SEARCH
Search Details
TAOKA Ken-ichiroEngineering Biology Research CenterAssociate Professor
Research activity information
■ Paper- Structure-based high-throughput screening of chemical compounds that target protein-protein interactions (PPI) is a promising technology for gaining insight into how plant development is regulated, leading to many potential agricultural applications. At present, there are no examples of using high-throughput screening to identify chemicals that target plant transcriptional complexes, some of which are responsible for regulating multiple physiological functions. Florigen, a protein encoded by FLOWERING LOCUS T (FT), was initially identified as molecule that promotes flowering and has since been shown to regulate flowering and other developmental phenomena such as tuber formation in potato. FT functions as a component of the florigen activation complex (FAC) with a scaffold protein 14-3-3 and FD, a bZIP transcription factor that activates downstream gene expression. Although 14-3-3 is an important component of FAC, there are little functional analysis of the 14-3-3 itself. Here, we report the results of a high-throughput in vitro fluorescence resonance energy transfer (FRET) screening of chemical libraries that enabled us to identify small molecules capable of inhibiting FAC formation. These molecules abrogate the in vitro interaction between 14-3-3 and OsFD1 peptide, a rice FD, by directly binding to 14-3-3. Treatment with S4, a specific hit molecule, strongly inhibited FAC activity and flowering in duckweed, tuber formation in potato and branching in rice in a dose-dependent manner. Our results demonstrate that the high-throughput screening approach based on three-dimensional structure of PPI is possible in plants. In this study, we have proposed good candidate compounds for future modification to obtain inhibitors of florigen-dependent processes through inhibition of FAC formation.Oct. 2022, The Plant journal : for cell and molecular biology, 112(6) (6), 1337 - 1349, English, International magazineScientific journal
- In potato (Solanum tuberosum L.), 14-3-3 protein forms a protein complex with the FLOWERING LOCUS T (FT)-like protein StSP6A and the FD-like protein StFDL1 to activate potato tuber formation. Eleven 14-3-3 isoforms were reported in potato, designated as St14a-k. In this study, the crystal structure of the free form of St14f was determined at 2.5 Å resolution. Three chains were included in the asymmetric unit of the St14f free form crystal, and the structural deviation among the three chain structures was found on the C-terminal helix H and I. The St14f free form structure in solution was also investigated by nuclear magnetic resonance (NMR) residual dipolar coupling analysis, and the chain B in the crystal structure was consistent with NMR data. Compared to other crystal structures, St14f helix I exhibited a different conformation with larger B-factor values. Larger B-factor values on helix I were also found in the 14-3-3 free form structure with higher solvent contents. The mutation in St14f Helix I stabilized the complex with StFDL1. These data clearly showed that the flexibility of helix I of 14-3-3 protein plays an important role in the recognition of target protein.Jul. 2022, Scientific reports, 12(1) (1), 11596 - 11596, English, International magazineScientific journal
- Mar. 2021, PLANT BIOTECHNOLOGY, 38(1) (1), 89 - 99, EnglishScientific journal
- Duckweeds (Araceae: Lemnoideae) are aquatic monocotyledonous plants that are characterized by their small size, rapid growth, and wide distribution. Developmental processes regulating the formation of their small leaf-like structures, called fronds, and tiny flowers are not well characterized. In many plant species, flowering is promoted by the florigen activation complex, whose major components are florigen FLOWERING LOCUS T (FT) protein and transcription factor FD protein. How this complex is regulated at the molecular level during duckweed flowering is also not well understood. In this study, we characterized the course of developmental changes during frond development and flower formation in Lemna aequinoctialis Nd, a short-day plant. Detailed observations of frond and flower development revealed that cell proliferation in the early stages of frond development is active as can be seen in the separate regions corresponding to two budding pouches in the proximal region of the mother frond. L. aequinoctialis produces two stamens of different lengths with the longer stamen growing more rapidly. Using high-throughput RNA sequencing (RNA-seq) and de novo assembly of transcripts from plants induced to flower, we identified the L. aequinoctialis FT and FD genes, whose products in other angiosperms form a transcriptional complex to promote flowering. We characterized the protein-protein interaction of duckweed FT and FD in yeast and examined the functions of the two gene products by overexpression in Arabidopsis. We found that L. aequinoctialis FTL1 promotes flowering, whereas FTL2 suppresses flowering.2021, Frontiers in plant science, 12, 697206 - 697206, English, International magazineScientific journal
- Oxford University Press, Mar. 2018, Plant and Cell Physiology, 59(3) (3), 458 - 468, English[Refereed]Scientific journal
- Elsevier Masson SAS, 2018, Plant Physiology and Biochemistry, 131, 78 - 83, English[Refereed]Scientific journal
- Feb. 2017, PLANT AND CELL PHYSIOLOGY, 58(2) (2), 365 - 374, English[Refereed]Scientific journal
- Apr. 2016, 化学と生物, 54, 358 - 364, Japaneseフロリゲン受容体の発見とその後[Refereed]Scientific journal
- Apr. 2015, PLANT JOURNAL, 82(2) (2), 256 - 266, English[Refereed]Scientific journal
- Academic Press, 2014, Enzymes, 35, 113 - 144, English[Refereed]Scientific journal
- 2014, The Enzymes, 35, 113 - 144[Refereed]
- May 2013, TRENDS IN PLANT SCIENCE, 18(5) (5), 287 - 294, English[Refereed]Scientific journal
- May 2013, CURRENT OPINION IN PLANT BIOLOGY, 16(2) (2), 228 - 235, English[Refereed]Scientific journal
- Mar. 2013, ライフサイエンス領域融合レビューLEADING AUTHOR’S, Japanese花成ホルモン“フロリゲン”の構造と機能Scientific journal
- Mar. 2013, PLANT AND CELL PHYSIOLOGY, 54(3) (3), 385 - 397, English[Refereed]Scientific journal
- Sep. 2012, 化学と生物, 50, 654 - 659, Japanese花成ホルモンフロリゲンとその受容体の構造解析からみえてきたフロリゲン機能の分子基盤Scientific journal
- Aug. 2012, 植調, 46, 11 - 18, Japanese花咲かホルモン(フロリゲン)Scientific journal
- Sep. 2011, ライフサイエンス新着論文レビュー FIRST AUTHOR’S, Japanese14-3-3タンパク質はフロリゲンの細胞内における受容体としてはたらくScientific journal
- Aug. 2011, NATURE, 476(7360) (7360), 332 - U97, English[Refereed]Scientific journal
- Feb. 2011, CURRENT OPINION IN PLANT BIOLOGY, 14(1) (1), 45 - 52, English[Refereed]Scientific journal
- Sep. 2009, 蛋白質核酸酵素 臨時増刊, 54(12) (12), 1702 - 1707, Japanese融合発展する構造生物学とケミカルバイオロジーの最前線Scientific journal
- Jun. 2007, PLANT CELL, 19(6) (6), 1866 - 1884, English[Refereed]Scientific journal
- May 2007, PLANT CELL, 19(5) (5), 1488 - 1506, English[Refereed]Scientific journal
- Nov. 2006, PLANT CELL, 18(11) (11), 2946 - 2957, English[Refereed]Scientific journal
- Oct. 2005, PLANT CELL, 17(10) (10), 2817 - 2831, English[Refereed]Scientific journal
- Nov. 2004, PLANT JOURNAL, 40(4) (4), 462 - 473, English[Refereed]Scientific journal
- Jan. 2001, CELL, 104(1) (1), 131 - 142, EnglishFASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems[Refereed]Scientific journal
- Aug. 2000, PLANT MOLECULAR BIOLOGY, 43(5-6) (5-6), 643 - 657, EnglishRegulation of histone gene expression during the cell cycle[Refereed]Scientific journal
- Jun. 1999, PLANT JOURNAL, 18(6) (6), 611 - 623, EnglishIdentification of three kinds of mutually related composite elements conferring S phase-specific transcriptional activation[Refereed]Scientific journal
- Jun. 1998, JOURNAL OF PLANT RESEARCH, 111(1102) (1102), 247 - 251, EnglishS phase-specific expression of plant histone genes[Refereed]Scientific journal
- Mar. 1998, PLANT AND CELL PHYSIOLOGY, 39(3) (3), 294 - 306, EnglishThe modular structure and function of the wheat H1 promoter with S phase-specific activity[Refereed]Scientific journal
- Apr. 1995, PLANT MOLECULAR BIOLOGY, 28(1) (1), 155 - 172, EnglishSTRUCTURAL AND FUNCTIONAL-CHARACTERIZATION OF 2 WHEAT HISTONE H2B PROMOTERS[Refereed]Scientific journal
- 2023, 日本植物生理学会年会(Web), 64thRegulatory mechanism of the condensate formation induced by liquid-liquid phase separation of florigen activation complex
- 2023, 生物物理(Web), 63(Supplement 1-2) (Supplement 1-2)The LLPS formation by flowering activation complex and flowering regulating mechanism
- 2023, 日本蛋白質科学会年会プログラム・要旨集, 23rd (CD-ROM)イネ花成ホルモン蛋白質複合体によるLLPS形成と花成制御機構
- 2022, 日本分子生物学会年会プログラム・要旨集(Web), 45thLiquid-liquid phase separation of rice flowering hormone protein complex and elucidation of flowering regulating mechanism
- 2021, 日本分子生物学会年会プログラム・要旨集(Web), 44thC-terminal intrinsically disordered region of flowering hormone protein Hd3a regulates flowering through liquid-liquid phase separation
- 2021, 日本蛋白質科学会年会プログラム・要旨集, 21stイネ花成ホルモン蛋白質の液-液相分離
- 2019, 日本分子生物学会年会プログラム・要旨集(Web), 42nd多様な花成ホルモン蛋白質の構造・機能解析
- 2019, Abstracts. Annual Meeting of the NMR Society of Japan, 58th (CD-ROM)花成ホルモン蛋白質のNMR解析および19F-NMRスクリーニング
- 2018, 日本蛋白質科学会年会プログラム・要旨集, 18thジャガイモの14-3-3タンパク質St14fの結晶構造解析
- 2018, 日本分子生物学会年会プログラム・要旨集(Web), 41stフロリゲン受容体のNMR解析
- 2015, 日本蛋白質科学会年会プログラム・要旨集, 15thフロリゲン複合体形成を制御する化合物の探索
- 21 Mar. 2014, 育種学研究, 16, 124, Japanese植物ゲノム編集技術としての遺伝子ターゲティング:技術の現状とイネ耐病性関連遺伝子OsRac1の恒常活性化改変
- 12 Oct. 2013, 育種学研究, 15, 91, Japanese膜透過ペプチドを利用したイネフロリゲンタンパク質直接導入による人為的開花制御
- 12 Oct. 2013, 育種学研究, 15, 150, Japaneseフロリゲン活性化複合体の新規転写因子OsFD2の機能解析
- 14 Mar. 2013, 日本植物生理学会年会要旨集, 54th, 214, JapaneseイネのフロリゲンHd3aと相互作用する転写因子OsFDの機能解析
- 14 Mar. 2013, 日本植物生理学会年会要旨集, 54th, 215, JapaneseイネTFL1ホモログRCNによる花成抑制の分子機構の解析
- 2013, 日本分光学会テラヘルツ分光部会シンポジウム講演要旨集, 2013, 24 - 29, Japanese植物が花を咲かせる分子メカニズムの解明を目指して―NMR分光学から構造生命科学へ―
- 31 Aug. 2012, 日本遺伝学会大会プログラム・予稿集, 84th, 78, Japanese花成ホルモン・フロリゲンの受容と機能のメカニズム
- 29 Mar. 2012, 育種学研究, 14, 144, Japanese膜透過ペプチドを利用した植物へのイネフロリゲンHd3aタンパク質直接導入
- 09 Mar. 2012, 日本植物生理学会年会要旨集, 53rd, 101, Japanesein vivo imaging of Florigen Activation Complex (FAC) comprising Hd3a, 14-3-3 and OsFD1 in rice
- 09 Mar. 2012, 日本植物生理学会年会要旨集, 53rd, 205, JapaneseFlorigen Hd3a protein acts as a mobile branching signal in rice.
- 09 Mar. 2012, 日本植物生理学会年会要旨集, 53rd, 205, Japaneseフロリゲン活性化複合体FACの活性調節機構の解析
- 2012, 日本分子生物学会年会プログラム・要旨集(Web), 35th, 2W7III-5 (WEB ONLY), Japanese花成ホルモン・フロリゲンの受容と機能のメカニズム
- 2012, 日本生化学会大会(Web), 85th, 3T08-04 (WEB ONLY), Japanese植物花成ホルモン(フロリゲン)受容体による花成制御機構の分子基盤
- 2012, 日本生化学会大会(Web), 85th, 2S19-5 (WEB ONLY), Japaneseフロリゲンによる花成の分子機構と花成以外の形態形成制御
- 23 Sep. 2011, 育種学研究, 13, 82, JapaneseHd3a‐14‐3‐3‐OsFD1からなる複合体Florigen Activation Complexの機能解析
- 27 May 2011, 日本蛋白質科学会年会プログラム・要旨集, 11th, 120, Japanese植物花成ホルモンフロリゲンによる花成誘導メカニズムの分子基盤
- 11 Mar. 2011, 日本植物生理学会年会要旨集, 52nd, 158, Japanese
- 11 Mar. 2011, 日本植物生理学会年会要旨集, 52nd, 158, Japanese
- 2011, 日本分子生物学会年会プログラム・要旨集(Web), 34th, 2T5A-4 (WEB ONLY), Japanese植物花成ホルモン(フロリゲン)受容体による新たな花成誘導機構の分子基盤
- 2011, 日本分子生物学会年会プログラム・要旨集(Web), 34th, 4P-0303 (WEB ONLY), Japanese植物細胞内におけるFlorigen Activation Complex(FAC)の解析
- 24 Sep. 2010, 育種学研究, 12, 215, Japanese遺伝子組み換えによらない植物細胞へのタンパク質直接導入
- 24 Sep. 2010, 育種学研究, 12, 133, JapaneseイネのフロリゲンHd3aと相互作用する転写因子OsFD1の機能解析
- 15 May 2010, 日本蛋白質科学会年会プログラム・要旨集, 10th, 151, Japaneseイネフロリゲンタンパク質Hd3aの花成制御機構の構造基盤
- 12 Mar. 2010, 日本植物生理学会年会要旨集, 51st, 214, Japanese
- 12 Mar. 2010, 日本植物生理学会年会要旨集, 51st, 214, Japanese
- 12 Mar. 2010, 日本植物生理学会年会要旨集, 51st, 214, Japanese
- 2010, 生化学, ROMBUNNO.2P-1071, JapaneseイネフロリゲンHd3aによる遺伝子発現制御機構の解析
- 2010, 生化学, ROMBUNNO.2P-1070, JapaneseイネのフロリゲンHd3aタンパク質と相互作用する転写因子OsKANADI1の機能解析
- 10 Sep. 2009, 蛋白質 核酸 酵素, 54(12) (12), 1702 - 1707, Japaneseターゲットタンパク研究プログラムの成果 花成ホルモン,フロリゲン その構造解析から分子機構の理解へ
- 2009, 日本分子生物学会年会講演要旨集, 32nd(Vol.4) (Vol.4), 179, JapanesePVXベクターを用いたイネフロリゲンHd3aのタバコにおける機能評価系の確立
- 2008, 生化学, 3P-1238, JapaneseイネのフロリゲンHd3aの相互作用する14‐3‐3タンパク質の解析
- 2004, The Plant Journal, 40, 462 - 473
- Japanese Society of Plant Physiologists, 2001, Plant and cell physiology, 42, s43, EnglishFUNCTIONAL ANALYSIS OF ARABIDOPSIS CUC1 AND CUC2 GENES :
- Japanese Society of Plant Physiologists, 2000, Plant and cell physiology, 41, s208, EnglishFASCIATA GENES REGULATE THE EXPRESSION OF WUSCHEL GENE IN SHOOT APICAL MERISTEM IN ARABIDOPSIS :
- Mar. 1999, Plant and cell physiology, 40, s16 - s16, EnglishThe role of FASCIATA genes that encode subunits of Chromatin Assembly Factor-I in apical meristem organization in Arabidopsis
- 01 Dec. 1998, 日本分子生物学会年会プログラム・講演要旨集, 21, 432 - 432, JapaneseMeristematic tissue-specific gene expression in Arabidopsis conferred by three types of the Oct motif
- Nov. 1995, 日本分子生物学会年会プログラム・講演要旨集, 18th, 474, JapaneseAnalysis of cis-regulatory region responsible for S phase-specific transcription of wheat histone H1 gene.
- 1994, 日本植物学会大会研究発表記録, 58th, 304, JapaneseコムギヒストンH1遺伝子の転写調節に関わるシス配列の同定
- Joint work, Signaling pathways in Plants, Elsevier, Sep. 2014The Enzymes
- Joint work, シュプリンガーフェアラーク東京, Dec. 2001植物ゲノム機能のダイナミズム―転写因子による発現制御
- 植物化学調節学会第 55 回大会, Nov. 2020フロリゲン活性化複合体を阻害する化合物による花成調節Oral presentation
- 第61回日本植物生理学会年会, Mar. 2020フロリゲン活性化複合体阻害化合物による花成調節
- 第37回日本植物細胞分子生物学会大会, Sep. 2019フロリゲン複合体形成を制御する化合物による花成調節
- 第60回日本植物生理学会年会, Mar. 2019高感度な発光レポーターNanoLucの植物細胞での利用
- The 25th International Congress on Sexual Plant Reproduction, Jun. 2018RCN, rice TFL1, antagonize Hd3a in inflorescence development by competition for complex formation with 14-3-3 and FD
- 2017 Cold Spring Harbor Asia Conference plant cell & developmental biology, May 2017Hd3a and RCN in rice antagonize in inflorescence development through competition for complex formation with 14-3-3 and FD
- 第34回日本植物細胞分子生物学会大会, Sep. 2016フロリゲン複合体形成を制御する花成調節化合物の探索
- 第57回日本植物生理学会年会, Mar. 2016ジャガイモ塊茎形成制御におけるTFL1ホモログの役割
- 第129回日本育種学会大会, Mar. 2016ジャガイモ塊茎形成制御機構の解析
- 第12回日本ナス科コンソーシアム年会, Sep. 2015チューベリゲンによるジャガイモ塊茎形成制御の分子機構
- 第128回日本育種学会大会, Sep. 2015チューベリゲンによるジャガイモ塊茎形成制御の分子機構
- 第56回日本植物生理学会年会, Mar. 2015FAC様チューベリゲン複合体によるジャガイモ塊茎形成制御機構の解析
- 平成26年度名城大学組換えDNA講演会, Nov. 2014花成ホルモン(フロリゲン)が季節性の開花を制御するメカニズム[Invited]
- 第55回日本植物生理学会年会, Mar. 2014ジャガイモ塊茎形成におけるチューベリゲン複合体の機能解析
- 10th JSOL International Symposium on Solanaceae Genomics, Nov. 2013Analysis of florigen function in potato tuberization
- 第54回日本植物生理学会年会, Mar. 2013イネTFL1ホモログRCNによる花成抑制の分子機構の解析
- The International Congress on Plant Molecular Biology (IPMB 2012), Oct. 2012Analysis of Regulatory Mechanisms for Florigen Activation Complex
- 第53回日本植物生理学会年会, Mar. 2012フロリゲン活性化複合体FACの活性調節機構の解析
- 第52回日本植物生理学会年会, Mar. 2011イネフロリゲンHd3aタンパク質複合体の機能解析
- イネ遺伝学・分子生物学ワークショップ2010, Jul. 2010イネフロリゲンHd3aタンパク質の機能ドメイン解析
- 第51回日本植物生理学会年会, Mar. 2010イネフロリゲンHd3aタンパク質の機能ドメイン解析
- 第70回日本植物学会年会, Sep. 2006原形質連絡を介したタンパク質の細胞間移行制御における翻訳後修飾の役割
- 第28回日本分子生物学会年会, Dec. 2005原形質連絡を介した高分子の細胞間移行制御におけるNCAPP1及びタンパク質翻訳後修飾の役割
- Plant Biology 2005, Jul. 2005Molecular function of NCAPP1 in regulating macromolecular trafficking through plasmodesmata
- 5th International Plasmodesmata meeting, Sep. 2004Molecular analysis of Arabidopsis NCAPP1 homologs
- 第24回日本分子生物学会年会, Dec. 2001茎頂分裂組織形成に関わるシロイヌナズナCUC1,CUC2遺伝子の機能解析
- 第42回日本植物生理学会年会, Mar. 2001シロイヌナズナCUC1,CUC2遺伝子の機能解析
- 第21回日本分子生物学会年会, Dec. 19983つのタイプのOct配列によるシロイヌナズナの分裂組織特異的な転写制御
- 第20回日本分子生物学会年会, Dec. 1997S期及び分裂組織特異的転写制御と3つのタイプのOct配列の機能
- 第38回日本植物生理学会年会, Sep. 1997植物ヒストン遺伝子のS期特異的転写制御に関わるOct配列の存在意義
- 第15回日本植物細胞分子生物学会年会, Sep. 1997植物ヒストン遺伝子のS期及び分裂組織特異的転写制御に関わる3つのタイプのOct配列の役割
- 第18回日本分子生物学会年会, Dec. 1995コムギヒストンH1遺伝子のS期特異的転写制御に関わるシス領域
- 第58回日本植物学会大会, Sep. 1994コムギヒストンH1遺伝子の転写調節に関わるシス配列の同定
- 第15回日本分子生物学会年会, Dec. 1992コムギヒストンH1遺伝子の5’上流域にみられる特徴的な配列の機能解析
- 第33回日本植物生理学会年会, Mar. 1992コムギヒストンH1遺伝子の構造と発現制御
■ Research Themes
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Scientific Research (C), Yokohama City University, 01 Apr. 2017 - 31 Mar. 2020Analysis of tuberization by florigen activation complexThe molecular mechanism for day-length dependent tuberization of potato was analyzed. Here we used a potato cultivar, andigena W553-4, because Sayaka, which we used in the previous study, showed a moderate response to photoperiod for tuberization. W553-4 showed an ideal strict response, although it has a drawback that the transformation efficiency was low. A protoplast assay showed that TFL1 and a chemical inhibitor can inhibit SP6A activity.
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A), Grant-in-Aid for Scientific Research (A), Yokohama City University, 01 Apr. 2016 - 31 Mar. 2020Molecular Function of Florigen Activation ComplexFlorigen (its molecular nature is the FT/Hd3a protein) is a strong determinant of the timing of flowering in plants. The major function of florigen is executed by forming a transcriptional complex called florigen activation complex. Florigen is a globular protein whose biochemical function cannot be clearly identified, and the overall picture of the direct transcriptional targets of the florigen activation complex is unknown. We attempted to visualize the process of florigen distribution in the shoot apical meristem and promotion of downstream gene expression. We found that florigen accumulates in different region of the SAM in different step of flowering. The mechanism of this change depends on the formation of the florigen activation complex.
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Kyoto University, 28 Jun. 2013 - 31 Mar. 2018In order to understand underlying logic of plant developmental process leading to successful sexual reproduction, (1) metabolic basis of regulation of floral transition (in Arabidopsis) and (2) whole process of sexual reproduction from the induction to fertilization and embryogenesis (in Marchantia) were studied. Main achievement includes elucidation of a regulatory pathway of flowering by potassium, elucidation of temporal aspect of florigen (FT protein) transport, identification of specific amino acid residues involved in FT transport, establishment of transcriptional framework for male sexual organ and gamete development, identification of factors involved in germline segregation, identification of factors involved in sperm cell differentiation, identification of factors involved in regulation of induction of sexual development in response to environmental stimuli, and novel findings on fertilization, early stages of embryogenesis and sporogenesis.
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Grant-in-Aid for Scientific Research (C), 01 Apr. 2014 - 31 Mar. 2017In this research project, we revealed that potato tuber formation is regulated by a molecular mechanism similar to that of flowering regulation by florigen. In the regulation of photoperiodic flowering, FT, a florigen, induces flowering by making florigen activation complex (FAC) which is composed of FT, 14-3-3, and FD. StSP6A, a potato FT, has been shown to induce tuber formation (Navarro et al., 2011). To examine the molecular mechanism of tuber induction, we performed Y2H, BiFC, in vitro pull-down assay, and phenotypic analysis of transgenic potato plants. We revealed that StSP6A can make complex with potato 14-3-3 and StFDL1, a FD-like protein. Ectopic expression of StSP6A induced tuberization in a 14-3-3 dependent manner. Knock-down of StFDL1 significantly delayed tuberization. Considering them together, it was shown that StSP6A makes FAC-like complex termed Tuberigen Activation Complex (TAC) which is composed of StSP6A, 14-3-3, and StFDL1 to induce tuberization.
- 日本学術振興会, 科学研究費助成事業 新学術領域研究(研究領域提案型), 新学術領域研究(研究領域提案型), 01 Apr. 2014 - 31 Mar. 2016茎頂分裂組織の相転換制御ロジックの解明RCN1-3の3重RNAi植物の表現型解析から、一次枝こう数やえい花数の有意な減少やHd3a過剰発現体に似た花序形態形成の異常が観察されたが、花成の有意な遅延は観察されなかった。そこで、すべてのRCN遺伝子(RCN1-4)の4重RNAi植物を作製し、その表現型解析をおこなったところ、有意なえい花数の減少と花成促進が観察された。これは、花芽分化や花成時期決定において、RCNが冗長的にHd3a活性を抑制していることを示唆している。RCNとHd3aの複合体形成における競合関係について、競合的in vitro pulldown assayを行なったところ、4つのRCNの間で14-3-3に対する結合能に大きな差はなく、RCN3はHd3aより5倍程度強く14-3-3に結合しうることが明らかになった。フロリゲン様FTタンパク質(StSP6A)は、14-3-3依存的にジャガイモの栄養繁殖器官である塊茎の形成促進に働くことから、Hd3aとRCNによるイネ茎頂分裂組織の分化バランス制御と類似の分子機構が塊茎形成制御にも働いていると予想された。ジャガイモ形質転換体を用いたジャガイモRCNホモログの解析から、ジャガイモRCNホモログがイネ花成と同様に14-3-3依存的に塊茎形成を抑制していることが明らかになった。 茎頂分裂組織におけるRCNとHd3aの共局在解析や、GFP融合RCNとHd3aの維管束から茎頂分裂組織への選択・非選択輸送経路の解析から、フロリゲンとアンチフロリゲンの競合バランスによる生殖成長制御モデルの分子基盤が得られるだろう。
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Specially Promoted Research, Grant-in-Aid for Specially Promoted Research, Nara Institute of Science and Technology, 2012 - 2013Comprehensive analyses of florigen, a flowering hormone, were performed to elucidate the molecular function of florigen. Accumulation of rice florigen Hd3a at shoot apical meristem (SAM), details of the structure of florigen activation complex (FAC), complex formation and its structure of rice antiflorigen RCN, transcriptome and methylome of SAM, potato tuberization control by FAC, were revealed. The potential for improvement of biomass and crop yield by manipulation of florigen was examined.