin Simon, Wang Hui, Park Chanho, Seiichi Ozawa
    Computer Security Symposium 2024, Oct. 2024, Japanese
    Oral presentation

  • ime Series Data Augmentation Using State-Space Model and Its Application to Cyber Attack Data Generation
    Seiichi Ozawa
    4th CIC-NICT Workshop, Canadian Institute for Cybersecurity, University of New Brunswick, Sep. 2024, English
    [Invited]
    Public discourse

  • Time Series Data Augmentation Using State-Space Model and Its Application to Cyber Attack Data Generation
    Seiichi Ozawa
    Workshop on Cyber Defense and Resilience at Behaviour-Centric Cybersecurity Center (BCCC), York University, Sep. 2024, English
    [Invited]
    Public discourse

  • AIの社会実装とセキュリティ
    小澤誠一
    情報処理学会 連続セミナー2024「情報技術の新たな地平:AIと量子が導く社会変革」, Sep. 2024, Japanese
    [Invited]
    Public discourse

  • 組織間連合学習による社会課題への取組み
    小澤誠一
    EAGLE DAY 2024, Apr. 2024, Japanese
    [Invited]
    Public discourse

  • Challenging social issues using inter-organizational federated learning AI – Efforts to detect fraud bank transactions
    Seiichi Ozawa
    NICT Cyber ​​Security Symposium 2024, Feb. 2024, Japanese
    [Invited]
    Invited oral presentation

  • Scaling Estimation of Malware Infected IoT Devices through ASFP: Activescan Fingerprint
    Kazusa Miyatake, Yukiko Endo, Akira Yamada, Tao Ban, Takeshi Takahashi, Seiichi Ozawa
    2024 Symposium on Cryptography and Information Security, Jan. 2024, Japanese
    Public symposium

  • Cloak-Bench: Proposal of Quantitative Evaluation Methods in Security Analysis Using Large Language Models - Application to Cloaking Detection in Phishing Kits
    Ryuto Nakano, Akira Yamada, Tao Ban, Takeshi Takahashi, Seiichi Ozawa
    2024 Symposium on Cryptography and Information Security, Jan. 2024, Japanese
    Public symposium

  • Special fraud monitoring using AI
    Seiichi Ozawa
    2023年度日本OR学会関西支部シンポジウム, Dec. 2023, Japanese
    [Invited]
    Invited oral presentation

  • The Impact of Professional Societies in Shaping Disruptive Technologies such as Generative AI
    Irwin King (moderator), Jonathan, H. Chan, Kenji Doya, Włodzisław Duch, Seiichi Ozawa
    The 2023 International Conference on Neural Information Processing (ICONIP2023), Nov. 2023, English
    [Invited]
    Nominated symposium

  • Privacy-Preserving Machine Learning for Big Data Analysis – How can we solve social issues using AI? -
    Seiichi Ozawa
    Chitose International Forum on Science & Technology, Sep. 2023, Japanese
    [Invited]
    Invited oral presentation

  • Data science and use case in agriculture - Sensing soybean growth information using deep learning -
    Seiichi Ozawa
    兵庫県立農林水産技術総合センター講演, Aug. 2023, Japanese
    [Invited]
    Public discourse

  • Privacy-Preserving Machine Learning for Big Data Analysis - How can we solve social issues using AI? –“
    Seiichi Ozawa
    Lecture 2 at the University of Ljubljana, Mar. 2023, English
    [Invited]
    Public discourse

  • Cyber Security and Its Countermeasures in AI Systems
    Seiichi Ozawa
    Lecture 1 at the University of Ljubljana, Mar. 2023, English
    [Invited]
    Public discourse

  • 機械学習とOSSのセキュリティ
    小澤誠一
    情報セキュリティ・シンポジウム(日本銀行金融研究所・情報技術研究センター), Mar. 2023, Japanese
    [Invited]
    Nominated symposium

  • BFL-Boost: Blockchain-based Federated Learning for Gradient Boosting to Enhance Security in Model Training
    Septiviana Savitri Asrori, Lihua Wang, Seiichi Ozawa
    in 2023 Symposium on Cryptography and Information Security (SCIS), Jan. 2023, English
    Public symposium

  • Cyber Security and Its Countermeasures in AI Systems
    Seiichi Ozawa
    2022 5th Artificial Intelligence and Cloud Computing Conference, Dec. 2022, English
    [Invited]
    Keynote oral presentation

  • データサイエンスの考え方 : 社会に役立つAI×データ活用のために
    小澤誠一
    第10回オープンテクノフォーラム(神奈川県支部第116回 CPD講座, Nov. 2022, Japanese
    [Invited]
    Public discourse

  • 動的サンプリングを用いた連合学習型勾配ブースティング決定木の継続学習
    三浦啓吾, 井上広明, 金 相旭, 王 立華, 小澤誠一
    第30回インテリジェント・システム・シンポジウム(FAN2022), Sep. 2022, Japanese
    Oral presentation

  • プライバシー保護連合学習による組織間ビッグデータ解析とその応用
    小澤誠一
    第30回インテリジェント・システム・シンポジウム,, Sep. 2022, Japanese
    [Invited]
    Keynote oral presentation

  • Researcher2Vecによる研究者ネットワーク可視化システムの開発 - 神戸大学における研究DXの取組
    平田燕奈, 小澤誠一
    第30回インテリジェント・システム・シンポジウム(FAN2022), Sep. 2022, Japanese
    Oral presentation

  • 人工知能システムにおけるサイバーセキュリティリスクとその対策
    小澤誠一
    MS&ADサイバーワークショップ, Aug. 2022, Japanese
    [Invited]
    Public discourse

  • プライバシー保護連合学習技術を活用した銀行不正送金検知
    盛合 志帆, 小澤 誠一
    NVIDIA AI DAYS 2022, Jun. 2022, Japanese
    [Invited]
    Public discourse

  • Future deep learning machines inspired by the human brain,
    Nikola Kasabov, c, Soo-Young Lee, Zeng-Guang Hou, Taro Toyoizumi, Seiichi Ozawa, Jonathan, H. Chan
    The APNNS/IEEE-CIS Education Forum series on Deep Learning and Artificial Intelligence Summer School 2022 (DLAI6), Jun. 2022, English
    [Invited]
    Public discourse

  • 投資支援のためのニュース記事からのESG関連文抽出
    吉田朋弘, 小澤誠一, 渡辺一男, 廣瀬勇秀, 池田佳弘, 飯塚正昭, 西田大輔
    第28回人工知能学会 金融情報学研究会(SIG-FIN), Mar. 2022, Japanese
    Oral presentation

  • 機械学習を用いたアナリストレポート分析と投資判断レーティング予測
    鈴木章悟, 小澤誠一, 渡辺一男, 廣瀬勇秀, 池田佳弘, 飯塚正昭, 西田大輔
    第28回人工知能学会 金融情報学研究会(SIG-FIN), Mar. 2022, Japanese
    Oral presentation

  • 機械学習を用いた悪性TLS通信の検知と通信特徴の推移に関する考察
    藤原魁成, 小澤誠一, 春木博行, Park Chanho
    第96回コンピュータセキュリティ合同研究発表会 (CSEC2022), Mar. 2022, Japanese
    Oral presentation

  • 動的サンプリングを使用した勾配ブースティング決定木の連合追加学習
    三浦 啓吾, 王 立華, 小澤 誠一
    2022年 暗号と情報セキュリティシンポジウム(SCIS2022), Jan. 2022, Japanese
    Oral presentation

  • Privacy-Preserving Machine Learning for Big Data Analysis and its potential applications
    Seiichi Ozawa
    2021 4th Artificial Intelligence and Cloud Computing Conference (AICCC 2021), Dec. 2021, English
    [Invited]
    Keynote oral presentation

  • HTMLタグの構造に着目したグラフ畳み込みネットワークによる悪性サイト判定
    山本貴巳, Kim Sangwook, 班 涛, 高橋健志, 小澤誠一
    コンピュータセキュリティシンポジウム 2021, Oct. 2021, Japanese
    Oral presentation

  • Detecting Malicious Websites Based onJavaScript Content Analysis
    Muhammad Fakhrur Rozi, Tao Ban, Sangwook Kim, Seiichi Ozawa, Takeshi Takahashi, Daisuke Inoue
    Computer Security Symposium 2021(CSS2021), Oct. 2021, English
    Oral presentation

  • 深層学習モデルと勾配ブースティング決定木モデルを用いたユーザなりすまし検知
    土屋 寛途, 小澤 誠一, 春木 博行, Park Chanho
    コンピュータセキュリティシンポジウム 2021, Oct. 2021, Japanese
    Oral presentation

  • 時系列パターンの共起性に基づく大豆の収量に関与する土壌水分環境の抽出
    逸見 聡, 東山 久瑠実, 長南 友也, 林 怜史, 中村 卓司, 辻 博之, 村上 則幸, 西出 亮, 大川 剛直, 小澤 誠一
    情報科学技術フォーラム講演論文集 (FIT), Aug. 2021, Japanese
    Oral presentation

  • スーパーセキュリティゲートの実用化に向け た深層学習モデルの軽量化
    村中 建太, 中谷 透大, 小澤 誠一, 西村 祐太朗, 坂倉 涼太, 鈴木 章吾, 木村建次郎, 美馬 勇輝, 木村 憲明
    第65回システム制御情報学会研究発表講演会 (SCI’21), May 2021, Japanese
    Oral presentation

  • Scan Packet Analysis by Port-number Embedding Vector Considering Large-scale Survey Packets in Darknet
    Shintaro Ishikawa, Daiki Nakafuji, Tao Ban, Seiichi Ozawa
    第186回マルチメディア通信と分散処理・第92回コンピュータセキュリティ合同研究発表会, Mar. 2021, Japanese
    Oral presentation

  • Development of Flower Counting System for Soybeans Using Object Detection and Tracking
    Keijiro Oribe, Seiichi Ozawa
    計測自動制御学会 第48回知能システムシンポジウム, Mar. 2021, Japanese
    Oral presentation

  • Role of AI Required in Digital Transformation
    Seiichi Ozawa
    日本テクノセンターAI基礎研修, Feb. 2021, Japanese
    [Invited]
    Invited oral presentation

  • Outlier Detection by Privacy-Preserving Ensemble Decision Tree Using Homomorphic Encryption
    Kengo Itokazu, Lihua Wang, Seiichi Ozawa
    2021年 暗号と情報セキュリティシンポジウム(SCIS2021), Jan. 2021, Japanese
    Oral presentation

  • Advancement of Character-Level Convolutional Neural Networks for Malicious Site Detection Based on URL Word Frequency
    Takami Yamamoto, Shintaro Ishikawa, Akira Yamada, Seiichi Ozawa
    2021 Symposium on Cryptography and Information Security, Jan. 2021, Japanese
    Oral presentation

  • Deep Pyramid Convolutional Neural Networks for Detecting Obfuscated Malicious JavaScript Codes Using Bytecode Sequence Features
    Rozi Muhammad Fakhrur, Sangwook Kim, Seiichi Ozawa
    Computer Security Symposium 2020 (CSS2020), Oct. 2020, English
    Oral presentation

  • Darknet Scan Packet Analysis Using Port Embedding Vector
    Shintaro Ishikawa, Seiichi Ozawa, Tao Ban
    コンピュータセキュリティシンポジウム 2020, Oct. 2020, Japanese
    Oral presentation

  • Privacy-Preserving XGBoost Introducing Federated Learning Scheme
    Fuki Yamamoto, Lihua Wang, Seiichi Ozawa
    コンピュータセキュリティシンポジウム 2020, Oct. 2020, Japanese
    Oral presentation

  • An Introduction to Privacy-Preserving Machine Learning for Big Data Analysis
    Seiichi Ozawa
    Deep Learning and Artificial Intelligence Summer School 2020 (DLAI3), Jun. 2020, Japanese
    [Invited]
    Invited oral presentation

  • Seminar on AI Foundations - AI for Data Analysis -
    Seiichi Ozawa
    日本テクノセンターAI基礎研修, Jun. 2020, Japanese
    [Invited]
    Invited oral presentation

  • Privacy-Preserving Technology in Data Analysis and Its Applications
    Seiichi Ozawa
    第64回システム制御情報学会研究発表講演会 (SCI’20), May 2020, Japanese
    [Invited]
    Invited oral presentation

  • Advancement of Magnetic Field Distribution Image Analysis for Super Security Gate Using Deep Learning
    Tota Nakatani, Yuki Mima, Syogo Suzuki, Ryota Sakakura, Kenjiro Kimura, Seiichi Ozawa
    システム制御情報学会研究発表講演会講演論文集(CD-ROM), May 2020, Japanese
    Oral presentation

  • Extraction of Keyword Related Sentences in Analyst Reports and Its Application to Observation of Business Confidence
    Shota TAKAYAMA, Seiichi OZAWA, Takehide HIROSE, Masaaki IIZUKA, Kazuo WATANABE, Ryuta HENMI
    人工知能学会 第24回金融情報学研究会, Mar. 2020, Japanese
    Oral presentation

  • Discovering Malicious Websites from Access Logs of URLs Using Deep Learning Model
    前橋祐斗, 小澤誠一, 山田明
    情報処理学会研究報告(Web), Mar. 2020, Japanese
    Oral presentation

  • Masquerade Detection Based on Users’ Command Logs Using Deep Learning Models
    Takahiro Adachi, Seichi Ozawa, Hiroyuki Haruki
    情報処理学会研究報告(Web), Mar. 2020

  • デジタルトランスフォーメーションがもたらす社会変革(1)『いまさら聞けないデジタル化
    小澤 誠一
    KOBE×DXプロジェクト2019 DXミドルマネジメント向け講座, Jan. 2020, Japanese, デジタルトランスフォーメーション研究機構, 神戸学院大学 神戸三宮サテライト, 変化の激しいビジネス環境や顧客ニーズが多様化する現在の社会では、あらゆる場面でデータの活用やデジタル技術が不可欠です。こうしたデータやデジタル技術やデータの活用については、かつてのようにITの専門家であるベンダや企業・自治体内の情報システム部門だけでなく、事業・サービスを主導するミドルマネジメント層が理解していなければ、事業の効率化やイノベーションを期待することはできません。今や業務、経営とデジタルは完全に一体となっています。 本講座は、まずデジタル技術について、その各技術の概要について簡単に触れた後、データの利活用について、事業を推進するリーダー役であるミドル層として最低限、理解しておかなければならない知識について、活用事例やデータ取得の難しさ等も含めて紹介します。特にこれからの社会やビジネスを大きく変えるであろうVRについて実際に体感し、デジタル技術を自分事として捉えられるようにします。この講座を受講することによりデジタルを活用した未来を想像し、自社ビジネスとデジタルのつながりを考えることができるようになることが期待できます。 また、本講座受講後はデータ利活用のための技術を、深い知見を有する社員や委託先とスムーズなコミュニケーションができるようになり、また、経営層に対しては意思決定に必要なデータを提供し、それを説得力のある形で説明できるレベルになることが期待できます。
    [Invited]
    Public discourse

  • Machine Learning Approach to Detection of Malicious URLs and JavaScript
    Seiichi Ozawa
    2019 International Conference on Neural Information Processing, Dec. 2019, English, Asia Pacific Neural Network Society (APNNS), Manly, Sydney, Australia, International conference
    [Invited]
    Invited oral presentation

  • Brain-Inspired Neural Network Architectures for Brain Inspired AI
    Nikola Kasabov (convener), Zeng-Guang Hou, Minho Lee, Seiichi Ozawa, Jie Yang, David Powers
    International Conference on Neural Information Processing, Dec. 2019, English, Asia Pacific Neural Network Society (APNNS), Manly, Sydney, Austria, International conference
    [Invited]
    Nominated symposium

  • DXと人工知能のメカニズムと活用
    小澤 誠一
    DX実務者入門講座(第3回), Dec. 2019, Japanese, デジタルトランスフォーメーション研究機構, 神戸学院大学 神戸三宮サテライト(神戸市), Japan, デジタル技術やデータ利活用で業務プロセスを変革し、新しいビジネスモデルを創造していくデジタルトランスフォーメーション(DX)が、いま、社会全体で求められています。現在進行しているサービスや、顧客管理におけるDXの活用事例、人工知能技術、情報セキュリティ、そしてそれらを支える統計解析や数学の基礎について、コンパクトに学べるDX入門講座を神戸三宮で開催します。6回全てご参加いただいた受講者には「受講認定証」を授与いたします。奮ってご参加ください。
    [Invited]
    Public discourse

  • 人工知能のメカニズムと活用
    小澤 誠一
    日本総研セミナー, Nov. 2019, Japanese
    [Invited]
    Public discourse

  • Privacy-Preserving Decision Tree Classification Using Ring-LWE-Based Homomorphic Encryption
    Satoshi Fukui, Lifue Wang, Seiichi Ozawa
    コンピュータセキュリティシンポジウム2019論文集, Oct. 2019, Japanese
    Oral presentation

  • Enhancement in DDoS Backscatter Detection Using Visualization Images of Darknet UDP Communication and Traffic Statistics
    Tatsuya Nomura, Seiichi Ozawa, Tao Ban, Junpei Shimamura
    コンピュータセキュリティシンポジウム2019論文集, Oct. 2019, Japanese
    Oral presentation

  • Privacy-Preserving Data Mining and Digital Transformation
    Seiichi Ozawa
    Society5.0実現のためのセンシングソリューション技術分科会,JEITA,電子情報技術産業協会, Aug. 2019, Japanese
    [Invited]
    Invited oral presentation

  • Efficient Privacy-Preserving Prediction for Three-Layer Feedforward Neural Networks Using Ring-LWE-based Homomorphic Encryption
    手塚雄大, WANG Lihua, WANG Lihua, 林卓也, KIM Sangwook, 為井智也, 大森敏明, 小澤誠一
    人工知能学会全国大会(Web), Jun. 2019, Japanese, The Japanese Society for Artificial Intelligence,

    Concerns about privacy of data prevent from making good use of a huge amount of data. Data analysis while preserving privacy is a very important task. In this research, we propose a Privacy-Preserving Machine Learning that can efficiently compute inner product in a three-layered neural network using Ring-LWE-based Homomorphic Encryption. We propose a two-party model consisting of client and server: the former encrypts input data and receives a classification result from a server and the latter performs predicting process over the encrypted data using a trained classification model. This enables that the client acquires the inference result without revealing the privacy of their data and the server protects their model from exposing it. The proposed method costs 10.549 [ms] per one class for prediction process and performed keeping its accuracy close to the case of sigmoid and ReLU.

    Oral presentation

  • Extraction of Important Sentences in Financial Documents Based on Business Confidence Information Using LSTM with Self-Attention Mechanism
    山岡周平, 小澤誠一, 小澤誠一, 廣瀬勇秀, 飯塚正昭
    人工知能学会全国大会(Web), Jun. 2019, Japanese, The Japanese Society for Artificial Intelligence,

    Investment trust and fund management companies have accumulated a large number of visit records that were summarized by their analysts after conducting hearings against companies. Such visit reports include crucial information of companies such as companies' financial conditions and future strategies, which are used to estimate investment values of individual companies. However, it is not easy even for skilled fund managers to derive suitable market outlooks and investment decisions from a huge amount of accumulated documents. In this research, to support investment decisions, we propose a new LSTM model with self-attention mechanism that can extract important sentences in analyst visit reports. Such extraction is conducted based on the sentence scoring, which is obtained as the weights in a self-attention mechanism. In our experiments for a set of 1,390 visit reports, we demonstrate that the proposed model has about 79% accuracy for extraction on average under the 5-fold cross-validation.

    Oral presentation

  • Business Confidence Prediction for Analyst Report using Convolutional Neural Networks
    高山将丈, 小澤誠一, 小澤誠一, 廣瀬勇秀, 飯塚正昭
    人工知能学会全国大会(Web), Jun. 2019, Japanese, The Japanese Society for Artificial Intelligence,

    To decide valuable companies to be invested, investment trust and fund management companies, which manage funds deposited from investors, have collected information on company's budget status and plans. However, the number of visit reports are usually too large even for skilled fund managers to easily derive reliable business outlooks and investment decisions. In this research, to alleviate fund managers' and analysts' commitment for the investigation and analysis, we propose a machine learning system that can support them to make accurate predictions on business outlook from collected visit reports. We attempt to predict business confidence for specific companies and industries using CNN that is expected to have good readability and robustness for polarity perturbation. As a result, we obtain 81.4% in classification accuracy for analysts' reports provided by the Sumitomo Mitsui DS Asset Management Company, Limited. It has 5.7% better accuracy than the best baseline model using Word2Vec and SVM.

    Poster presentation

  • プライバシー保護データマイニングにより拡がるビッグデータ解析
    小澤 誠一
    2019 神戸大学 数理・データサイエンスセンター シンポジウム ~AIセキュリティとフィンテック応用の最前線~, May 2019, Japanese, 神戸大学 数理・データサイエンスセンター, 大阪イノベーションハブ, Japan, 神戸大学 数理・データサイエンスセンターでは、機械学習やブロックチェーン技術の社会実装の推進とデジタルトランスフォーメーションに対応する人材の育成を目指し、2019年5月に一般社団法人デジタルトランスフォーメーション研究機構を設立します。今回はそのディセミネーションイベントとして、フィンテック分野におけるセキュリティをテーマにしたシンポジウムを開催し、デジタルトランスフォーメーションを推進するうえで必須のセキュリティ技術について参加者と広く情報共有・意見交換する場とすることを目指します。
    [Invited]
    Nominated symposium

  • Automatic Soybean Growth Factor Acquisition Using RetinaNet and Object Tracking Method
    Kazuki Omura, Seiichi Ozawa, Takenao Ohkawa, Yuya Chonan, Hiroyuki Tsuji, Noriyuki Murakami
    63回システム制御情報学会研究発表講演会, May 2019, Japanese
    Oral presentation

  • Advancement of Network Scanning Monitoring Using Association Rule Mining and Darknet Analysis
    Naoki Hashimoto, Tao Ban, Jumpei Simamura, Seiichi Ozawa
    63回システム制御情報学会研究発表講演会, May 2019, Japanese
    Oral presentation

  • Advancement of DDoS Monitoring Using Machine Learning and Darknet Analysis
    Takuya Hatanaka, Seiichi Ozawa, Tao Ban, Jumpei Simamura
    63回システム制御情報学会研究発表講演会, May 2019, Japanese
    Oral presentation

  • AI×セキュリティの現状と期待
    OZAWA SEIICHI
    第6回制御部門マルチシンポジウム, Mar. 2019, Japanese, SICE, 熊本大学, 深層学習や機械学習、自然言語処理などを使ったAI技術の進展は目覚ましく、画像認識や音声認識の能力では、すでに人間を上回っているとされます。しかし、セキュリティ分野での機械学習の活用には、まだ課題も多く、AIの強みと限界を知り、現実の問題に向き合いながらにうまく使っていくことが重要です。本講演では、3つのAI×セキュリティを取り上げます。一つ目は、AIをサイバー攻撃の検知や分類に活かす試みですが、そもそも攻撃に関するデータをどのように収集してAIのモデルを学習し、予測に役立てるかは自明ではありません。これは多くの実応用でAIを活用するときの共通の悩みになっており、講演の第1部では、まずこの点に着目した解説を試みます。次に、AIを守るためのセキュリティについて考えます。近年、クラウド上でAIを構築して、サービスを提供するMachine Learning, Domestic conference
    [Invited]
    Invited oral presentation

  • Exploring Malicious URL in Dark Web Using Tor Crawler
    川口雄己, 小澤誠一
    電子情報通信学会技術研究報告, 2019, Japanese, IEICE, In recent years, various web-based attacks such as Drive-by-Download attacks are becoming serious. To protect legitimate users, it is important to collect information on malicious sites that could provide a blacklist-based detection software. In our study, we propose a system to collect URLs of malicious sites on the dark web. The proposed system automatically crawls dark web s

  • セキュリティ分野におけるAI活用の現状と期待
    OZAWA SEIICHI
    第30回AIセミナー, Jan. 2019, Japanese, 産業技術総合研究所, 産総研人工知能研究センター(東京都), 深層学習や機械学習、自然言語処理などを使ったAI技術の進展は目覚ましく、画像認識や音声認識の能力では、すでに人間を上回っているとされます。しかし、セキュリティ分野での機械学習の活用には、まだ課題も多く、AIの強みと限界を知り、現実の問題に向き合いながらにうまく使っていくことが重要です。AIを使ったサイバー攻撃の検知や分類が活発に研究されていますが、近年、AI自体がサイバー攻撃の対象となることも知られており、AIをどう護るかも重要な課題になっています。一方で、セキュリティとAIを組み合わせることで、これまでにない新しいサービスへの期待も広がりつつあります。本講演では、我々の取り組みを紹介させて頂きながら、セキュリティ分野におけるAIへの期待と現状について一緒に考えたいと思います。, Domestic conference
    [Invited]
    Invited oral presentation

  • Challenges and Expectations against AI in Security
    OZAWA Seiichi
    2018 Artificial Intelligence and Cloud Computing Conference, Dec. 2018, English, ACM Sigapore Chapter, Hotel Sunroute Plaza Shinjuku (Tokyo), Increasing the maliciousness and the diversity of cyber-attacks is one of the most concerned issues in recent years. There are various kinds of cyber-threads such as malware infection, DDoS attacks, probing to find security vulnerability, phishing, and spam mails to lure malicious web site, which intend to steal money/important information and to stop or disturb public services, International conference
    [Invited]
    Keynote oral presentation

  • セキュリティ分野におけるAIへの期待と現状
    OZAWA SEIICHI
    AC・Net研究会,, Oct. 2018, Japanese, AC・Net, 大阪大学中之島センター(大阪市), 深層学習や機械学習、自然言語処理などを使ったAI技術が注目されていますが、これらの強みと限界を知り、現実の問題に向き合いながらに正しく使うことが重要です。サイバーセキュリティにおいて、これら「万能でないAI」をどう活かせばよいでしょうか?また、人工知能が社会実装されていく上で、AI自体がサイバー攻撃の対象となり得ることが懸念されています。これに、どう対応していけばよいのでしょうか?このような懸念と不安がくすぶりつつも、一方では、セキュリティとAIを組み合わせることで、これまでにない新しいサービスへの期待も広がりつつあります。このようなセキュリティ分野における人工知能への期待と現状について、その動向をご紹介できればと思います。, Domestic conference
    [Invited]
    Invited oral presentation

  • AIのAIによるAIのためのセキュリティ:セキュリティ×AIの現状と期待
    OZAWA SEIICHI
    制御技術部会研究会講演, Oct. 2018, Japanese, SICE, 東京電機大学 東京千住キャンパス(東京都), 深層学習や機械学習、自然言語処理などを使ったAI技術が注目されていますが、これらの強みと限界を知り、現実の問題に向き合いながらに正しく使うことが重要です。サイバーセキュリティにおいて、これら「万能でないAI」をどう活かせばよいでしょうか?また、人工知能が社会実装されていく上で、AI自体がサイバー攻撃の対象となり得ることが懸念されています。これに、どう対応していけばよいのでしょうか?このような懸念と不安がくすぶりつつも、一方では、セキュリティとAIを組み合わせることで、これまでにない新しいサービスへの期待も広がりつつあります。このようなセキュリティ分野における人工知能への期待と現状について、その動向をご紹介できればと思います。, Domestic conference
    [Invited]
    Invited oral presentation

  • Privacy-Preserving Naive Bayes Classifier based on Homomorphic Encryption
    KIM Sangwook, OMORI Toshiaki, OMORI Masahiro, HAYASHI Takuya, WANG Lihua, OZAWA Seiichi
    The 13th International Workshop on Security (IWSEC2018), Sep. 2018, English, IWSEC, Sakura Hall, Tohoku University (仙台市), International conference
    Poster presentation

  • Detection of JavaScript-based Attacks Using Doc2Vec Feature Learning
    NIDCHU Samuel, KIM Sangwook, OZAWA Seiichi, MISU Takeshi, MAKISHIMA Kazuo
    The 13th International Workshop on Security (IWSEC2018), Sep. 2018, English, IWSEC, Sakura Hall, Tohoku University (仙台市), Websites attracts millions of visitors due to the convenience of services they offer. These include news, entertainment and educational contents among many others. However, a large number of users frequenting these sites are considered as interesting targets for cyber attackers. These websites are injected with malicious codes by exploiting vulnerabilities in servers, plugins a, International conference
    Poster presentation

  • AI・機械学習における各種手法・技術と適用のポイント・事例
    OZAWA SEIICHI
    日本テクノセンターセミナー, Sep. 2018, Japanese, 日本テクノセンター, たかつガーデン(大阪市), AIの基礎とその限界を理解し、データや目的に応じて、どのような手法を適用したらよいかの見当をつける能力を習得できる。, Domestic conference
    [Invited]
    Invited oral presentation

  • AIの躍進の背景と最新技術動向
    OZAWA SEIICHI
    次世代AI技術セミナー, Sep. 2018, Japanese, 兵庫エレクトロニクス研究会, 兵庫県立工業技術センター, AIとは何か?AIは使い物になるのか?AIで産業や技術はどう変わっていくのか?昨今のAIの躍進とその背景を振り返りながら、この問いに答えていきたいと思います。, Domestic conference
    [Invited]
    Invited oral presentation

  • A New Direction of Machine Learning: Privacy-Preserving Data Mining (PPDM)
    OZAWA Seiichi
    BESK Workshop, Aug. 2018, English, BESK, Gangneung Green City Experience Center (Gangneung, Korea), International conference
    [Invited]
    Invited oral presentation

  • A Machine Learning Approach to Privacy-Preserving Data Mining Using Homomorphic Encryption
    OZAWA Seiichi
    AI Flagship Project Workshop, Aug. 2018, English, Kyungpook National University, Gangneung–Wonju National University (Gangneung, Korea), International conference
    [Invited]
    Invited oral presentation

  • サイバー攻撃対策としてのAIへの期待と現状
    OZAWA SEIICHI
    SCSK講演:AIに関する基礎・将来講座, Jul. 2018, Japanese, SCSK, 豊洲フロント(東京都), 機械学習や深層学習、自然言語処理などのAI技術への期待は高まるばかりですが、一方でその限界も認識されつつあります。本講演では、AIの強みと限界を知り、サイバー攻撃にどのように向き合い、活かしていくべきなのか、我々が行っている研究事例を紹介しながら考えてみたいと思います。, Domestic conference
    [Invited]
    Invited oral presentation

  • 大豆の生育情報を自動取得する画像センシング手法の開発 - Single Shot MultiBox Detectorの導入
    大村 和暉, 八幡 壮, OZAWA SEIICHI, OHKAWA TAKENAO, 村上 則幸, 辻 博之
    2018年人工知能学会全国大会, Jun. 2018, Japanese, 人工知能学会, 城山ホテル(鹿児島市), Observing growth state automatically is a very important task in smart farming. In this paper, we propose an image sensing method to detect soy flowers and seeds by using a state-of-art deep learning architecture called Single Shot MultiBox Detector (SSD). We also suggest a new method for counting seeds from a video. We used SSD, fast to compute and has high accuracy. We colle, Domestic conference
    Oral presentation

  • AI・機械学習の基礎と広がるAI応用
    OZAWA SEIICHI
    2018年AI・機械学習シンポジウム, May 2018, Japanese, NPO法人M2M・IoT研究会, 藤沢商工会館みなパーク (藤沢市), 深層学習や機械学習,自然言語処理などを使ったAI技術が注目されているが,これらの強みと限界を知り,現実の問題に向き合いながらに正しく使うことが重要である.機械学習のツールやライブラリーをブラックボックスとして使うのではなく,その中身を知ることで,正しい手法を正しい目的で使えるよう機械学習の基礎を講述する.また,AI技術を使った最新の応用事例を紹介する., Domestic conference
    [Invited]
    Invited oral presentation

  • 人工知能技術の基礎と応用
    OZAWA SEIICHI
    KansAI0.6 事業開発講座, Apr. 2018, Japanese, Scribble Osaka Lab, Scribble Osaka Lab (大阪市), Domestic conference
    [Invited]
    Invited oral presentation

  • Collecting Cybersecurity-related Contents in Dark Web
    OZAWA SEIICHI
    The 2nd Nanyang Technological University and Kobe University Workshop on Data Science and Artificail Intelligence, Mar. 2018, English, Nanyang Technological University, Singapore, International conference
    Poster presentation

  • 万能でないAIのサイバーセキュリティでの活かし方
    OZAWA SEIICHI
    AIセキュリティ最前線2018, Feb. 2018, Japanese, 東京都, Domestic conference
    [Invited]
    Public discourse

  • 人工知能分野における最新の研究・技術動向
    OZAWA SEIICHI
    データサイエンスセミナー, Feb. 2018, Japanese, 大阪市, Domestic conference
    [Invited]
    Public discourse

  • 機械学習によるサイバーセキュリティとプライバシー保護データマイニングへの取組み
    OZAWA SEIICHI
    NICT サイバーセキュリティシンポジウム, Feb. 2018, Japanese, NICT, 東京都, Domestic conference
    [Invited]
    Public discourse

  • なぜ『セキュリティ×機械学習』?
    OZAWA SEIICHI
    第45回SICE知能システムシンポジウム, Feb. 2018, Japanese, SICE, 豊中市, Domestic conference
    [Invited]
    Public discourse

  • Detection of Malicious JavaScript Contents Using Doc2vec Feature Learning
    Wangar Samuel Ndichu, OZAWA Seiichi, MISU Takeshi, OKADA Koichiro
    2018年暗号と情報セキュリティシンポジウム, Jan. 2018, English, 電子情報通信学会, 新潟市, To add more functionality and usability to web applications, JavaScript (JS) which is a dynamic and lightweight scripting language is frequently used. However, even with its advantages and usefulness in web applications, it is problematic that there exist malicious JS codes aiming for cyberattacks such as drive-by-download attacks. In general, malicious JS code are not easy to, Domestic conference
    Oral presentation

  • AI・機械学習の観点からの 次世代セキュリティ
    OZAWA SEIICHI
    第4回ASF次世代セキュリティシンポジウム, Dec. 2017, Japanese, 東京都, Domestic conference
    [Invited]
    Public discourse

  • Recent Challenges to Cybersecurity and Privacy-Preserving Data Mining Using Machine Learning
    OZAWA SEIICHI
    Nanyang Technological University and Kobe University Workshop on Data Science, Nov. 2017, English, Kobe University, 神戸市, Domestic conference
    Public discourse

  • A Brief Introduction to Data Science Center and Research Topics on Machine Learning for Big Data
    OZAWA SEIICHI
    2nd Bilateral Workshop on Research Exchange between National Taiwan University and Kobe University, Nov. 2017, English, National Taiwan University, Taipei, Taiwan, International conference
    Public discourse

  • 匿名ネットワークTorにおけるマーケット商品とセキュリティ事件との関連性に関する考察
    KAWAGUCHI Yuki, YAMADA Akira, OZAWA SEIICHI
    コンピュータセキュリティシンポジウム 2017, Oct. 2017, Japanese, 情報処理学会, 山形市, Domestic conference
    Oral presentation

  • 加法準同型暗号を用いたプライバシー保護Extreme Learning Machine
    KURI Shohe, HAYASHI Takuya, OMORI Toshiaki, OZAWA Seiichi, AONO Yoshinori, Phong Le Trieu, Wang Lihua, MORIAI Shiho
    コンピュータセキュリティシンポジウム 2017, Oct. 2017, Japanese, 情報処理学会, 山形市, Domestic conference
    Oral presentation

  • ダークネットトラフィックデータの頻出パターン解析
    HASHIMOTO Naoki, OZAWA SEIICHI, BAN TAO, NAKAZATO JUNJI, SHIMAMURA JUMPEI
    コンピュータセキュリティシンポジウム 2017, Oct. 2017, Japanese, 情報処理学会, 山形市, Domestic conference
    Oral presentation

  • Challenge to Building Agricultural Cyber-Physical System for Smart Agriculture: Image Sensing Approach to Automatic Phenotyping for Soybean Plants
    OZAWA SEIICHI
    The 2017 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM2017), Aug. 2017, English, Surabaya, Indonesia, International conference
    [Invited]
    Public discourse

  • A Challenge to Discover Rules from the Real World Using Big Data Analysis and Machine Learning
    OZAWA SEIICHI
    Seminar at Universitas Airlangga, Aug. 2017, English, Surabaya, Indonesia, International conference
    Public discourse

  • A Challenge to Discover Rules from the Real World Using Big Data Analysis and Machine Learning
    OZAWA SEIICHI
    Seminar at Institut Teknologi Sepuluh Nopember (ITS), Aug. 2017, English, Surabaya, Indonesia, International conference
    Public discourse

  • IoTとサイバーフィジカルシステムを知能化するAI技術の動向
    OZAWA SEIICHI
    関西部会第4回 技術研究講演会, Jun. 2017, Japanese, M2M・IoT研究会, 大阪市, Domestic conference
    [Invited]
    Public discourse

  • Development of an Image Sensing Method to Automatically Obtain Soybean Growth Condition
    YAHATA SOH, OZAWA SEIICHI, YOSHIDA TAKESHI, OHKAWA TAKENAO, MURAKAMI NORIYUKI, TSUI HIROYUKI
    2017年度人工知能学会全国大会, May 2017, Japanese, 人工知能学会, 名古屋市, We propose an image sensing method to acquire the growth information (the positions and the numbers of flowers, grains and stems) automatically in the crowd of soybean plants for a smart cyber-physical system in agriculture. In our method, we combine image processing and machine learning methods to detect flowers, seeds and stems robustly and accurately. To evaluate the detecti, Domestic conference
    Oral presentation

  • SNS Flaming Event Detection Based on Sentiment Polarity Prediction with Transfer Learning
    OZAWA SEIICHI
    IJCNN2017 Post-Confence Workshop: 3rd International Workshop on Advances in Learning from with Multiple Learners (ALML 2017), May 2017, English, IEEE, Anchorage, USA, International conference
    [Invited]
    Nominated symposium

  • AI・機械学習における各種手法・技術と適用のポイント・事例
    OZAWA SEIICHI
    AI・機械学習における各種手法・技術と適用のポイント・事例, May 2017, Japanese, テクノセンター, 大阪市, コンピュータやネットワーク、携帯電話、監視カメラ、各種センサなど電子機器の普及に伴い、日々膨大な量の通信データやセンサデータが生成・蓄積されるようになりました。いわゆる「ビッグデータ」です。ビッグデータはメールやSNSなどのテキスト情報だけでなく、画像や動画、音声、各種センサ情報、顧客情報、医療情報など、様々な情報の集合体であり、一般に多様な種類の情報から構成される高次元ベクトルで表されます。このような大量かつ高次元のデータから、認識や予測、診断などを高性能に行うためには、適切な識別器(予測器)モデルを選択して学習するだけでなく、必要最小限の情報に縮約する特徴選択や特徴抽出などの技術も熟知している必要があります。 本講義では、ニューラルネットや機械学習、データマイニングでよく使われている技術をいくつか紹介し、実際の問題を取り上げて、どのようなケースで, Domestic conference
    [Invited]
    Public discourse

  • 北海道におけるフルチアセットメチルの散布がダイズの収量に及ぼす影響
    辻 博之, 村上 則幸, 中村 卓司, OZAWA SEIICHI, OHKAWA TAKENAO
    第243回日本作物学会講演会, Mar. 2017, Japanese, Domestic conference
    Oral presentation

  • Learning and Visualization of High-dimensional Big Data and Its Application to Cybersecurity
    OZAWA SEIICHI
    UAB-Kobe University Joint Workshop on Smart Cyber-Physical Systems, Feb. 2017, English, Universitat Automata de Barcelona, Barcelona, Spain, International conference
    [Invited]
    Nominated symposium

  • Development of an Image Sensing Method to Detect Grains of Soybeans
    YAMAGUCHI KANTA, OZAWA SEIICHI, KITAZONO JUN, YOSHIDA TAKESHI, OHKAWA TAKENAO, MURAKAMI NORIYUKI, TSUI HIROYUKI
    第10回コンピューテーショナル・インテリジェンス研究会, Dec. 2016, Japanese, SICE, 富山市, 農業にICT技術を用いる「スマートアグリ」が近年注目されている.スマートアグリでは農作物の育つ環境や生育情報をコンピュータで管理し,農作業の効率化を目指している.農作物の成長度合いを自動で収集し,解析することで更なる収量の増加が期待されている.子実は収量に直結する重要な生育情報として,群落内で農作物を任意の速度で昇降する単軸ロボットを用いて,下から上へと撮影した連続画像から,子実の検知を行う画像処理技術の開発を行った.本稿では農作物として大豆を扱い,一画像から子実の陰影情報より検知領域を挙げ、色情報から畳み込みニューラルネットワークを用いて検知を行う.実験には農場で撮影した画像を用い,実験結果として目視で確認した子実との比較を行った.トレーニング画像,テスト画像共にF値で80%以上の子実検知精度を得た., Domestic conference
    Oral presentation

  • Development of an Image Sensing Method to Detect and Count Flowers of Soybeans
    OHNISHI TETSU, OZAWA SEIICHI, KITAZONO JUN, YOSHIDA TAKESHI, OHKAWA TAKENAO, MURAKAMI NORIYUKI, TSUI HIROYUKI
    第10回コンピューテーショナル・インテリジェンス研究会, Dec. 2016, Japanese, SICE, 富山市, スマート農業は,センサーから得た農作物の生育環境をコンピュータ制御により最適に保ち,収量の増加を行っている.さらなる収量の増加のため,農作物の成長の様子を表した生育情報を自動的に得ることで,データの増加を行う.花は実のできる前段階であり重要な生育情報であるとして,群落内で農作物を任意の速度で昇降する単軸ロボットを用いて,下から上へと撮影した連続画像から,花の検知と一株当たりの花数の計測を行う画像処理技術の開発を行った.本稿では農作物として大豆を扱い,領域分割と色相情報を用いて得た花候補に対して,畳込みニューラルネットワークで花であるかの判別を行い,一画像での花の検知を行う.またそれぞれの画像において,検地された花周辺でFASTを用いて特徴点を取得しORB特徴量を求め,単軸ロボットの速度と連続画像の撮影間隔から求めた連続画像内の花の移動量に基づいて対応, Domestic conference
    Oral presentation

  • Recent Research on Information and Computer Science in The Department of Electrical and Electronic Engineering
    OZAWA SEIICHI
    1st Bilateral Workshop on Research Exchange between National Taiwan University and Kobe University, Dec. 2016, English, KobeUniversity, 神戸市, Domestic conference
    [Invited]
    Nominated symposium

  • ダークネットトラフィックに基づくサイバー攻撃の分類と可視化
    OZAWA SEIICHI
    第9回NICTERプロジェクトワーショップ, Nov. 2016, Japanese, NICT, 秋田市, Domestic conference
    [Invited]
    Nominated symposium

  • ダークネットトラフィックの可視化とオンライン更新によるモニタリング
    HATANAKA TAKUYA, KITAZONO JUN, OZAWA SEIICHI, BAN TAO, NAKAZATO JUNJI, SHIMAMURA JUMPEI
    コンピュータセキュリティシンポジウム2016論文集, Oct. 2016, Japanese, 情報処理学会, 秋田市, 未使用のIP アドレス空間であるダークネットには, DDoS 攻撃への返信やスキャンなど,不正な通信に伴うパケットが大量に届く.それらを観測・分析することで,インターネット上で発生している悪性な活動の動向を把握することが可能になると期待されている.本論文では,ダークネットの通信パターンの分布を可視化しモニタリングする手法を提案する.提案法では,通信パターンを特徴ベクトルとして表現し,次元圧縮することで2 次元の散布図として可視化する.また,新たな観測データが得られる毎に散布図を逐次更新することで,リアルタイムに変化を捉える.これにより,攻撃の傾向の変化や新たな攻撃の発生の検知を行うことが期待される., Domestic conference
    Oral presentation

  • AI・機械学習における各種手法・技術と適用のポイント・事例
    OZAWA SEIICHI
    AI・機械学習における各種手法・技術と適用のポイント・事例, Oct. 2016, Japanese, テクノセンター, 大阪市, コンピュータやネットワーク、携帯電話、監視カメラ、各種センサなど電子機器の普及に伴い、日々膨大な量の通信データやセンサデータが生成・蓄積されるようになりました。いわゆる「ビッグデータ」です。ビッグデータはメールやSNSなどのテキスト情報だけでなく、画像や動画、音声、各種センサ情報、顧客情報、医療情報など、様々な情報の集合体であり、一般に多様な種類の情報から構成される高次元ベクトルで表されます。このような大量かつ高次元のデータから、認識や予測、診断などを高性能に行うためには、適切な識別器(予測器)モデルを選択して学習するだけでなく、必要最小限の情報に縮約する特徴選択や特徴抽出などの技術も熟知している必要があります。 本講義では、ニューラルネットや機械学習、データマイニングでよく使われている技術をいくつか紹介し、実際の問題を取り上げて、どのようなケースで, Domestic conference
    [Invited]
    Public discourse

  • 知識獲得支援を目的とした時系列栽培データに基づく最適パターン発見
    梅島 昂平, 有満 史人, OZAWA SEIICHI, 村上 則幸, 辻 博之, OHKAWA TAKENAO
    平成28年 電気学会 電子・情報・システム部門大会, Aug. 2016, Japanese, Domestic conference
    Oral presentation

  • 時系列栽培データから抽出された最適パターンの意思決定支援への適用
    難波 みどり, OZAWA SEIICHI, 村上 則幸, 辻 博之, OHKAWA TAKENAO
    平成28年 電気学会 電子・情報・システム部門大会, Aug. 2016, Japanese, Domestic conference
    Oral presentation

  • Online Learning of Unstructured Data in Cybersecurity
    OZAWA SEIICHI, TAO BAN
    2016 World Congress on Computational Intelligence, Jun. 2016, English, IEEE, Vancouver, Canada, Increasing the maliciousness and the diversity of cyber-attacks is one of the most concerned issues in recent years. There are various kinds of cyber-threads such as malware infection, DDoS attacks, probing to find security vulnerability, phishing, and spam mails to lure malicious web site, which intend to steal money/important information and to stop disturb public services, e, International conference
    [Invited]
    Public discourse

  • Challenges to Autonomous Learning from Big Stream Data,
    OZAWA SEIICHI
    Seminar at LIPN, Paris 13 University, Jun. 2016, English, Villetaneuse, France, International conference
    Public discourse

  • Development of Multidimensional Unfolding Based on Stochastic Neighbor Relationship
    MURATA NAOKI, KITAONO JUN, OZAWA SEIICHI
    60回システム制御情報学会研究発表講演会, May 2016, Japanese, システム制御情報学会, 京都市, The multidimensional unfolding is a data visualization technique that arranges data of different attributes in a single low-dimensional space considering the relationship between data as the distance. Emphasizing unimportant relationships, existing multidimensional unfolding method cannot preserve important relationships. In this paper, to solve this problem, we propose a metho, Domestic conference
    Oral presentation

  • Stochastic Collapsed Variational Inference Algorithm for Biterm Topic Model
    AWAYA NARUTAKA, KITAZONO JUN, OMORI TOSHIAKI, OZAWA SEIICHI
    60回システム制御情報学会研究発表講演会, May 2016, Japanese, システム制御情報学会, 京都市, Recently, as a topic model speci cally for short texts, Biterm Topic Model was proposed. However, the original implementation uses collapsed Gibbs sampling, which is not applicable to large datasets. For faster inference, we develop stochastic collapsed variational Bayesian inference for BTM (SCVB0-BTM) based on SCVB0 for LDA. Experimental results showed that our algorithm foun, Domestic conference
    Oral presentation

  • 北海道ダイズの収量および収量構成要素に及ぼす除草剤薬害の影響
    辻 博之, 村上 則幸, 中村 卓司, OZAWA SEIICHI, OHKAWA TAKENAO
    日本作物学会第241回講演会, Mar. 2016, Japanese, Domestic conference
    Oral presentation

  • Malicious-Spam-Mail Detection Systemwith Autonomous Learning Ability
    OSAKA Shogo, KITAZONO Jun, OZAWA Seiichi, BAN Tao, NAKAZATO Junji, SHIMAMURA Jumpei
    情報通信システムセキュリティ研究会, Mar. 2016, Japanese, The Institute of Electronics, Information and Communication Engineers, Kyoto University, Recently, damages caused by spam mails that guide receivers to malicious web pages become more and more serious. In this study, we propose an autonomous learning system to detect such malicious spam mails. In the proposed system, the main body of a mail is transformed into a feature vector based on the tf-idf weight, and the feature vector is classi ed by machine learning class, Domestic conference
    Public symposium

  • ダークネットトラフィック解析による学習型DDoSバックスキャッタ検出システム
    UKAWA Yuki, KITAZONO Jun, OZAWA Seiichi, BAN Tao, NAKAZATO Junji, SHIMAMURA Jumpei
    情報通信システムセキュリティ研究会, Mar. 2016, Japanese, 電子情報通信学会, Kyoto University, 本研究では,ダークネットで観測されたUDP通信トラフィックからDDoS攻撃によるバックスキャッタか否かを判定するオンライン学習型の判定システムを提案する.DDoSバックスキャッタを識別するため,17の特徴量からなる特徴ベクトルを作成し,L2-SVM識別器により分類を行う.また,新たなDDoS攻撃パターンに対応するため,1クラスSVMによる外れ値検出を導入し,L2-SVM識別器の継続的な更新を行う.評価実験では,NICTのダークネットセンサで観測された半年間のパケットデータを用いて評価を行う.提案手法により,平均のF値が 0.90という高い性能でバックスキャッタ判定を行えることを示す., Domestic conference
    Public symposium

  • Learning from unstructured data stream in cybersecurity
    OZAWA Seiichi
    Seminar, Mar. 2016, English, Lancaster University, Lancaster, UK, Increasing the maliciousness and the diversity of cyber-attacks is one of the most concerned issues in recent years. There are various kinds of cyber-threads such as malware infection, DDoS attacks, probing to find security vulnerability, phishing, and spam mails to lure malicious web site, which intend to steal money and important information and to stop and disturb public ser, International conference
    Public discourse

  • 次元圧縮によるダークネットトラフィックデータの可視化
    KITAZONO Jun, FURUTANI Nobuaki, UKAWA Yuhki, BAN Tao, NAKAZATO Junji, SHIMAMURA Jumpei, OZAWA Seiichi
    2016 Symposium on Cryptography and Information Security, Jan. 2016, Japanese, 電子情報通信学会 情報セキュリティ研究専門委員会, ANAクラウンプラザホテル熊本ニュースカイ, 特定のホストが割り当てられていないIP アドレス空間はダークネットと呼ばれる.このダークネットには,本来,パケットが到達することはないが,実際には大量のパケットが届く.それらの多くは,送信元を偽装したDDoS 攻撃に対する返信や,マルウェアによるスキャンなど,不正な活動に伴うものである.ダークネットに届くパケットを観測・分析することによって,インターネット上で発生している不正な活動の傾向を把握することが可能となる.本研究では,ダークネット観測網で得られたデータに対して,t 分布型確率的近傍埋め込み法と呼ばれる次元圧縮手法を適用し,不正活動パターンの分布を可視化した結果について報告する.この可視化により,不正活動のトレンドの把握や,新たな不正活動パターンの発生の検知などを行うことが可能になると期待される., Domestic conference
    Oral presentation

  • 携帯型簡易葉色・植生測定器による大豆生育診断と低収要因の解明
    OZAWA Seiichi, OHKAWA Takenao
    平成27年度農林水産省委託プロジェクト「多収阻害要因の診断法及び対策技術の開発委託事業」推進会議, Jan. 2016, Japanese, 農林水産省, 農林水産技術会議事務局筑波産学連携支援センター, Domestic conference
    Others

  • Plant Stem Detection and Estimation of Plant Height Using Image Sensing
    SHUHEI Arakawa, OZAWA Seiichi, KITAZONO Jun, YOSHIDA Takeshi, OHKAWA Takenao, MURAKAMI Noriyuki, TSUJI Hiroyuki
    計測自動制御学会 システム・情報部門学術講演会 2015, Nov. 2015, Japanese, The Society of Instrument and Control Engineers, 函館アリーナ, 本研究では,群落画像を用いた画像センシングにより,農作物の茎の位置,草丈 を推定する手法を提案する.単軸ロボットとデジタルカメラを用いて農作物正面 から撮影した連続画像を使用し,色情報による株元検出の後,近傍領域の探索を 繰り返し茎全体の検出を行なう.また,SIFTを用いて農作物の先端の位置を検出 し,撮影位置との関係から草丈を推定する.実験では,株元が中央付近に存在する大豆の画像から株元,節,先端を検出し,検出率の評価を行なった., Domestic conference
    Oral presentation

  • 炎上検知のためのTwitterユーザーの分類
    YOKOTA Ryoichi, AWAYA Narutaka, KITAZONO Jun, OZAWA Seiichi
    計測自動制御学会 システム・情報部門学術講演会 2015, Nov. 2015, Japanese, The Society of Instrument and Control Engineers, 函館アリーナ, Twitter has more than 20 million users in Japan nowadays, and it is widely used as a useful communication tool, not only for personal but also for business use. On the other hand, `flaming’, which implies a soaring of negative sentiment on SNS through the diffusion of negative retweets, has been a serious problem. Main triggers of flaming incidents would be thoughtless comments, Domestic conference
    Oral presentation

  • ダークネットトラフィックに基づくサイバー攻撃の分類と可視化
    OZAWA Seiichi
    NICTER Workshop, Nov. 2015, Japanese, NICT, 鳴門教育大学, Domestic conference
    [Invited]
    Nominated symposium

  • Bot Decision for Twitter Accounts
    YOKOTA Ryoichi, OZAWA Seiichi, KITAZONO Jun, HAGA Tatsuya, SUGAWARA Takahiro
    計測自動制御学会 システム・情報部門学術講演会 2015, Nov. 2015, Japanese, The Society of Instrument and Control Engineers, 函館アリーナ, 近年,TwitterなどのSNSが急速に普及しているが,それに伴いBotアカウントの存 在が問題となっている.これは,自動的に発言する機能等が備わっており,スパムや悪意のある内容を拡散させる原因となることがあるからである.本研究では,Botを主として使用しているアカウントとそうでないアカウント (人間ユーザー)を分類する試みについて報告する.Twitterで収集した902ユーザーのツィートに対し,F値で88%の精度が得られた., Domestic conference
    Oral presentation

  • Online Learning of Unstructured Data in Cybersecurity
    OZAWA Seiichi
    2015 International Data Mining and Cybersecurity Workshop, Nov. 2015, English, APNNA, Istanbul, Turkey, International conference
    [Invited]
    Invited oral presentation

  • Development of Adaptive Event-Monitoring System for DDoS Attacks
    FURUTANI Nobuaki, KITAZONO Jun, OZAWA Seiichi, BAN Tao, NAKAZATO Junji, SHIMAMURA Jumpei
    コンピュータセキュリティシンポジウム 2015, Oct. 2015, Japanese, 情報処理学会 コンピュータセキュリティ研究会, 長崎ブリックホール, TCP as discriminate DDoS backscatter and incremental learning. Its adaptability is further illustrated by visualization of the host activities during the time expanse using dimension reduction techniques., Domestic conference
    Oral presentation

  • Image Sensing Method for Smart Agriculture
    OZAWA Seiichi
    Kobe University Brussels European Centre Symposium, Oct. 2015, English, Kobe University, Brussels, Belgium, International conference
    [Invited]
    Invited oral presentation

  • ダークネットトラフィックに基づいたDDoSバックスキャッタ判定
    FURUTANI Nobuaki, BAN Tao, NAKAZATO Junji, SHIMAMURA Jumpei, KITAZONO Jun, OZAWA Seiichi
    第59会システム制御情報学会研究発表講演会, May 2015, Japanese, The Institute of Systems, Control and Information Engineers, 京都テルサ, In this work, we propose a method to quickly discriminate DDoS backscatter packets from those of other traffic observed by darknet sensors (i.e., backscatter or non-backscatter). For packets sent by a host during a short time, we define 17 features on packet traffic, which are then provided to an SVM classifier for classification. We apply incrimental learning to discriminate b, Domestic conference
    Oral presentation

  • Fast Learning of t-Distributed Stochastic Neighbor Embedding Using Minimum Probability Flow
    KITAZONO Jun, OMORI Toshiaki, OZAWA Seiichi
    第59会システム制御情報学会研究発表講演会, May 2015, Japanese, The Institute of Systems, Control and Information Engineers, 京都テルサ, 本研究では,次元圧縮手法の一つであるt分布型確率的近傍埋め込み法(t-Distributed Stochastic Neighbor Embedding,t-SNE)について,Minimum Probability Flowと呼ばれるアルゴリズムに基づく学習法を提案する.通常の学習法では,計算量がサンプル数に対して二次のオーダーであるのに対し,提案法では線形オーダーに削減されることを示す.実験により,学習が高速化され大規模データに対してもt-SNEを適用可能となることを示す., Domestic conference
    Oral presentation

  • A Study on the Estimation of Plant Height Using Image Sensing
    ARAKAWA Shuhei, YOSHIDA Takeshi, KITAZONO Jun, OZAWA Seiichi, FUKAO Takanori, OHKAWA Takenao
    SICE, Dec. 2014, Japanese, Osaka, In this work, we propose an image sensing method to estimate the height of agricultural plants. In the proposed method, several images are taken by moving a digital camera attached to a single-axis robot. Then, the two consecutive images with a plant tip are automatically selected and the plant height is estimated from the two images based on the triangulation. Here, plant tips, Domestic conference
    Oral presentation

  • ダークネットトラフィック観測によるDDoSバックスキャッタ判定
    FURUTANI Nobuaki, BAN Tao, NAKAZATO Junji, SHIMAMURA Jumpei, KITAZONO Jun, OZAWA Seiichi
    第28回情報通信システムセキュリティ研究会, Nov. 2014, Japanese, 一般社団法人電子情報通信学会, 宮城県仙台市, Domestic conference
    Oral presentation

  • A Proposal of Negative Tweets Classifier Based on Sentence Structure and Empirical Knowledge
    NISHIKAZE Hironori, OZAWA Seiichi, YAZAWA Takashi, HAGA Tatsuya, SUGAWARA Takahiro
    SCI'14, May 2014, Japanese, Kyoto, Twitter は有益な情報交換ツールとして普及してきたが,その一方で個人や企業のイメージを故意に損なうことを目的とした行為も増加する傾向にある.本稿では,過度な中傷による企業イメージの毀損を防ぐため,係り受けなどの文構造だけでなく,企業名や製品名などを含んだツイートに対する経験則を取り入れたナイーブベイズ識別器を提案する.特定企業や製品名を含むツイートに対して,ネガティブツイートを78%(F-Measure),ポジティブツイートを90%の精度で識別できることを示した., Domestic conference
    Oral presentation

  • A Sequential Multi-task Learning Model with Multi-label Pattern Recognition Function
    HIGUCHI Daisuke, OZAWA Seiichi
    電気学会 平成26年電気学会 電子・情報・システム部門大会, May 2014, Japanese, Matsue, In this paper, we propose an incremental neural network model for a general class of sequential multi-task classification problems where a training data may have multiple class labels. To handle this type of classification problems, the proposed model consists of a three-layer feedforward neural network with long-term/short-term memories, and it has the following functions: one, Domestic conference
    Oral presentation

  • A Study on Judgment of Backscatter by DDoS Attacks for Darknet Packet
    FURUTANI Nobuaki, BAN Tao, NAKAZATO Junji, SHIMAMURA Jumpei, OZAWA Seiichi
    SCI'14, May 2014, Japanese, Kyoto, In this work,we propose a method to discriminate backscatters caused by DDos attacks from normal traffic.Since the DDos attacks are imminent threats which could give serious economic damages to private companies,it is quite important to detect DDos backscatters as early as possible. To do this,11 features of port\/IP information are defined for network packets which are sent wi, Domestic conference
    Oral presentation

  • A Study on Internet Subnets Categorization with Darknet Traffic Data Analysis
    NISHIKAZE Hironori, BAN Tao, NAKAZATO Junji, SHIMAMURA Jumpei, OZAWA Seiichi
    SCI'14, May 2014, Japanese, Kyoto, In this research, we propose a method to analyze darknet traffic data in order to find subnetworks with security vulnerability. In general, packets reaching the darknet are considered to be generated by malwares. Thus, we can infer the vulnerability of a subnetwork by analyzing the port\/IP information of the darknet packets. To classify darknet traffic data into typical malici, Domestic conference
    Oral presentation

  • Fast Online Feature Extraction Using Chunk Incremental Kernel Principal Component Analysis
    JOSEPH Anak Annie, OZAWA Seiichi
    SCI'14, May 2014, English, Kyoto, Kernel Principal Component Analysis (KPCA) is a widely-used feature extraction as it has been proven that KPCA is powerful in many pattern recognition problems. Considering that the conventional KPCA should decompose a kernel matrix of all training data, this would be an unrealistic assumption for data streams in real-world applications. Takeuchi et al. proposed an Incremental-, Domestic conference
    Oral presentation

  • A Neural Network Model for Incremental Learning of Large-Scale Stream Data
    Ali Siti, Hajar Aminah, FUKASE Kiminori, OZAWA Seiichi
    SCI'14, May 2014, English, Kyoto, Resource Allocating Network with Long Term Memory (RAN-LTM) can avoid the interference in incremental learning and reduce memory capacity during the learning. However, when a large set of training data are given at a time, the incremental learning in RAN-LTM can be seriously slow. A remedy for this is to select only useful data online depending on the importance of data. In thi, Domestic conference
    Oral presentation

  • Development of Online Malicious Decision System for Spam Mails
    TADA Shunsuke, NAKAZATO Junji, BAN Tao, OZAWA Seiichi
    The 31st Symposium on Cryptography and Information Security, Jan. 2014, Japanese, The Institute of Electronics, Information and Communication Engineers, Technical Committee on Information Security, 城山観光ホテル, 本稿ではスパムメールに対するオンライン悪性度判定システムを提案する. スパムメールの悪性度をオンラインで判定することで,ユーザへの悪性度別警告を発したり,悪性度の高いスパムメール送信者の特定に役立てたりすることが期待される.しかしながら,スパムメール中にURLが含まれている場合,その危険性を判断するのは一般に困難であり,さらにスパムメールの文面などは不定期に変化する.そのためブラックリスト方式で対応するのは難しい.そこで提案システムでは,教師あり学習および追加学習を用いてスパムメールの悪性度を逐次的に判定する.学習用ラベルには,クローリングシステムを利用し,特徴選択,学習,更新の3つの機能を実装する.性能評価実験では,2013年3月から8月に収集されたダブルバウンスメールを用いて,提案システムが高精度でスパムメールを逐次的に悪性度判定可能であることを, Domestic conference
    Oral presentation

  • A Radial Basis Function Network with Locality Sensitive Hashing for Large-Scale Stream Data
    Aminah Ali Siti Hajar, OZAWA Seiichi
    The Society of Instrument and Control Engineers, Symposium of System and Information Division, Nov. 2013, Japanese, The Society of Instrument and Control Engineers, System and Information Division, ピアザ淡海, The developments of the high-speed machines and advanced technology services have provided the facilities for the researchers to obtain and store a large-scale stream data that are continuously generated. The biggest challenges to process the large-scale stream data are to mine useful information not only from huge amount of data but also from high dimensions, besides to provid, Domestic conference
    Oral presentation

  • Acceleration of Incremental Kernel Principal Component Analysis for Stream Data
    Annie anak Joseph, OZAWA Seiichi
    The Society of Instrument and Control Engineers, Symposium of System and Information Division, Nov. 2013, Japanese, The Society of Instrument and Control Engineers, System and Information Division, ピアザ淡海, Online feature extraction has becomes an important topic in pattern recognition. On the other hand, Kernel Principal Component Analysis (KPCA) has been known as a powerful nonlinear feature extraction. Takeuchi et al. have proposed an Incremental type of KPCA (IKPCA) where the learning is sequentially conducted for stream data. However, since the eigenvalue decomposition should, Domestic conference
    Oral presentation

  • A Study on Vulnerability Inspection of Internet Subnets by Darknet Traffic Data Analysis
    NISHIKAZE Munenori, BAN Tao, OZAWA Seiichi
    Computer Security Symposium 2013, Oct. 2013, Japanese, Information Processing Society of Japan Computer Security Group, Sunport Takamatsu, In the research, we develop a dynamical analysis method of malware activities using NICTER darknet Dataset 2013, which includes unsolicited packet data generated by malware scan activities, infection activities, backscatter by DDos attacks, human setup errors, etc. We analyze packets sent out from specific IP regions (subnetworks) at all the destination ports, and identify the, Domestic conference
    Oral presentation

  • Extension of Sequential Multi-Task Learning Model to Multi-label Pattern Recognition
    HIGUCHI Daisukei, OZAWA Seiichi
    57th Annual Confernece of the Institute of Systems, Control and Information Engineers, May 2013, Japanese, the Institute of Systems, Control and Information Engineers, 兵庫県民会館, In this work, we propose a new sequential multitask learning model that can learn training samples with multiple class labels. Since each training sample is assumed to have no task label, the proposed model must allocate each class to an appropriate task. In the proposed model, this is conducted based on the prediction errors. In addition, we introduce a new consolidation mecha, Domestic conference
    Oral presentation

  • A Study on Fast Learning for Large-Scale Stream Data
    FUKASE Kiminori, Aminah Ali Siti Hajar, OZAWA Seiichi
    57th Annual Confernece of the Institute of Systems, Control and Information Engineers, May 2013, Japanese, the Institute of Systems, Control and Information Engineers, 兵庫県民会館, Recently, mining knowledge from stream data such as access logs of computer, commodity distribution data and sales data, and human life-log has been attracting attention. As one of the techniques suitable for such an environment, active learning has been studied for long time. In this work, we propose a fast learning technique for neural networks by introducing Locality Sensiti, Domestic conference
    Oral presentation

  • 樹状突起における電気特性の不均一性による情報伝播の向上
    島本 貴文, OMORI TOSHIAKI, 青西 亨, OZAWA SEIICHI
    第57回システム制御情報学会研究発表講演会, May 2013, Japanese, システム制御情報学会, 兵庫県民会館, Domestic conference
    Oral presentation

  • A Study on Tweet Classification Using Automatic Indexing
    YOSHIDA Shun, OZAWA Seiichi
    57th Annual Confernece of the Institute of Systems, Control and Information Engineers, May 2013, Japanese, the Institute of Systems, Control and Information Engineers, 兵庫県民会館, In predicting personal emotion from tweets, it is not easy to infer the implication of personal emotion from tweets without human's intervention in the emotional analysis. This causes various difficulties in the tweet analysis in terms not only of heavy human workload, but also of keeping the consistency in the emotional evaluation by humans.To alleviate this problem, we propos, Domestic conference
    Oral presentation

  • A Study on Behavior Recognition by Traffic Monitoring
    NISHIKAZE Munenori, TADA Shunsuke, OZAWA Seiichi
    57th Annual Confernece of the Institute of Systems, Control and Information Engineers, May 2013, Japanese, the Institute of Systems, Control and Information Engineers, 兵庫県民会館, This study presents a method of behavior recognition of PC users using packet information. Network packets contain information on e-mails, applications, websites, etc. In this work, packet information is obtained using Wireshark (packet analyzer) and converted into a feature vector. Then, feature selections are applied to each feature vector to select important information, and, Domestic conference
    Oral presentation

  • Handling Concept Drift Using Incremental Linear Discriminant Analysis with Knowledge Transfer in Non-stationary Data Streams
    Annie anak Joseph, OZAWA Seiichi
    57th Annual Confernece of the Institute of Systems, Control and Information Engineers, May 2013, Japanese, the Institute of Systems, Control and Information Engineers, 兵庫県民会館, In real life, data are not always generated under stationary environments. However, traditional learning systems normally assumed that the property of data streams is stationary over time and this sometimes leads to the degradation in the system performance when there are some hidden context changes in data streams. Such context changes are called concept drift, and several app, Domestic conference
    Oral presentation

  • Extension of Incremental Linear Discriminant Analysis for Online Feature Extraction under Unstationary Environments
    Annie anak Joseph, OZAWA SEIICHI
    Electronics, Information and Systems Conference 2012, IEE of Japan, Sep. 2012, English, Hirosaki University, One of the recent topics in online learning is the adaptation to “concept drift”, in which an increasing loss of the relevance between the current data to the previous concept representations leads to imposing model changes. On the other hand, online feature extraction for high-dimensional data streams is very important to ensure high-performance and real-time adaptation to dyn, Domestic conference
    Oral presentation

  • A Fast Incremental Principal Component Analysis for Real-time Computation
    Aoki Daijiro, OZAWA SEIICHI
    The 56th Annual Conference of ISCIE, May 2012, Japanese, Kyoto Terrsa, When the conventional incremental principal component analysis (IPCA) is used for extracting features of a data stream, IPCA has to be carried out for each of the high-dimensional input featuress; thus, the eigenvalue problem should be solved for every high-dimensional data. This may lead to the deterioration in the online performance of the feature extraction for a data stream, Domestic conference
    Oral presentation

  • Incremental Learning of Stream Data
    OZAWA SEIICHI
    The 56th Annual Conference of ISCIE, May 2012, Japanese, Kyoto Terrsa, In real-world applications, concepts to be learned can sometimes be changed over time. Such a problem in machine learning is called concept drift. To adapt to the dynamic environments with concept drift, a system should have the mechanisms (1) to learn the change in the environment, (2) to detect the drift and/or its magnitude, and (3) to forget what is no longer relevant. In t, Domestic conference
    Oral presentation

  • ストリームデータに対するカーネル主成分分析アルゴリズム
    TOKUMOTO Takaomi, OZAWA Seiichi
    第39回知能システムシンポジウム, Mar. 2012, Japanese, 計測自動制御学会, 千葉, Domestic conference
    Oral presentation

  • Fast Incremental Principal Component Analysis and Its Application to Face Image Recognition
    青木大二郎, 小澤誠一
    電子情報通信学会技術研究報告, 2012, Japanese, The Institute of Electronics, Information and Communication Engineers, In the conventional Incremental Principal Component Analysis (IPCA), an eigenvalue problem has to be solved whenever one or a small number of training data are given in sequence. Since the eigenvalue decomposition requires high computational costs in general, solving the eigenvalue problem repeatedly results in the deterioration in the real-time learning property of IPCA. Hence, in this work, we propose an improved version of IPCA whose real-time learning property is enhanced without sacrificing the recognition performance by reducing the number of times to solve eigenvalue problems. We show that the improved IPCA can learn principal components real time from a stream of face images.

  • ラジアル基底関数ネットの自律追加学習アルゴリズムの改良
    NAKASAKA Sho, OZAWA Seiichi
    第24回自律分散システムシンポジウム, Jan. 2012, Japanese, 計測自動制御学会, 神戸, Domestic conference
    Oral presentation

  • 非定常環境下でのストリームデータの追加学習方式
    OZAWA Seiichi
    SICEシステム・情報部門学術講演会, Nov. 2011, Japanese, 計測自動制御学会, 神戸, Domestic conference
    Oral presentation

  • 移転メトリック学習に基づいたマルチタスク学習モデルの開発
    Gaku Shimon, OZAWA Seiichi
    第21回インテリジェントシステムシンポジウム, Sep. 2011, Japanese, 計測自動制御学会, 神戸, Domestic conference
    Oral presentation

  • ラジアル基底関数ネットにおける追加型自律学習アルゴリズム
    NAKASAKA Sho, OZAWA Seiichi
    第21回インテリジェントシステムシンポジウム, Sep. 2011, Japanese, 計測自動制御学会, 神戸, Domestic conference
    Oral presentation

  • マルチタスクパターン認識における複数ラベルの学習
    TAKATA Tomoyasu, OZAWA Seiichi
    第21回インテリジェントシステムシンポジウム, Sep. 2011, Japanese, 計測自動制御学会, 神戸, Domestic conference
    Oral presentation

  • チャンクデータに対する追加学習型カーネル主成分分析アルゴリズム
    TOKUMOTO Takaomi, OZAWA Seiichi
    電子情報通信学会ニューロコンピューティング研究会, Jul. 2011, Japanese, 電子情報通信学会, 神戸, Domestic conference
    Oral presentation

  • メトリックに基づいた知識移転を行うマルチタスク学習モデルの開発
    Gaku Shimon, OZAWA Seiichi
    55回システム制御情報学会研究発表講演会講演, May 2011, Japanese, システム制御情報学会, 大阪, Domestic conference
    Oral presentation

  • マルチモーダル・マルチタスクパターン認識の追加学習方式に関する研究
    Kou Shugen, OZAWA Seiichi, Youngmin Jang, Minho Lee
    55回システム制御情報学会研究発表講演会講演, May 2011, Japanese, システム制御情報学会, 大阪, Domestic conference
    Oral presentation

  • 1C1-1 Improvement of Incremental Autonomous Learning Algorithm for Radial Basis Function Networks
    NAKASAKA Sho, OZAWA Seiichi
    インテリジェントシステム・シンポジウム講演論文集, 2011, Japanese, 日本機械学会, In this paper, we propose to implement an pruning algorithm to an autonomous incremental learning model called Automated Learning algorithm for Resource Allocating Network (AL-RAN). The proposed pruning algorithm determines whether Radial Basis Functions (RBF) are useful or not by activation level of them and remove unuseful RBFs. By implementing this algorithm to AL-RAN, we reduce the number of basis and improve the learning time. From the experimental results, we confirm that the above functions work well and the efficiency in terms of learning time is improved without sacrificing the recognition accuracy as compared with the previous version of AL-RAN.

  • 1C1-3 Development of Multitask Learning Model Based on Transfer Metric learning
    Yue Simeng, OZAWA Seiichi
    インテリジェントシステム・シンポジウム講演論文集, 2011, Japanese, 日本機械学会, Multi-task learning is a learning paradigm which allows a system to learn related multiple tasks in parallel or sequentially and to improve the generalization performance for a learning task by transferring the knowledge to other related tasks. In order to transfer knowledge effectively, it is necessary to estimate the relatedness between tasks properly. In this paper, we propose a multi-task learning algorithm for pattern recognition where the task relatedness is estimated based on the metric learning. Experimental results demonstrate the effectiveness of our method.

  • 1B2-3 Multi-Label Learning for Multi-Task Pattern Recognition
    TAKATA Tomoyasu, OZAWA Seiichi
    インテリジェントシステム・シンポジウム講演論文集, 2011, Japanese, 日本機械学会, In this paper, we extend the multi-task learning (MTL) model proposed by Nishikawa et al. such that a classifier can learn training data with multiple class labels which belong to different classification tasks. In order to identify the a suitable task associated with the class of a given data, the proposed MTL model checks the prediction errors in all output sections. Then, the corresponding task is predicted from the output section with a minimum error. If all the prediction errors are large, the MTL model suspends to learn training data until the output section with a small error is found. In the experiments, we evaluate the proposed MTL model using the COIL-100 and ORL Face datasets which is extended to multi-task learning. The experimental results show that each class label given concurrently can be classified into a suitable task by the proposed system and multi-label data are efficiently learned by classifier.

  • 省メモリな追加学習型カーネル主成分分析アルゴリズム
    徳本隆臣, 小澤誠一
    知能システムシンポジウム資料, 2011

  • マルチタスク顔画像認識のための追加型二方向二次元線形判別分析
    LIU Chunyu, 小澤誠一
    知能システムシンポジウム資料, 2011

  • Development of Autonomous Learning Algorithm for Incremental Radial Basis Function Networks
    Nakasaka Sho, Ozawa Seiichi
    SICEシステム・情報部門学術講演会, Nov. 2010, Japanese, 計測自動制御学会, 京都市, Domestic conference
    Oral presentation

  • Development of Semi-Supervised Multitask Learning Model for Pattern Recognition
    Takata Tomoyasu, Ozawa Seiichi
    SICEシステム・情報部門学術講演会, Nov. 2010, Japanese, 計測自動制御学会, 京都市, Domestic conference
    Oral presentation

  • Online Feature Extraction by Incremental Recursive Fisher Linear Discriminant
    Ozawa Seiichi, Ohta Ryohei
    20回インテリジェントシステムシンポジウム, Sep. 2010, Japanese, 計測自動制御学会, 八王子市, Domestic conference
    Oral presentation

  • A Fast Incremental Learning Algorithm of Kernel Principal Component Analysis
    Tokumoto Takaomi, Ozawa Seiichi
    平成22年電気学会電子・情報・システム部門大会, Sep. 2010, Japanese, 電気学会, 熊本市, Domestic conference
    Oral presentation

  • Enhanced Incremental Learning Algorithm for Kernel Principal Component Analysis
    Tokumoto Takaomi, Ozawa Seiichi
    54回システム制御情報学会研究発表講演会, May 2010, Japanese, システム制御情報学会, 京都市, Domestic conference
    Oral presentation

  • An Incremental Learning Model for Multitask Pattern Recognition
    Ozawa Seiichi
    54回システム制御情報学会研究発表講演会, May 2010, Japanese, システム制御情報学会, 京都市, Domestic conference
    Oral presentation

  • パターン認識における半教師有りマルチタスク学習モデルの開発
    高田丈靖, 小澤誠一
    知能システムシンポジウム資料, 2010

  • 追加学習型ラジアル基底関数ネットの自律学習アルゴリズムの開発
    中坂翔, 小澤誠一
    知能システムシンポジウム資料, 2010

  • Development of Incremental Recursive Fisher Linear Discriminamt
    太田良平, 小澤誠一
    システム制御情報学会研究発表講演会講演論文集(CD-ROM), 2009, The Institute of Systems, Control and Information Engineers, 従来の線形判別分析(LDA)による特徴抽出では,得られる特徴ベクトルの次元は訓練データのクラス数未満で制限される.これに対し,再帰的フィッシャー判別分析(RFLD)では,LDA特徴空間の補空間に対して再帰的にLDAを行うことで,クラス数の制限を越えて任意の次元の特徴ベクトルが得られる.一方,LDAを追加学習環境に拡張した追加型線形判別分析(ILDA)がPangらによって提案されている.本研究では,ILDAの導出法に基づきRFLDを追加学習可能なように拡張し,クラス分離度に基づいて最適な特徴数を決定する方法を導入した追加型再帰的フィッシャー判別分析を提案する.この学習アルゴリズムでは,過去の訓練データを保持することなく特徴空間の更新を行うことが可能であり,クラス数以上の特徴数を得ることができる.ベンチマークデータを用いた計算機実験を通して,ILDAとの比較を行い,IRFLDはいくつかのデータにおいてILDAを超える性能を有することを示す.

  • 特徴抽出と識別器を追加学習するマルチタスク・パターン認識モデルの提案
    戚暁偉, 小澤誠一
    電気関係学会関西支部連合大会講演論文集(CD-ROM), 2009

  • 追加型再帰フィッシャー判別による認識性能のオンライン改善
    太田良平, 小澤誠一
    電気学会電子・情報・システム部門大会講演論文集(CD-ROM), 2009

  • A Reinforcement Learning Model with Function of Generating Macro-Actions in Grid-World Maze Problems and a Study on its Learning Property
    恩田宏, 小澤誠一
    電気学会論文誌 C, 2009, Japanese, The Institute of Electrical Engineers of Japan, A macro-action is a typical series of useful actions that brings high expected rewards to an agent. Murata et al. have proposed an Actor-Critic model which can generate macro-actions automatically based on the information on state values and visiting frequency of states. However, their model has not assumed that generated macro-actions are utilized for leaning different tasks. In this paper, we extend the Murata's model such that generated macro-actions can help an agent learn an optimal policy quickly in multi-task Grid-World (MTGW) maze problems. The proposed model is applied to two MTGW problems, each of which consists of six different maze tasks. From the experimental results, it is concluded that the proposed model could speed up learning if macro-actions are generated in the so-called correlated regions.

  • Dynamic Selection of Accumulation Ratio for Incremental Principal Component Analysis
    Yuki Kawashima, Seiichi Ozawa
    自律分散システム・シンポジウム, Jan. 2009, Japanese, 計測自動制御学会, Tottori City, Domestic conference
    Oral presentation

  • An Automated Incremental Learning Algorithm for RBF networks
    Toshihisa Tabuchi, Seiichi Ozawa
    自律分散システム・シンポジウム, Jan. 2009, Japanese, 計測自動制御学会, Tottori City, Domestic conference
    Oral presentation

  • An Incremental Principal Component Analysis Based on Dynamic Accumulation Ratio
    Seiichi Ozawa, Kazuya Matsumoto, Shaoning Pang, Nikola Kasabov
    SICE Annual Conf. 2008, Aug. 2008, English, 計測自動制御学会, Fuchu City, Tokyo, Domestic conference
    Oral presentation

  • Improvement of Incremental Principal Component Analysis
    Kazuya Matsumoto, Seiichi Ozawa
    システム制御情報学会研究発表講演会, May 2008, Japanese, Kyoto City, Domestic conference
    Oral presentation

  • Speed Up of Reinforcement Learning by Introducing Macro-actions
    Yuki Kawashima, Ryuhei Ohta, Seiichi Ozawa, Hiroshi Onda
    システム制御情報学会研究発表講演会, May 2008, Japanese, システム制御情報学会, Kyoto City, Domestic conference
    Oral presentation

  • 特徴選択による追加学習型カーネル主成分分析の高速化とその性能評価
    Yohei Takeuchi, Seiichi Ozawa, Shigeo Abe
    平成19年電気関係学会関西支部連合大会, Nov. 2007, Japanese, Kobe University, Domestic conference
    Poster presentation

  • マクロアクション生成機能を有する強化学習アルゴリズム
    Hiroshi Onda, Seiichi Ozawa
    平成19年電気関係学会関西支部連合大会, Nov. 2007, Japanese, Kobe University, Domestic conference
    Oral presentation

  • Development of Incremental Kernel Principal Component Analysis and Its Performance Evaluation
    Yohei Takeuchi, Seiichi Ozawa, Shigeo Abe
    平成19年電気学会電子・情報・システム部門大会, Sep. 2007, Japanese, 電気学会, 大阪府立大学, Domestic conference
    Oral presentation

  • Knowledge Transfer Algorithm Using Task Relatedness for Sequential Multi-task Pattern Recognition
    Hitoshi Nishikawa, Seiichi Ozawa
    平成19年電気学会電子・情報・システム部門大会, Sep. 2007, Japanese, 電気学会, 大阪府立大学, Domestic conference
    Oral presentation

  • Reinforcement Learning Agent Model with Function of Generating Macro-Actions
    Hiroshi Onda, Seiichi Ozawa
    平成19年電気学会電子・情報・システム部門大会講演論文集, Sep. 2007, Japanese, 電気学会, 大阪府立大学, Domestic conference
    Oral presentation

  • An Online Face Recognition System with Incremental Learning Ability
    Seiichi Ozawa, Michiro Hirai, Shigeo Abe
    SICE Annual Conference, Sep. 2007, English, 計測自動制御学会, Kagawa University, Domestic conference
    Oral presentation

  • Development of Incremental Kernel Principal Component Analysis
    Yohei Takeuchi, Seiichi Ozawa, Shigeo Abe
    51回システム制御情報学会研究発表講演会, May 2007, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • Basic Research on Selective Knowledge Transfer for Sequential Multi-task Learning
    Hitoshi Nishikawa, Seiichi Ozawa
    51回システム制御情報学会研究発表講演会, May 2007, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • Online Feature Selection and Incremental Learning of Neural Network
    Seiichi Ozawa
    51回システム制御情報学会研究発表講演会, May 2007, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • 追加学習型ブースティング識別器の開発
    KIDERA Takuya, OZAWA Seiichi, ABE Shigeo
    平成18年電気関係学会関西支部連合大会, Nov. 2006, Japanese, 電気学会, 大阪工業大学, Domestic conference
    Oral presentation

  • 追加学習型カーネル主成分分析の評価
    KIMURA Shosuke, TAKEUCHI Yohei, OZAWA Seiichi, ABE Shigeo
    平成18年電気関係学会関西支部連合大会, Nov. 2006, Japanese, 電気学会, 大阪工業大学, Domestic conference
    Oral presentation

  • Speed-up of Reinforcement Learning by Generating Macro-actions
    ONDA Hiroshi, MURATA Makoto, OZAWA Seiichi
    第49回自動制御連合講演会, Nov. 2006, Japanese, システム制御情報学会, 機械学会, 計測自動制御学会, 神戸大学, Domestic conference
    Oral presentation

  • A Multi-task Learning Algorithm for Pattern Recognition
    ZHANG Keyu, OZAWA Seiichi
    第49回自動制御連合講演会, Nov. 2006, English, システム制御情報学会, 機械学会, 計測自動制御学会, 神戸大学, Domestic conference
    Oral presentation

  • A study on Incremental Learning for Boosting Classifier
    KIDERA TAKUYA, OZAWA Seiichi, ABE Shigeo
    50回システム制御情報学会研究発表講演会, May 2006, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • Character Recognition for Malaysian License Plate
    竹内洋平, 福見稔, 赤松則夫, KARUNGARU Stephen, 小澤誠一
    システム制御情報学会研究発表講演会講演論文集, 2006, The Institute of Systems, Control and Information Engineers, 近年,自動文字認識システムはあらゆる環境で有用であり,車両認知・郵便番号認識・手書き文字の文書化など広く活用・研究されている.本論文では,マレーシアのライセンスプレート文字認識を提案する.まず,車両進入時の動画像から車両領域を抽出し,プレート位置を特定.そして,ニューラルネットワークをベースにした文字認識手法を使い,車両情報を取得する.今回はシミュレーション上での本システムの結果を報告する.

  • Incremental Learning Algorithm of Committee Machine
    KIDERA Takuya, OZAWA Seiichi, ABE Shigeo
    49回システム制御情報学会研究発表講演会, May 2005, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • カーネルパラメータの選択メカニズムをもつブースティングカーネル判別分析法
    喜多 伸次, 前川 聡, 小澤 誠一, 阿部 重夫
    第32回知能システムシンポジウム, Mar. 2005, Japanese, 計測自動制御学会 システム・情報部門, 京都工芸繊維大学, Domestic conference
    Oral presentation

  • マクロアクション生成機能をもつメモリベース強化学習アルゴリズム
    村田 真, 小澤 誠一
    第17回自立分散システム・シンポジウム, 2005, Japanese, 計測自動制御学会 システム・情報部門, 未記入, Domestic conference
    Oral presentation

  • 特徴空間のオンライン学習に関する研究
    小田 梓, 小澤 誠一, 阿部 重夫
    48回システム制御情報学会研究発表講演会, May 2004, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • 追加学習可能な顔認識システムとその性能改善
    木村 星介, 小澤 誠一, 阿部 重夫
    48回システム制御情報学会研究発表講演会, May 2004, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • RBFネットワークを用いたメモリベース強化学習アルゴリズム
    松岡 幹泰, 小澤 誠一, 阿部 重夫
    48回システム制御情報学会研究発表講演会, May 2004, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • 動的環境下で追加学習可能なニューラルネットモデル
    小澤 誠一, 津守 研二
    第16回自律分散システムシンポジウム, 2004, Japanese, 計測自動制御学会 システム・情報部門, 京都テルサ, Domestic conference
    Oral presentation

  • ラジアル基底関数ネットのメモリベース追加学習
    小澤 誠一, 岡本 圭介
    第16回自律分散システムシンポジウム, 2004, Japanese, 計測自動制御学会 システム・情報部門, 京都テルサ, Domestic conference
    Oral presentation

  • ニューラルネットの追加学習とその応用
    小澤 誠一
    平成15年度電気関係学会関西支部連合大会, 2004, Japanese, 電気関係学会関西支部, 未記入, Domestic conference
    Oral presentation

  • 長期記憶をもつニューラルネットワークによる動的環境下での教師あり学習
    小澤 誠一, 津守 研二
    第30回知能システムシンポジウム, Mar. 2003, Japanese, 計測自動制御学会 システム・情報部門, 学術総合センター, Domestic conference
    Others

  • Pattern Recognition Method Using Independent Components for Each Class
    Kinukawa Shuhei, Kotani Manabu, Ozawa Seiichi
    Proceedings of the Annual Conference of the Institute of Systems, Control and Information Engineers, 2003, The Institute of Systems, Control and Information Engineers, Applications of independent component analysis (ICA) to feature extraction have been a topic of research interest. Here, we propose a novel recognition method using features extracted by ICA. The proposed method consists of some modules for each category and a synthesizer. A module has a feature extraction and a classification. Features are independent components extracted by ICA algorithm using the training data for each class and classification are made by these features. These output of the module are combined and categories are decided by a majority rule. We evaluate the performance of the proposed method for several recognition tasks. From these results, we confirm the effectiveness of the recognition method using independent components for each class.

  • Reinforcement Learning Using Neural Networks with Memory Mechanism
    Ozawa Seiichi, Shiraga Naoto, Abe Shigeo
    Proceedings of the Annual Conference of the Institute of Systems, Control and Information Engineers, 2003, The Institute of Systems, Control and Information Engineers, In reinforcement learning problems, agents should learn from only rewards that are provided by the environment; hence, learning by trial and error is inevitable. In order to acquire right policies of actions, action-value functions are often estimated. In many cases, the action-value functions are approximated by parametric linear/nonlinear functions such as RBF networks. However, when the RBF networks are trained in incremental fashion, we often suffer from a serious problem called interference that results in the forgetting of input-output relations acquired in the past. In this work, we propose a new approach to learning action-value functions using an RBF network with memory mechanism. In the simulations, we verify that our proposed model can acquire the proper policies even in difficult situations.

  • Fast Incremental Learning Algorithm for Neural Networks based on Linear Method
    Okamoto Keisuke, Ozawa Seiichi, Abe Shigeo
    Proceedings of the Annual Conference of the Institute of Systems, Control and Information Engineers, 2003, The Institute of Systems, Control and Information Engineers, As an incremental learning model, we have proposed Resource Allocating Network with Long Term Memory (RAN-LTM). In RAN-LTM, not only a new training sample but also some memory items stored in Long-Term Memory are trained based on a gradient descent method. The gradient descent method is generally slow and tends to be fallen into local minima. To improve these problems, we propose a fast incremental learning of RAN-LTM based on the linear method. In this algorithm, centers of basis functions are not trained but selected based on the output errors. A distinctive feature of the proposed model is that this model dose not need so much memory capacity. To evaluate the performance of our proposed model, we apply it to some function approximation problems. From the experimental results, it is verified that the proposed model can learn fast and accurately unless incremental learning is conducted over a long period of time.

  • 追加学習機能を有するRBFネットワークの高速学習法
    小澤 誠一, 白神 那央人, 阿部 重夫
    第47回システム制御情報学会研究発表講演会, 613-614, 2003, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • 追加学習機能を有するRBFネットワークの高速学習法
    岡本 圭介, 小澤 誠一, 阿部 重夫
    第47回システム制御情報学会研究発表講演会,531-532, 2003, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • 長期記憶を有するニューラルネットワークによる動的環境への適応
    津守 研二, 小澤 誠一, 阿部 重夫
    第47回システム制御情報学会研究発表講演会, 471-472, 2003, Japanese, システム制御情報学会, 京都テルサ, Domestic conference
    Oral presentation

  • 顔画像認識に基づく追加学習型個人認証システムに関する研究
    卓 順利, 小澤 誠一
    第46回自動制御連合講演会, 2003, Japanese, システム制御情報学会, 岡山大学, Domestic conference
    Oral presentation

  • A Reinforcement Learning Algorithm for a Class of Dynamical Environments Using Neural Networks.
    MURATA Makoto, OZAWA Seiichi
    SICE Annual Conf. 2003, 2003, English, 未記入, 未記入, Domestic conference
    Oral presentation

  • A Supervised Independent Component Analysis Maximizing Distances between Features of Different Classes
    OZAWA Seiichi, SAKAGUCHI Yoshinori, KOTANI Manabu
    IEICE technical report. Circuits and systems, Nov. 2002, Japanese, The Institute of Electronics, Information and Communication Engineers, Recently, Independent Component Analysis (ICA) has been applied to not only problems of blind signal separation, but also feature extraction of patterns. However, the effectiveness of pattern features extracted by conventional ICA algorithms greatly depends on pattern sets; that is, how patterns are distributed in the feature space. As one of the reasons, we have pointed out that conventional ICA features are obtained by increasing only their independence even if class information is available. In this context, we can expect that more high-performance features can be obtained by introducing class information into conventional ICA algorithms. In this paper, we propose a supervised ICA (SICA) algorithm that maximizes Mahalanobis distances between features of different classes as well as maximize their independence. In the simulation, the performance of the proposed SICA algorithm is evaluated using three data sets of UCI Machine Learning Repository. We demonstrate that the better recognition accuracy for these data sets is obtained using our proposed SICA. Furthermore, we show that pattern features extracted by SICA are better than those extracted by only maximizing the Mahalanobis distances.

  • Approximation of Action-Value Functions Using Neural Networks with Incremental Learning Ability
    OZAWA Seiichi, SHIRAGA Naoto, ABE Shigeo
    知能システムシンポジウム資料, Mar. 2002, Japanese

  • A Neural Network with Incremental Learning Ability and Its Reinforcement Learning Algorithm
    Ozawa Seiichi, Shiraga Naoto, Abe Shigeo
    SICE Division Conference Program and Abstracts, 2002, The Society of Instrument and Control Engineers, In reinforcement learning, forgetting by incremental learning can be serious when neural networks are utilized for approximating action-value functions of agents. To avoid the forgetting, we present a feedforward neural network model with long-term memories and its reinforcement learning algorithm. In the simulations, we apply our model to an extended mountain-car task, and the number of steps to the goal is evaluated as compared with a neural network without long-term memories. As a result, we demonstrate that the forgetting is effectively suppressed in the proposed model.

  • Feature Extraction Using Independent Component Analysis With Category Information
    Takabatake Hiroki, Kotani Manabu, Ozawa Seiichi
    SICE Division Conference Program and Abstracts, 2002, The Society of Instrument and Control Engineers, There are some studies about applications of independent component analysis (ICA) to feature extractions in pattern recognition. Since the ICA is an unsupervised learning, independent components are not always useful features for recognition. Therefore, we propose an ICA using a category information. The proposed ICA is realized by three-layered neural networks of which learning algorithm is combination of the error back-propagated algorithm and the fast ICA algorithm. Simulations are performed for three databases from the UCI database to evaluate the effectiveness of the proposed algorithm. We obtain higher recognition accuracy than the original ICA.

  • Pattern recognition method based on subspace methods using ensemble learning for independent components
    Katsura Masanori, Kotani Manabu, Ozawa Seiichi
    SICE Division Conference Program and Abstracts, 2002, The Society of Instrument and Control Engineers, We propose a new recognition method using independent components based on a subspace method. Independent components are calculated by the ensemble learning that can reduce redundant basis functions. The proposed method has some modules for each class and a combiner. A module consists of feature extraction and classification. Features are extracted by the ensemble learning and classification is made on k nearest neighbors. Outputs of modules are combined in the combiner and a category is decided by a majority rule. Simulations are performed for hand-written characters to evaluate the proposed method. Results show the effectiveness of the proposed method.

  • 210 Detetion of Leakage sound Under Dynamic Environment
    KOTANI Manabu, KATSURA Masanori, OZAWA Seiichi
    Dynamics and Design Conference : 機械力学・計測制御講演論文集 : D & D, Aug. 2001, Japanese, The Japan Society of Mechanical Engineers, It is important to detect the leakage of the gas to be flammable or poisonous from the cracks in pipes of chemical plants. We examined the application of modular neural networks to the detection of the leakage sound. The modular neural network has the ability to adapt its structure according to the environment. Experiments were performed for an artificial gas leakage device with various experimental conditions for a long term. The discrimination accuracy with the proposed network was about 93%, which was better than 83% with the simple network. From the results, we confirmed the effectiveness for the application of the modular neural network to the detection of the leakage sound for the practical use.

  • Detection of Leakage Sound with Independent Component Analysis
    KOTANI Manabu, ARIMOTO Takahiko, OZAWA Seiichi, AKAZAWA Kenzo
    Dynamics and Design Conference : 機械力学・計測制御講演論文集 : D & D, Sep. 2000, Japanese, The Japan Society of Mechanical Engineers, We describe what characteristics an independent component analysis can extract from leakage sounds. The learning algorithm of a network was an information-maximization approach proposed by Bell and Sejnowski. We applied the independent component analysis to the leakage sound. After the learning, most of the basis functions that are columns of a mixing matrix were localized in frequency. Furthermore, there were some basis functions to extract the feature of leakage sound. From these results, we confirmed that the application of independent component analysis to the signal processing of the acoustic signal was effective.

  • Incremental Learning for Neural Networks with Long-Term Memory
    OZAWA Seiichi, TAMAOKI Toshiya, BABA Norio
    知能システムシンポジウム資料, Mar. 2000, Japanese

  • Application of Independent Component Analysis to Signal Processing of Speech and Acoustic Signal
    KOTANI Manabu, OZAWA Seiichi, MAEKAWA Satoshi, AKAZAWA Kenzo
    知能システムシンポジウム資料, Mar. 2000, Japanese

  • Feature Extraction of Character Patterns Utilizing Independent Component Analysis
    OZAWA Seiichi, KOTANI Manabu, BABA Norio
    インテリジェント・システム・シンポジウム講演論文集 = FAN Symposium : fuzzy, artificial intelligence, neural networks and computational intelligence, Oct. 1999, Japanese

  • Autoassociative memory derived from cross-coupled Hopfield nets and its association properties
    OZAWA Seiichi, TSUTSUMI Kazuyoshi, BABA Norio
    インテリジェント・システム・シンポジウム講演論文集 = FAN Symposium : fuzzy, artificial intelligence, neural networks and computational intelligence, Nov. 1997, Japanese

  • An Improvement of Pseudoinverse-Type Autoassociative Neural Memory and Its Dynamical Characteristics
    OZAWA Seiichi, TSUTSUMI Kazuyoshi, BABA Norio
    日本神経回路学会全国大会講演論文集 = Annual conference of Japanese Neural Network Society, Nov. 1997, Japanese

  • The Design of Modular Neural Network Architecture Using Genetic Algorithms
    OZAWA Seiichi, BABA Norio, TSUTSUMI Kazuyoshi
    インテリジェント・システム・シンポジウム講演論文集 = FAN Symposium : fuzzy, artificial intelligence, neural networks and computational intelligence, Oct. 1996, Japanese

■ Affiliated Academic Society
  • Information Processing Society of Japan
    Jun. 2020 - Present

  • ACM
    Jan. 2018 - Present

  • Asia Pacific Neural Network Society (APNNS)
    Jan. 2016 - Present

  • International Neural Network Society (INNS)
    Mar. 2015 - Present

  • IEEE
    Jan. 2001 - Present

  • The Japanese Society for Artificial Intelligence

  • Japanese Neural Network Society

  • システム制御情報学会

  • 電子情報通信学会

  • 計測自動制御学会

■ Research Themes
  • 機械学習とドメイン知識を導入した攻撃データ生成技術と攻撃検知・防御の高度化
    小澤 誠一
    日本学術振興会, 科学研究費助成事業, 基盤研究(B), 神戸大学, 01 Apr. 2025 - 31 Mar. 2029

  • Privacy Control Technologies for Smartglasses AI
    塚本 昌彦, 寺田 努, 小澤 誠一, 森井 昌克, 塚原 東吾, 喜多 伸一, 新川 拓哉
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A), Grant-in-Aid for Scientific Research (A), Kobe University, 01 Apr. 2022 - 31 Mar. 2027
    本年度は、工学、社会科学の研究者の連携により、スマートグラスAI普及における将来のプライバシ要求を明らかにした。いくつかの具体的な応用を考え、プライバシ問題を検討すると同時にいくつかのプロトタイプシステムを実現し要求事項を抽出した。研究統括とメタAI(担当:塚本)については、システム全体の統括エンジンを作るために、問題分析及びシステム設計を行った。状況認識機構(担当:寺田)については、実世界での周辺・自己状況を認識するための要件を抽出しいくつかの認識機構を実装した。制御可能AIシステム(担当:小澤)については、プライバシに関わるAIの機能を制御し説明できるAIを作るために機構の設計を行った。プライバシ機構(担当:森井)については、プライバシを守るためのメカニズム構築のために、アプリケーションイメージ及びシステム要件を明確にした。科学技術社会的観点からの分析(担当:塚原)については、上記のアプリケーションイメージの具体化の中で社会の中での技術の使い方やあり方を考えた。心理的観点からの分析(担当:喜多)については、上記アプリケーションイメージの中で使う側、使われる側の心理を考えた。哲学・倫理的観点からの分析(担当:新川)については、上記のアプリケーションイメージの中でプライバシがどうあるべきかを考えた。 さらに年度後半のChatGPTやGPT-4などの大規模言語モデル(LLM)の出現によりAI技術が急速 に進歩したことで前提条件が根底から変化することから、全般的な計画の見直しを行った。 同時に、社会問題、倫理問題を体系化し、ガイドライン策定に向けた組織作りと運営方法を検討した。また、メンバー以外の人を交えたワークショップを複数回開催した。さらに講演会等で積極的にプロジェクトの紹介を行うとともに、プロジェクトのホームページとYouTubeチャンネルを立ち上げた。

  • Refinement of Cyberattack Generation Process Model by Using Machine Learning and Domain Knowledge
    Seiichi Ozawa, Sangwook Kim, Katsunari Yoshioka, Yoshiaki Shiraishi, Tao Ban
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Fund for the Promotion of Joint International Research (Fostering Joint International Research (B)), Fund for the Promotion of Joint International Research (Fostering Joint International Research (B)), Kobe University, Oct. 2021 - Mar. 2027
    本研究では、防御側の観測・検知を回避・無効化する攻撃の仕組みなど、ドメイン知識を有する専門家と国際連携体制を築き、観測のみに頼るリアクティブな対策だけでなく、新たな攻撃への予測と迅速な対応を行うプロアクティブなセキュリティ対策の構築を目指している。本年度は海外渡航が不可能であったため、国内チームの吉岡(横国大)、班(NICT)、金、小澤(神戸大)と以下の研究を実施した。
    1)小澤、班、金は、URL文字列から悪性が疑われるWebサイトのHTMLコンテンツを取得し、それぞれのHTMLタグ階層構造(DOM)をグラフ表現し、それをgraph2vecで埋め込みベクトルに変換して、正規サイトを装うフィッシングサイトを見つける方法を提案した。PhishTankとOpenPhishのフィッシングサイト151件を用いた実験では、80%のフィッシングサイトがクラスタを形成し、これらクラスタが共通してもつ外部リンクから正規サイトを特定したところ、AmazonとFacebookを騙るフィッシングサイト群を見つけた。また、VirusTotalで取得可能なドメインのWhois情報、レビュー情報、DNSレコード、SSL証明書情報などを特徴量として機械学習で悪性判定する方法を提案した。その結果、1550サイトに対し、フィッシングサイトは88%、マルウェアホストサイトは91%の精度で検知できた。
    2)吉岡は、WarpDrive実証実験に参加している508ユーザが受信したSMS、合計23,133件(良性 22,800件、悪性333件)を調べたところ、SMSを多く受信するユーザが悪性SMSを受信しやすいわけではなく、現時点では、攻撃者はランダムに悪性SMSを送付していることが推測された。また、悪性SMSは深夜と早朝には送られず、午後2時から5時の期間に集中していることがわかった。

  • 細胞外小胞を用いたリキッドバイオプシーによる癌に対する術前化学療法の効果予測
    竹内 俊文, 三好 康雄, 小澤 誠一
    日本学術振興会, 科学研究費助成事業 基盤研究(A), 基盤研究(A), 神戸大学, 01 Apr. 2022 - 31 Mar. 2026

  • Research and development on the advancement of privacy preserving federated learning - Advancing privacy protection coalition learning for fraud transaction monitoring that contributes to continuous actual operation -
    National Institute of Information and Communications Technology, Advanced communications/broadcasting research and development contract research, Kobe University, Feb. 2023 - Mar. 2025, Principal investigator

  • Secure computation-based implementation of privacy-preserving inter-organizational data collaboration meeting social demands
    Goichiro Hanaoka, Seiichi Ozawa, Takahiro Sugawara, Shiho Moriai
    Japan Science and Technology Agency, AIP Acceleration Research, Apr. 2022 - Mar. 2025, Coinvestigator

  • Modelling Attack Generation Process by Introducing Machine Learning and Domain Knowledge and Its Verification for Real Attack Data
    Seiichi Ozawa, Sangwook Kim, Katsunari Yoshioka, Yoshiaki Shiraishi, Tao Ban
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Scientific Research (B), Kobe University, Apr. 2021 - Mar. 2025

  • R&D of Machine Learning Mechanism for Privacy Preserving Data Mining over Different Industries
    Wang Lihua
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Grant-in-Aid for Scientific Research (C), National Institute of Information and Communications Technology, 01 Apr. 2020 - 31 Mar. 2024

    In this study, we first proposed a homomorphic encryption method called secure magnitude comparison, which is a secret computation technology necessary for privacy-preserving machine learning, and then proposed an approach using differential privacy to prevent training data from being leaked from a trained decision tree model. Next, we constructed privacy-preserving federated learning frameworks that can be used for many machine learning methods for data from the same industry, and in particular designed an efficient federated learning scheme based on the gradient boosting decision trees. We are conducting research and development on federated continuous learning based on this scheme, and further expanding the method of missing value imputation to apply it to the mechanism of federated learning for data from different industries. With the above research results, we have published 9 papers in international conferences and journals, and have applied for a patent.

  • Social Implementation of Privacy-Preserving Data Analysis
    Seiichi Ozawa
    Japan Science and Technology Agency, Strategic Basic Research Programs, Kobe University, Apr. 2019 - Mar. 2022, Coinvestigator
    Competitive research funding

  • WarpDrive: Web-based Attack Response with Practical and Deployable Research Initiative
    Seiichi Ozawa
    National Institute of Information and Communications Technology, NICT委託研究, Kobe University, Oct. 2016 - Mar. 2021, Coinvestigator

  • Ozawa Seiichi
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Scientific Research (B), Kobe University, Apr. 2016 - Mar. 2020, Principal investigator
    In this project, we have proposed several online learning algorithms to continuously perform the detection, classification, and visualization of cyberattacks by analyzing communication packets observed by a large-scale darknet (i.e., unused IP address range) sensor, while following the ever-evolving cyberattacks. In addition, we have developed three types of adaptive attack-monitoring systems. The first is a DDoS backscatter monitoring system, which applies communication traffic features in combination with support vector machines and deep neural networks to achieve detection accuracy of 97% or more and high-speed learning characteristics. Moreover, we have developed a new type of cyberattack monitoring systems that can detect unknown cyber-threats and monitor changing behaviors of malware by association rule mining and the representation learning of port-number embedding.
    Competitive research funding

  • Development of Diagnostic Method and Countermeasure Technology for High Yield Impeding Factor
    Seiichi Ozawa
    Agriculture,Forestry and Fisheries Research Council, 戦略的プロジェクト研究推進事業, Kobe University, Apr. 2015 - Mar. 2020, Coinvestigator

  • 複数組織データ利活用を促進するプライバシー保護データマイニング
    Seiichi Ozawa
    Japan Science and Technology Agency, Strategic Basic Research Programs (CREST), Kobe University, Oct. 2016 - Mar. 2019, Coinvestigator
    Competitive research funding

  • OZAWA Seiichi, ANDO Ruo, KITAZONO Jun, BAN Tao, NAKAZATO Junji, SHIMAMURA Jumpei
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Grant-in-Aid for Scientific Research (C), Kobe University, Apr. 2012 - Mar. 2015, Principal investigator
    In order to protect network uses from malicious spam mail attacks that can lead to malware infections and to conduct a large-scale monitoring of malicious activities by malwares, we developed three types of learning systems introducing machine learning techniques. First, we developed a malicious spam mail detection system with the following three sophisticated functions: an automatic mechanism to collect suspected malicious spam mails, an automatic labelling (malicious or benign) function for collected spam mails by a crawler-type of web security analyzer, and online learning function for automatically collected training data. Second, we developed a large-scale monitoring system which can observe transitions of subnet infection states by allocating the most similar typical patters obtained by performing the hierarchical clustering for darknet traffic features. Finally, we developed a large-scale monitoring system which can detect DDoS backscatter from observed darknet traffic features.
    Competitive research funding

  • 二国間交流「マルチモーダル・マルチタスク個人認証システムの開発」
    小澤 誠一
    二国間交流事業(韓国との共同研究), 2012, Principal investigator
    Competitive research funding

  • 二国間交流「マルチモーダル・マルチタスク個人認証システムの開発」
    小澤 誠一
    二国間交流事業(韓国との共同研究), 2011, Principal investigator
    Competitive research funding

  • OZAWA Seiichi
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Grant-in-Aid for Scientific Research (C), Kobe University, 2008 - 2010, Principal investigator
    In the environments where multiple pattern recognition tasks with some relatedness are learned sequentially, it is known that the learning is conducted efficiently even with a small number of training data by using "knowledge transfer" from one task to another. In the research project, we developed a multitask learning algorithm with an efficient knowledge transfer mechanism where a useful feature space is learned incrementally in an efficient way by transferring a part of previous learned knowledge to an unknown task. The proposed multitask learning algorithm is implemented as a person identification system using face images and the effectiveness of this system is verified.
    Competitive research funding

  • 二国間交流「マルチモーダル・マルチタスク個人認証システムの開発」
    小澤 誠一
    二国間交流事業, 2010, Principal investigator
    Competitive research funding

  • ABE Shigeo, OZAWA Seiichi
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Scientific Research (B), Kobe University, 2007 - 2008
    a) KDA (Kernel Discriminant Analysis)を特徴選択の基準として特徴選択する方式を開発した. b) 特徴空間上のKDA に基づいてパターン認識する方式を開発した.またファジィ識別器の可視化のプリミティブな方式を開発した. c) カーネルファジィ識別器のメンバーシップ関数をSVM のマージン最大化の概念によりチューニングする方式を開発した. d) 相関のある複数のパターン認識問題が逐次的に与えられるマルチタスク学習問題に対し,少ない訓練データで高い汎化能力が得られるマルチプルクラシファイアシステムを開発した.
    Competitive research funding

  • OZAWA Seiichi
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Grant-in-Aid for Scientific Research (C), Kobe University, 2006 - 2007, Principal investigator
    This research project developed a new learning algorithm for the multi-task pattern recognition problem. This project considers learning multiple classification tasks online where no information is ever provided about the task category of a training example. The algorithm thus needs an automated task recognition capability to properly learn the different classification tasks. The learning mode is “online" where training examples for different tasks are mixed in a random fashion and given sequentially one after another. It is assumed that the classification tasks are related to each other and that their training examples appear in random sequences during “online training." Thus, the learning algorithm has to continually switch from learning one task to another whenever the training examples change to a different task. This also implies that the learning algorithm has to detect task changes automatically and fast and utilize knowledge of previous tasks to learn new tasks. Overall, automated task recognition falls in the category of unsupervised learning since no information about task categories of training examples is provided to the algorithm. The performance of the algorithm is evaluated using several artificially generated and three UCI datasets. The experiments in this project verify that the proposed algorithm can indeed acquire and accumulate task knowledge and that the transfer of knowledge from tasks already learned enhances the speed of knowledge acquisition on new tasks.
    Competitive research funding

  • Research of Knowledge Acquisition and System Development by Data Mining
    ABE Shigeo, OZAWA Seiichi, YOSHIMURA Motohide
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Scientific Research (B), Kobe University, 2004 - 2005
    We conducted research on knowledge acquisition and system development and got the following results : 1. Knowledge acquisition and system development under steady state environments (1) We have developed a clustering method using support vector machines (SVMs) by dividing the image data in segments and feature selection method using SVM ensembles. (2) We have developed an incremental training method that keeps only support vector candidates and demonstrated that the generalization ability was maintained while deleting training data. 2. Knowledge acquisition by data mining and system development under dynamic environments (1) Dynamic feature space learning : we have developed incremental learning algorithms of Principal Component Analysis (PCA) and Kernel PCA (KPCA), and demonstrated that the feature selection was successfully carried out by adapting to the variation of data distributions. (2) System development : We proposed a method to integrate the developed dynamic feature selection algorithm into a classifier model, in which the k-nearest neighbor method was combined with a dynamic clustering algorithm, and a neural network model. We demonstrated that the proposed method enabled the classifier to conduct stable incremental learning, and that the developed system had excellent performance for not only bench-mark datasets but also facial recognition datasets. Although we tried to develop an incremental SVM system, it has not been completed yet. This is reserved as our future work. 3. Development of image segmentation system by data mining (1)Development of clustering method for image segmentation : we have developed a basic system to detect and classify the uncertain object imagery and demonstrated that the detection and classification of crystal imagery was properly carried out using image database of protein crystallizations. (2) Development of feature extraction method for image segmentation : we have developed a feature extraction method based on the multiresolution spectral histograms by wavelet transformation and demonstrated that the proposed feature is available for the image retrieval.

  • Proposal of a Pattern Recognition System Capable of Incremental Learning and Its Application to Facial Image Recognition
    小澤 誠一
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Grant-in-Aid for Scientific Research (C), Kobe University, 2004 - 2005
    追加学習可能なパターン認識システムの開発に必要不可欠な学習アルゴリズムを考案した.成果の概要を以下にまとめる. (1)特徴空間の追加学習として,従来のIncremental Principal Component Analysis (IPCA)の改良を行った.具体的には,特徴空間の次元増加の判定基準として,寄与率による方法を提案し,その更新式を求めた. (2)従来のIPCAは,1つデータが与えられるたびに固有値問題を解く必要があった.これに対し,複数のデータをまとめて1回の更新で新しい固有基底を求める学習アルゴリズム(Chunk IPCA)を提案した. (3)改良IPCAアルゴリズムおよびCIPCAアルゴリズムを顔画像認識に適用し,追加学習が進むにつれて,認識精度が高まることとFalse Positive Rateが小さくなることを確認した.また,CIPCAを導入することによって,学習時間が大幅に短縮されることを確認した. (4)特徴空間の更新に伴い,識別機(ニューラルネット)の更新も同時に行う必要があり,結合荷重の更新だけでなく,入力変数の個数の変動にも追従できなければいけない.この問題に対し,長期記憶を導入したニューラルネットの記憶アイテムを特徴空間に合わせて更新し,それらを訓練データと一緒に学習するアルゴリズムを開発した. (5)従来の独立成分分析(Independent Component Analysis ; ICA)を教師あり学習に拡張する方式を提案し,独立性とクラス分離性を同時に高める学習アルゴリズムを導出した.また,いくつかのベンチマークデータで性能評価を行い,従来のICAやPCAで求めた特徴量に比べて,性能がよいデータもあることを確認した.

  • Research about Motor Unit Visualization with Surface EMG Signals
    MAEKAWA Satoshi, OZAWA Seiichi, KOTANI Manabu
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Scientific Research (B), 2003 - 2004
    This research was executed for the motor unit decomposition and making the activity visible from the surface electromyogram as follows. A)Improvement of motor unit decomposition technique We proposed a new motor unit decomposition technique with overcomplete bases to introduce the statistical model. It was confirmed that this technique was applied to the real measurement surface EMG signals, and it had the decomposition performance equal with blind deconvolution. Moreover, it was confirmed that each motor unit activity might be separable even if the number of observation channels were less than the number of active motor units. B)Examination of effectiveness of recognition technique using statistical model We proposed the recognition system using both KDA and boosting mechanism and confirmed that it's recognition performance was just like an existing technique such as SVM. In general, to maximize generalization performance, parameter tuning process such as cross validation, whose computation cost is very expensive, is needed. To solve this problem, we proposed new index value for parameter selection, and with this index, appropriate parameters can be selected without so expensive computation cost. C)The three dimensional position estimation of each decomposed motor unit The 3D position of the depolarization of individual motor unit was estimated by using the 3D finite element method from the potential distribution on the skin surface which was estimated with motor unit decomposition technique from surface EMG signals. As a result, it was confirmed that 3D position and dynamics of dopolarization of individual motor unit might be estimated. Moreover, the size of innervation zone and temporal dynamics of current intensity of depolarization could be estimated. In addition, this study had been started in 2003 fiscal year under Dr.Kotani head researcher, Assistant Professor of Kobe University. However he died in May, 2004, so the head was changed suddenly. I write down that contribution of Dr.Kotani covers the whole of the above results.

  • Development of Multiclass Support Vector Machines and Their Application to Diagnosis and Image Processing
    ABE Shigeo, YOSHIMURA Motohide, KOTANI Manabu, OZAWA Seiichi
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Scientific Research (B), Kobe University, 2002 - 2003
    We have developed multiclass support vector machines and applied them to diagnosis problems and image processing. The major results of the project are as follows : 1. Development of multiclass support vector machines ・We have developed fuzzy support vector machines that resolve unclassifiable regions in multiclass problems. ・We have developed optimal ordering of decision-tree and pairwise support vector machines to improve the generalization ability. 2. Development of fast training methods ・We have developed steepest ascent methods for pattern classification and function approximation, in which more than two data are processed at a time. 3. Evaluation for medium to large sized data sets ・We confirmed that our methods improve the generalization ability and speed up training for large sized data sets. 4. Application to diagnosis ・We have examined the feature extraction based on independent component analysis (ICA) to enhance the discrimination performance of support vector machines. We confirmed that ICA could extract the effective features from the gas leakage sound in pipes, digit patterns, and the various benchmark datasets. ・We have developed the evolutionary feature extraction using margin maximization method. 5. Application to diagnosis ・We have developed the multi-resolution feature extraction method by using 2-dimensional wavelet decomposition for the inputs of support vector machines. ・We have developed the feature extraction method as a preparation for classifying the state of protein crystals by using support vector machines.

  • 長期記憶を導入したニューラルネットモデルの提案と動的環境におけるロバスト性の検証
    小澤 誠一
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B), Grant-in-Aid for Young Scientists (B), Kobe University, 2002 - 2003
    ダイナミックに変化する環境の下では,過去に得た知識が常に有効であるとは限らず,環境に適応するため絶えず修正を要求される.しかし,同じ環境が将来において再び現れるようなケースでは,過去に獲得したすべての知識を修正するのは必ずしも効率的とはいえない.つまり,ある時点で通用しなくなった知識であっても,長期的な記憶として保存し,その知識が有用となる環境が再び現れたときに想起・利用できるようなメカニズムをもつことが望ましい.また,学習期間に終わりのないlife-long学習としての性質をもつには,知識を効率よくメモリに蓄積できなければならない. 本研究では,上記のような機能を有するニューラルネットモデルを提案した.このモデルは,(1)入出力関係を学習するニューラルネット部,(2)ニューラルネット部で抽出された知識を蓄える連想バッファ,(3)連想バッファにある知識のうち必要なものを長期的に保持するための長期記憶,(4)環境の変動を検知する検知部の4つのモジュールで構成される. 平成14年度において提案したモデルでは,ロバストな環境変動の検知を行うためのメカニズムと高速な環境への適用を実現するための連想メカニズムを開発し,この機能を実装した.複数の異なる一次元関数が順次移り変わっていく単純な動的環境の下で提案モデルの適応能力をシミュレーション実験で調べた.その結果,提案したモデルは環境変動を正確に検知し,過去に経験した環境の知識を活かして,高速に環境に追従できることを確認した.また,動的環境の下であっても追加学習を安定に行えることを示した. 平成15年度では,移り変わっていく個々の環境に特有の知識と不変な知識を区別して,共有知識を抽出・利用する知識移転のメカニズムを付加した.シミュレーション実験を通して,この知識転移の機能が正しく機能し,さらに高速な環境適応が可能となることを確認した.

  • Development of Intelligent Acoustic Diagnosis System Under Dynamic Environment
    KOTANI Manabu, OZAWA Seiichi, OGAWA Kazuhiko
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Scientific Research (B), Kobe University, 2001 - 2003
    We have developed the acoustic diagnosis system which is capable of adapting to the dynamic environment. The major results of the project as follows : 1. Development diagnostic networks We proposed a novel model of modular neural networks which has the ability to adapt its structure according to the environment. Experiments were performed for an artificial gas leakage device with various experimental conditions to imitate the change of environment for a long term. The discrimination accuracy with the proposed network was observed to be about 93%. Result shows that the proposed model is effective for detection of the leakage sound for the practical use. 2. Independent component analysis and evolutionary computation as feature extraction We have examined the feature extraction for acoustic signal using independent component analysis and genetic algorithms to obtain the stable diagnosis. We proposed a novel recognition method using features extracted by ICA. The proposed method consists of some modules for each category and a synthesizer. We evaluate the performance of the proposed method for several recognition tasks including acoustic diagnosis. From these results, we confirmed the effectiveness of the recognition method using independent components for each class. The effectiveness of the proposed method were also confirmed for biological instruments.

  • Study on Signal Processing Using Independent Component Analysis
    KOTANI Manabu, OZAWA Seiichi
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Grant-in-Aid for Scientific Research (C), Kobe University, 2001 - 2002
    We examine an application of independent component analysis (ICA) to feature extraction of signal processing such as digit patterns and acoustic signals. In order to evaluate the effectiveness of independent components as features, we compare discrimination accuracy using independent components with those using principal components. Furthermore, we apply the ICA to biological signal processing. We obtain the following results : 1. Acoustic diagnosis In order to detect the leakage from pipesaccurately, we should select a feature extraction method for sounds properly. The purpose of this research is to examine whether independent component analysis (ICA) is useful as a feature extraction method for acoustic signals. We confirm that the feature extraction using the ICA algorithm is very useful for detecting gas leakage sounds. 2. Digit recognition We propose a novel recognition method using features extracted by ICA. The proposed method consists of some modules for each category and a synthesizer. We evaluate the performance of the proposed method for several recognition tasks. From these results, we confirm the effectiveness of the recognition method using independent components for each class. 3. Deconvolution for EMG We apply a multichannel blind deconvolution method based on ICA to surface EMG signals. We obtained a few components of which firing patterns is similar to motor units.

  • Development of Handy Acoustic Diagnosis System
    KOTANI Manabu, OZAWA Seiichi, OGAWA Kazuhiko, AKAZAWA Kenzo
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Grant-in-Aid for Scientific Research (C), Kobe University, 1998 - 1999
    The detection of gas leakage sound from pipes is important in petroleum refining plants and chemical plants, as often the gas used in these plants are flammable or poisonous. In order to establish the acoustic diagnosis technique for the leakage sound, we examined the application of modular neural networks to the stable detection. The modular neural network has the ability to adapt its structure according to the environment. Experiments were performed for an artificial gas leakage device with various experimental conditions to imitate the change of environment for a long term. We applied Fast Fourier Transform(FFT) as the pre-processing method and examine features of power spectrum for the gas leakage sound. The feature is that the power spectrum for the gas leakage sound are more than those for the normal sound within the range from about 5kHz to 20kHz. The discrimination accuracy with the proposed network was observed to be about 93%. From the results, we confirmed the effectiveness for the application of the modular neural network to the detection of the leakage sound for the practical use. Furthermore, we have developed the handy system based on the diagnostic technique.

  • モジュール構造ニューラルネットの機能形成モデルとヘルスモニタリングへの応用
    小澤 誠一
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Encouragement of Young Scientists (A), Grant-in-Aid for Encouragement of Young Scientists (A), Osaka Kyoiku University, 1998 - 1999
    構造物の健全度を非破壊で調べるヘルスモニタリングの基本技術として,ウェーブレット解析と階層型ニューラルネットのハイブリッド化手法を提案した。ウェーブレット解析は観測信号(構造物の加速度や速度情報)から正常/異常の判断に用いる特徴量の抽出に利用され,ニューラルネットは構造物の劣化を推定するのに用いられる。構造物を3自由度ダイナミカルシステムで近似し,観測信号から解析的に解が求まらない設定のもとで,バネ定数および減衰定数の劣化の程度を推定する問題に提案したハイブリッド手法を適用した。計算機シミュレーションによって推定精度を調べた結果,バネ定数はある程度の精度で推定可能であったが,減衰定数については十分な推定精度が得られなかった.ここで用いたニューラルネットはモジュール構造をもたないものであるが,この代わりに創発的に機能獲得が可能なモジュール構造ニューラルネットを適用することで,前述の問題を改善できる可能性がある.そこで,まずニューラルネットの基本特性を調べる際によく取り上げられる連想記憶の問題を取り上げ,モジュール構造ニューラルネットの有効性を検討した.モジュール構造を決定するパラメータの探索に遺伝的アルゴリズムを用い,所望の特性に適合したモジュール構造(各モジュールは異なる機能をもつ)が自動的に決定されるニューラルシステムを開発した。シミュレーション実験の結果,試行錯誤では発見の難い高性能なモジュール構造の探索が,本システムで可能になることを確認した.最終的には,これをヘルスモニタリングに適用して性能が改善されることを確認する必要がある.しかし,本研究期間内では残念ながらこれを達成できなかった.今後の研究課題としたい.また,特徴抽出手法として,ウェーブレット解析の代わりに最近ブラインド信号分離問題で盛んに研究されている独立成分分析の適用も検討したことを付記しておく.

  • モジュール型神経回路網モデルの動的性質に関する定量的評価
    小澤 誠一
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Encouragement of Young Scientists (A), Grant-in-Aid for Encouragement of Young Scientists (A), Osaka Kyoiku University, 1993 - 1993
    モジュール型神経回路網モデルとして、対称結合をもつ相互結合型神経回路網を複数個結合したものを取り上げた。このようなモデルにおける各モジュールの活性ダイナミクスとモジュール間の結合ダイナミクスは、ネットワーク全体のエネルギー関数を定義することで与えらる。 本年度の研究は、このようなモデルの連想記憶能力をシミュレーション実験で定量的に評価することを目的とした。記銘するパターンとしては、各ビットが2値(±1)であるランダムベクトルを用い、総ニューロン数に対するパターン数(記憶率:r)で評価した。その結果、モジュール構造をもたない従来のホップフィールドネットに比べ、モジュール数が多すぎなければ、飛躍的に連想能力が向上することがわかった。例えば、総ニューロン数が500、モジュール数が2のとき、r=0.5で限界方向余弦d_C≒0.5、r=1.0でd_C≒0.7となった(ホップフィールドネットの場合、r≒0.2でd_C≒1.0となる)。さらに、与えられた問題に対して最適なモジュール数が存在し、それを越えると急速に連想能力が劣化する現象が見られた。この原因についての詳しい考察は、今後の課題とする。 また、ここで用いたモジュール型神経回路網には、モジュールの状態間に多対多の関係がある場合でもうまく動作するような機能を付加している。これは、2つのモジュール間の相互作用を決定する階層型ネットワーク(インターネット)に両モジュールの状態を入力することで実現している。本研究では、この機能がうまく動作することも、多対多関係をもつ文字パターン対を使った実験により確認している。

  • Development of Automatic High Performance Seal Imprint Verification system with Imprint Quality Identification Function
    UEDA Katsuhiko, OZAWA Seiichi
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Developmental Scientific Research (B), Grant-in-Aid for Developmental Scientific Research (B), Nara National College of Technology, 1990 - 1991
    This research project has been carried out over two years (1990-1991). A major aim of this research project is to develop an automatic seal imprint verification system which is adoptable to seal imprints with various qualities. We were able to achieve our aim of this research project. The summary of results obtained by the research project is as follows : 1. We developed the quality identification method of seal imprint on the basis of characteristics of its gray level histogram. Through the quality identification experiment using actual seal imprints with various qualities, it is confirmed that the quality identification result by this method coincides with the result by document examiners. 2. We developed the new method for automatic seal imprint verification by adding the imprint quality identification process to our previous verification method. Each partial region of an examined seal imprint is identified first, and then only good quality partial regions of an examined imprint are verified with registered one. A major advantage of this method is that this method can verify seal imprints with various flaws. 3. On the basis of above result, automatic seal imprint verification system for practical applications was realized by using a small hardware system which consists of a personal computer and an image processing unit. Experimental results show that this system might be feasible for practical applications.

TOP