SEARCH
Search Details
HASUNUMA TomohisaEngineering Biology Research CenterProfessor
Researcher basic information
■ Research news- 06 May 2021, Microalgae biofuels: Changing carbohydrates into lipids
- 10 Mar. 2020, Successful method yielding high rate of D-lactate using cyanobacteria could revolutionize bioplastic production
- 17 Jan. 2020, Novel protein positioning technique improves functionality of yeast cells -Expected improvements in cell surface engineering across a variety of fields-
- 13 Dec. 2019, Success in metabolically engineering marine algae to synthesize valuable antioxidant astaxanthin
- 06 Sep. 2019, Fe metabolic engineering method succeeds in producing 1,2,4-butanetriol sustainably from biomass
- 06 Jun. 2018, World’s most efficient production of succinate from carbon dioxide
- 17 Apr. 2017, Making oil from algae ? towards more efficient biofuels
Research activity information
■ Award- Oct. 2022 神戸大学, 令和4年度 学長表彰(財務貢献者) 神戸大学
- Oct. 2021 神戸大学, 令和3年度 学長表彰(財務貢献者)
- Oct. 2020 神戸大学, 令和2年度 学長表彰(財務貢献者)
- Oct. 2019 神戸大学, 第11回学長表彰(財務貢献者)
- Oct. 2018 神戸大学, 第10回学長表彰(財務貢献者)
- Oct. 2017 神戸大学, 第9回学長表彰(財務貢献者)
- Sep. 2014 The Society for Biotechnology, Japan, Biotechnology Encouragement Prize, 代謝プロファイリングに基づく微生物育種技術の開発と応用
- Oct. 2013 Japan Bioindustry Association, Fermentation and Metabolism Research Prize, システムバイオロジー解析に基づく高機能型酵母創製とセルロースエタノール高生産技術開発への応用
- Springer Science and Business Media LLC, Jun. 2023, Archives of Microbiology, 205(7) (7), English[Refereed]Scientific journal
- Abstract l-Lactate is a major waste compound in cultured animal cells. To develop a sustainable animal cell culture system, we aimed to study the consumption of l-lactate using a photosynthetic microorganism. As genes involved in l-lactate utilization were not found in most cyanobacteria and microalgae, we introduced the NAD-independent l-lactate dehydrogenase gene from Escherichia coli (lldD) into Synechococcus sp. PCC 7002. The lldD-expressing strain consumed l-lactate added to basal medium. This consumption was accelerated by expression of a lactate permease gene from E. coli (lldP) and an increase in culture temperature. Intracellular levels of acetyl-CoA, citrate, 2-oxoglutarate, succinate, and malate, and extracellular levels of 2-oxoglutarate, succinate, and malate, increased during l-lactate utilization, suggesting that the metabolic flux from l-lactate was distributed toward the tricarboxylic acid cycle. This study provides a perspective on l-lactate treatment by photosynthetic microorganisms, which would increase the feasibility of animal cell culture industries.Springer Science and Business Media LLC, May 2023, Scientific Reports, 13(1) (1), English[Refereed]Scientific journal
- Elsevier BV, May 2023, Algal Research, 72, 103144 - 103144, English[Refereed]Scientific journal
- Wiley, Feb. 2023, Biotechnology and Bioengineering, 120(2) (2), 511 - 523, English[Refereed]Scientific journal
- Wiley, Jan. 2023, Biotechnology and Bioengineering, 120(4) (4), 1097 - 1107, English[Refereed]Scientific journal
- Abstract The bottleneck for the production of biofuels from microalgae consists on costly harvesting processes and low lipid production, immobilization technology could play a part on making the production of biofuels more feasible. The aim of this study was to evaluate the effect of alginate immobilization on the growth and lipid productivity of the microalgae Chlorella sorokiniana, so far, the main focus of immobilization technology has been its use for wastewater treatment and nutrient removal from effluents. The microalgae Chlorella sorokiniana was cultured in both free and immobilized forms under optimal autotrophic growth conditions. Microalgae were immobilized in calcium alginate beads generated by mixing algal cells with a sodium alginate solution, followed by extrusion into a CaCl2 solution. The results obtained in this study showed that the growth of the microalgae immobilized in alginate beads, was enhanced and achieved a dry cell weight 1.4-fold higher than that of a free cell culture, a higher light transmittance was also achieved in the alginate immobilized culture, and the lipid productivity was increased from 54.21 ± 2.48 mg l−1 d in the free cell culture to 82.22 ± 8.48 mg l−1 d in the immobilized culture. These results demonstrate the effectiveness of immobilization technology for promoting growth and lipid productivity in the microalgae Chlorella sorokiniana.IOP Publishing, Jan. 2023, Journal of Physics: Energy, 5(1) (1), 014019 - 014019, English[Refereed]Scientific journal
- Elsevier BV, Jan. 2023, Journal of Chromatography B, 1215, 123588 - 123588, English[Refereed]Scientific journal
- Synthetic methylotrophic Yarrowia lipolytica was constructed to convert methanol into biomass components and succinic acid.Royal Society of Chemistry (RSC), 2023, Green Chemistry, 25(1) (1), 183 - 195, English[Refereed]Scientific journal
- Abstract Photosynthesis must maintain stability and robustness throughout fluctuating natural environments. In cyanobacteria, dark-to-light transition leads to drastic metabolic changes from dark respiratory metabolism to CO2 fixation through the Calvin–Benson–Bassham (CBB) cycle using energy and redox equivalents provided by photosynthetic electron transfer. Previous studies have shown that catabolic metabolism supports the smooth transition into CBB cycle metabolism. However, metabolic mechanisms for robust initiation of photosynthesis are poorly understood due to lack of dynamic metabolic characterizations of dark-to-light transitions. Here, we show rapid dynamic changes (on a time scale of seconds) in absolute metabolite concentrations and 13C tracer incorporation after strong or weak light irradiation in the cyanobacterium Synechocystis sp. PCC 6803. Integration of this data enabled estimation of time-resolved nonstationary metabolic flux underlying CBB cycle activation. This dynamic metabolic analysis indicated that downstream glycolytic intermediates, including phosphoglycerate and phosphoenolpyruvate, accumulate under dark conditions as major substrates for initial CO2 fixation. Compared with wild-type Synechocystis, significant decreases in the initial oxygen evolution rate were observed in 12 h dark preincubated mutants deficient in glycogen degradation or oxidative pentose phosphate pathways. Accordingly, the degree of decrease in the initial oxygen evolution rate was proportional to the accumulated pool size of glycolytic intermediates. These observations indicate that the accumulation of glycolytic intermediates is essential for efficient metabolism switching under fluctuating light environments.Oxford University Press (OUP), Dec. 2022, Plant Physiology, English[Refereed]Scientific journal
- The four-carbon (C4) dicarboxylic acids, fumarate, malate, and succinate, are the most valuable targets that must be exploited for CO2-based chemical production in the move to a sustainable low-carbon future. Cyanobacteria excrete high amounts of C4 dicarboxylic acids through glycogen fermentation in a dark anoxic environment. The enhancement of metabolic flux in the reductive TCA branch in the Cyanobacterium Synechocystis sp. PCC6803 is a key issue in the C4 dicarboxylic acid production. To improve metabolic flux through the anaplerotic pathway, we have created the recombinant strain PCCK, which expresses foreign ATP-forming phosphoenolpyruvate carboxykinase (PEPck) concurrent with intrinsic phosphoenolpyruvate carboxylase (Ppc) overexpression. Expression of PEPck concurrent with Ppc led to an increase in C4 dicarboxylic acids by autofermentation. Metabolome analysis revealed that PEPck contributed to an increase in carbon flux from hexose and pentose phosphates into the TCA reductive branch. To enhance the metabolic flux in the reductive TCA branch, we examined the effect of corn-steep liquor (CSL) as a nutritional supplement on C4 dicarboxylic acid production. Surprisingly, the addition of sterilized CSL enhanced the malate production in the PCCK strain. Thereafter, the malate and fumarate excreted by the PCCK strain are converted into succinate by the CSL-settling microorganisms. Finally, high-density cultivation of cells lacking the acetate kinase gene showed the highest production of malate and fumarate (3.2 and 2.4 g/L with sterilized CSL) and succinate (5.7 g/L with non-sterile CSL) after 72 h cultivation. The present microbial community engineering is useful for succinate production by one-pot fermentation under dark anoxic conditions.American Chemical Society (ACS), Dec. 2022, ACS Synthetic Biology, 11(12) (12), 4054 - 4064, English, International magazine[Refereed]Scientific journal
- Elsevier BV, Dec. 2022, Biochemical Engineering Journal, 188, 108681 - 108681, English[Refereed]Scientific journal
- Abstract Engineering the microbial production of secondary metabolites is limited by the known reactions of correctly annotated enzymes. Therefore, the machine learning discovery of specialized enzymes offers great potential to expand the range of biosynthesis pathways. Benzylisoquinoline alkaloid production is a model example of metabolic engineering with potential to revolutionize the paradigm of sustainable biomanufacturing. Existing bacterial studies utilize a norlaudanosoline pathway, whereas plants contain a more stable norcoclaurine pathway, which is exploited in yeast. However, committed aromatic precursors are still produced using microbial enzymes that remain elusive in plants, and additional downstream missing links remain hidden within highly duplicated plant gene families. In the current study, machine learning is applied to predict and select plant missing link enzymes from homologous candidate sequences. Metabolomics-based characterization of the selected sequences reveals potential aromatic acetaldehyde synthases and phenylpyruvate decarboxylases in reconstructed plant gene-only benzylisoquinoline alkaloid pathways from tyrosine. Synergistic application of the aryl acetaldehyde producing enzymes results in enhanced benzylisoquinoline alkaloid production through hybrid norcoclaurine and norlaudanosoline pathways.Springer Science and Business Media LLC, Dec. 2022, Nature Communications, 13(1) (1), 1405, EnglishScientific journal
- Abstract Background Microalgal lipid production has attracted global attention in next-generation biofuel research. Nitrogen starvation, which drastically suppresses cell growth, is a common and strong trigger for lipid accumulation in microalgae. We previously developed a mutant Chlamydomonas sp. KAC1801, which can accumulate lipids irrespective of the presence or absence of nitrates. This study aimed to develop a feasible strategy for stable and continuous lipid production through semi-continuous culture of KAC1801. Results KAC1801 continuously accumulated > 20% lipid throughout the subculture (five generations) when inoculated with a dry cell weight of 0.8–0.9 g L−1 and cultured in a medium containing 18.7 mM nitrate, whereas the parent strain KOR1 accumulated only 9% lipid. Under these conditions, KAC1801 continuously produced biomass and consumed nitrates. Lipid productivity of 116.9 mg L−1 day−1 was achieved by semi-continuous cultivation of KAC1801, which was 2.3-fold higher than that of KOR1 (50.5 mg L−1 day−1). Metabolome and transcriptome analyses revealed a depression in photosynthesis and activation of nitrogen assimilation in KAC1801, which are the typical phenotypes of microalgae under nitrogen starvation. Conclusions By optimizing nitrate supply and cell density, a one-step cultivation system for Chlamydomonas sp. KAC1801 under nitrate-replete conditions was successfully developed. KAC1801 achieved a lipid productivity comparable to previously reported levels under nitrogen-limiting conditions. In the culture system of this study, metabolome and transcriptome analyses revealed a nitrogen starvation-like response in KAC1801.Springer Science and Business Media LLC, Sep. 2022, Biotechnology for Biofuels and Bioproducts, 15(1) (1), English[Refereed]Scientific journal
- Springer Science and Business Media LLC, Sep. 2022, Applied Microbiology and Biotechnology, 106(18) (18), 6347 - 6361, English[Refereed]Scientific journal
- Wiley, Sep. 2022, Microbial Biotechnology, 15(9) (9), 2364 - 2378, English[Refereed]Scientific journal
- BACKGROUND: Glutathione is a valuable tri-peptide that is industrially produced by fermentation using the yeast Saccharomyces cerevisiae, and is widely used in the pharmaceutical, food, and cosmetic industries. It has been reported that addition of L-serine (L-Ser) is effective at increasing the intracellular glutathione content because L-Ser is the common precursor of L-cysteine (L-Cys) and glycine (Gly) which are substrates for glutathione biosynthesis. Therefore, we tried to enhance the L-Ser biosynthetic pathway in S. cerevisiae for improved glutathione production. RESULTS: The volumetric glutathione production of recombinant strains individually overexpressing SER2, SER1, SER3, and SER33 involved in L-Ser biosynthesis at 48 h cultivation was increased 1.3, 1.4, 1.9, and 1.9-fold, respectively, compared with that of the host GCI strain, which overexpresses genes involved in glutathione biosynthesis. We further examined simultaneous overexpression of SHM2 and/or CYS4 genes involved in Gly and L-Cys biosynthesis, respectively, using recombinant GCI strain overexpressing SER3 and SER33 as hosts. As a result, GCI overexpressing SER3, SHM2, and CYS4 showed the highest volumetric glutathione production (64.0 ± 4.9 mg/L) at 48 h cultivation, and this value is about 2.5-fold higher than that of the control strain. CONCLUSIONS: This study first revealed that engineering of L-Ser and Gly biosynthetic pathway are useful strategies for fermentative glutathione production by S. cerevisiase.Springer Science and Business Media LLC, Aug. 2022, Microbial cell factories, 21(1) (1), 153 - 153, English, International magazineScientific journal
- American Chemical Society (ACS), Jun. 2022, ACS Synthetic Biology, 11(6) (6), 2098 - 2107, EnglishScientific journal
- Abstract Expression of secreted recombinant proteins burdens the protein secretion machinery, limiting production. Here, we describe an approach to improving protein production by the non-conventional yeast Komagataella phaffii comprised of genome-wide screening for effective gene disruptions, combining them in a single strain, and recovering growth reduction by adaptive evolution. For the screen, we designed a multiwell-formatted, streamlined workflow to high-throughput assay of secretion of a single-chain small antibody, which is cumbersome to detect but serves as a good model of proteins that are difficult to secrete. Using the consolidated screening system, we evaluated >19,000 mutant strains from a mutant library prepared by a modified random gene-disruption method, and identified six factors for which disruption led to increased antibody production. We then combined the disruptions, up to quadruple gene knockouts, which appeared to contribute independently, in a single strain and observed an additive effect. Target protein and promoter were basically interchangeable for the effects of knockout genes screened. We finally used adaptive evolution to recover reduced cell growth by multiple gene knockouts and examine the possibility for further enhancing protein secretion. Our successful, three-part approach holds promise as a method for improving protein production by non-conventional microorganisms.Springer Science and Business Media LLC, Jun. 2022, Communications Biology, 5(1) (1), 561, English[Refereed]Scientific journal
- Informa UK Limited, Apr. 2022, Journal of Inflammation Research, Volume 15, 2387 - 2395, English[Refereed]Scientific journal
- Elsevier BV, Feb. 2022, Current Opinion in Green and Sustainable Chemistry, 33, 100584 - 100584, EnglishScientific journal
- Elsevier BV, Jan. 2022, Biochemical Engineering Journal, 178, 108296 - 108296Scientific journal
- Elsevier BV, Jan. 2022, Biochemical Engineering Journal, 178, 108274 - 108274Scientific journal
- Elsevier BV, Jan. 2022, Biotechnology Notes, 3, 1 - 7, EnglishScientific journal
- Elsevier BV, Jan. 2022, Bioresource Technology, 344, 126196 - 126196, EnglishScientific journal
- Elsevier BV, Jan. 2022, Bioresource Technology, 343, 126071 - 126071, EnglishScientific journal
- Nitrogen is essential for the biosynthesis of various molecules in cells, such as amino acids and nucleotides, as well as several types of lipids and sugars. Cyanobacteria can assimilate several forms of nitrogen, including nitrate, ammonium, and urea, and the physiological and genetic responses to these nitrogen sources have been studied previously. However, the metabolic changes in cyanobacteria caused by different nitrogen sources have not yet been characterized. This study aimed to elucidate the influence of nitrate and ammonium on the metabolic profiles of the cyanobacterium Synechocystis sp. strain PCC 6803. When supplemented with NaNO3 or NH4Cl as the nitrogen source, Synechocystis sp. PCC 6803 grew faster in NH4Cl medium than in NaNO3 medium. Metabolome analysis indicated that some metabolites in the CBB cycle, glycolysis, and TCA cycle, and amino acids were more abundant when grown in NH4Cl medium than NaNO3 medium. 15N turnover rate analysis revealed that the nitrogen assimilation rate in NH4Cl medium was higher than in NaNO3 medium. These results indicate that the mechanism of nitrogen assimilation in the GS-GOGAT cycle differs between NaNO3 and NH4Cl. We conclude that the amounts and biosynthetic rate of cyanobacterial metabolites varies depending on the type of nitrogen.MDPI AG, Dec. 2021, Metabolites, 11(12) (12), 867 - 867Scientific journal
- Springer Science and Business Media LLC, Dec. 2021, Microbial Cell Factories, 20(1) (1), 228, English
Abstract Background Bio-based aromatic compounds are of great interest to the industry, as commercial production of aromatic compounds depends exclusively on the unsustainable use of fossil resources or extraction from plant resources. γ-amino acid 3-amino-4-hydroxybenzoic acid (3,4-AHBA) serves as a precursor for thermostable bioplastics.Results Under aerobic conditions, a recombinantCorynebacterium glutamicum strain KT01 expressinggriH andgriI genes derived fromStreptomyces griseus produced 3,4-AHBA with large amounts of amino acids as by-products. The specific productivity of 3,4-AHBA increased with decreasing levels of dissolved oxygen (DO) and was eightfold higher under oxygen limitation (DO = 0 ppm) than under aerobic conditions (DO ≥ 2.6 ppm). Metabolic profiles during 3,4-AHBA production were compared at three different DO levels (0, 2.6, and 5.3 ppm) using the DO-stat method. Results of the metabolome analysis revealed metabolic shifts in both the central metabolic pathway and amino acid metabolism at a DO of < 33% saturated oxygen. Based on this metabolome analysis, metabolic pathways were rationally designed for oxygen limitation. Anldh deletion mutant, with the loss of lactate dehydrogenase, exhibited 3.7-fold higher specific productivity of 3,4-AHBA at DO = 0 ppm as compared to the parent strain KT01 and produced 5.6 g/L 3,4-AHBA in a glucose fed-batch culture.Conclusions Our results revealed changes in the metabolic state in response to DO concentration and provided insights into oxygen supply during fermentation and the rational design of metabolic pathways for improved production of related amino acids and their derivatives.Graphical Abstract Scientific journal - Elsevier BV, Dec. 2021, Algal Research, 60, 102544 - 102544Scientific journal
- Elsevier BV, Dec. 2021, Metabolic Engineering Communications, 13, e00188 - e00188, EnglishScientific journal
- Springer Science and Business Media LLC, Dec. 2021, Biotechnology for Biofuels, 14(1) (1), 39 - 39, English, International magazine
Abstract Background Trichoderma reesei is a filamentous fungus that is important as an industrial producer of cellulases and hemicellulases due to its high secretion of these enzymes and outstanding performance in industrial fermenters. However, the reduction of enzyme production caused by carbon catabolite repression (CCR) has long been a problem. Disruption of a typical transcriptional regulator, Cre1, does not sufficiently suppress this reduction in the presence of glucose.Results We found that deletion of an α-tubulin (tubB ) inT. reesei enhanced both the amount and rate of secretory protein production. Also, the tubulin-disrupted (ΔtubB) strain had high enzyme production and the same enzyme profile even if the strain was cultured in a glucose-containing medium. From transcriptome analysis, the ΔtubB strain exhibited upregulation of both cellulase and hemicellulase genes including some that were not originally induced by cellulose. Moreover, cellobiose transporter genes and the other sugar transporter genes were highly upregulated, and simultaneous uptake of glucose and cellobiose was also observed in the ΔtubB strain. These results suggested that the ΔtubB strain was released from CCR.Conclusion Trichoderma reesei α-tubulin is involved in the transcription of cellulase and hemicellulase genes, as well as in CCR. This is the first report of overcoming CCR by disrupting α-tubulin gene inT. reesei . The disruption of α-tubulin is a promising approach for creating next-generation enzyme-producing strains ofT. reesei. Scientific journal - Springer Science and Business Media LLC, Dec. 2021, Communications Biology, 4(1) (1)
Abstract Light/dark cycling is an inherent condition of outdoor microalgae cultivation, but is often unfavorable for lipid accumulation. This study aims to identify promising targets for metabolic engineering of improved lipid accumulation under outdoor conditions. Consequently, the lipid-rich mutantChlamydomonas sp. KOR1 was developed through light/dark-conditioned screening. During dark periods with depressed CO2 fixation, KOR1 shows rapid carbohydrate degradation together with increased lipid and carotenoid contents. KOR1 was subsequently characterized with extensive mutation of theISA1 gene encoding a starch debranching enzyme (DBE). Dynamic time-course profiling and metabolomics reveal dramatic changes in KOR1 metabolism throughout light/dark cycles. During light periods, increased flux from CO2 through glycolytic intermediates is directly observed to accompany enhanced formation of small starch-like particles, which are then efficiently repartitioned in the next dark cycle. This study demonstrates that disruption of DBE can improve biofuel production under light/dark conditions, through accelerated carbohydrate repartitioning into lipid and carotenoid.Scientific journal - Elsevier BV, Nov. 2021, Bioresource Technology, 340, 125638 - 125638, EnglishScientific journal
- Elsevier BV, Sep. 2021, Energy Conversion and Management, 243, 114359 - 114359, EnglishScientific journal
- Springer Science and Business Media LLC, Aug. 2021, Applied Microbiology and Biotechnology, 105(14-15) (14-15), 5895 - 5904, EnglishScientific journal
- Elsevier BV, Aug. 2021, Bioresource Technology, 334, 125200 - 125200, EnglishScientific journal
- In the past few decades, microalgae-based bioremediation methods for treating heavy metal (HM)-polluted wastewater have attracted much attention by virtue of their environment friendliness, cost efficiency, and sustainability. However, their HM removal efficiency is far from practical use. Directed evolution is expected to be effective for developing microalgae with a much higher HM removal efficiency, but there is no non-invasive or label-free indicator to identify them. Here, we present an intelligent cellular morphological indicator for identifying the HM removal efficiency of Euglena gracilis in a non-invasive and label-free manner. Specifically, we show a strong monotonic correlation (Spearman's ρ = -0.82, P = 2.1 × 10-5) between a morphological meta-feature recognized via our machine learning algorithms and the Cu2+ removal efficiency of 19 E. gracilis clones. Our findings firmly suggest that the morphology of E. gracilis cells can serve as an effective HM removal efficiency indicator and hence have great potential, when combined with a high-throughput image-activated cell sorter, for directed-evolution-based development of E. gracilis with an extremely high HM removal efficiency for practical wastewater treatment worldwide.American Chemical Society (ACS), Jun. 2021, Environmental Science & Technology, 55(12) (12), 7880 - 7889, English, International magazineScientific journal
- Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3' prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3'-prenylnaringenin (3'-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer.Elsevier BV, Jun. 2021, Metabolic Engineering Communications, 12, e00169 - e00169, English, International magazineScientific journal
- Elsevier BV, May 2021, Trends in Biotechnology, 39(5) (5), 488 - 504, EnglishScientific journal
- Oxford University Press (OUP), Apr. 2021, Bioscience, Biotechnology, and Biochemistry, 85(5) (5), 1275 - 1282, English
ABSTRACT Streptomyces incarnatus NRRL8089 produces the antiviral, antifungal, antiprotozoal nucleoside antibiotic sinefungin. To enhance sinefungin production, multiple mutations were introduced to the rpoB gene encoding RNA polymerase (RNAP) β-subunit at the target residues, D447, S453, H457, and R460. Sparse regression analysis using elastic-net lasso-ridge penalties on previously reported H457X mutations identified a numeric parameter set, which suggested that H457R/Y/F may cause production enhancement. H457R/R460C mutation successfully enhanced the sinefungin production by 3-fold, while other groups of mutations, such as D447G/R460C or D447G/H457Y, made moderate or even negative effects. To identify why the rif cluster residues have diverse effects on sinefungin production, an RNAP/DNA/mRNA complex model was constructed by homology modeling and molecular dynamics simulation. The 4 residues were located near the mRNA strand. Density functional theory–based calculation suggested that D447, H457, and R460 are in direct contact with ribonucleotide, and partially positive charges are induced by negatively charged chain of mRNA.Scientific journal - Wiley, Jan. 2021, Biotechnology and Bioengineering, 118(1) (1), 175 - 185, EnglishScientific journal
- Elsevier BV, Jan. 2021, Talanta, 222, 121625 - 121625, EnglishScientific journal
- Oxford University Press (OUP), Dec. 2020, Nucleic Acids Research, 48(22) (22), 13000 - 13012, English
Abstract In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream of the terminator. The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has frequently been used as a platform for metabolic engineering but knowledge regarding P. pastoris terminators is limited. To explore terminator sequences available to tune protein expression levels in P. pastoris, we created a ‘terminator catalog’ by testing 72 sequences, including terminators from S. cerevisiae or P. pastoris and synthetic terminators. Altogether, we found that the terminators have a tunable range of 17-fold. We also found that S. cerevisiae terminator sequences maintain function when transferred to P. pastoris. Successful tuning of protein expression levels was shown not only for the reporter gene used to define the catalog but also using betaxanthin production as an example application in pathway flux regulation. Moreover, we found experimental evidence that protein expression levels result from mRNA abundance and in silico evidence that levels reflect the stability of mRNA 3′-UTR secondary structure. In combination with promoter selection, the novel terminator catalog constitutes a basic toolbox for tuning protein expression levels in metabolic engineering and synthetic biology in P. pastoris.Scientific journal - Dec. 2020, Journal of Proteome Data and Methods, 2(0005) (0005), EnglishJapan Computational Mass Spectrometry Meeting 2020 Activity ReportScientific journal
- Springer Science and Business Media LLC, Dec. 2020, Nature Communications, 11(1) (1), 3452, English[Refereed]Scientific journal
- Cold Spring Harbor Laboratory, Jul. 2020, Biotechnology for Biofuels, 13(1) (1), 1 - 15, English
Abstract Consolidated bioprocessing, which combines saccharolytic and fermentative abilities in a single microorganism, is receiving increased attention to decrease environmental and economic costs in lignocellulosic biorefineries. Nevertheless, the economic viability of lignocellulosic ethanol is also dependent of an efficient utilization of the hemicellulosic fraction, which is mainly composed of xylose and may comprise up to 40 % of the total biomass. This major bottleneck is mainly due to the necessity of chemical/enzymatic treatments to hydrolyze hemicellulose into fermentable sugars and to the fact that xylose is not readily consumed bySaccharomyces cerevisiae – the most used organism for large-scale ethanol production. In this work, industrialS. cerevisiae strains, presenting robust traits such as thermotolerance and improved resistance to inhibitors, were evaluated as hosts for the cell-surface display of hemicellulolytic enzymes and optimized xylose assimilation, aiming at the development of whole-cell biocatalysts for consolidated bioprocessing of corn cob-derived hemicellulose. These modifications allowed the direct production of ethanol from non-detoxified hemicellulosic liquor obtained by hydrothermal pretreatment of corn cob, reaching an ethanol titer of 11.1 g/L corresponding to a yield of 0.328 gram per gram of potential xylose and glucose, without the need for external hydrolytic catalysts. Also, consolidated bioprocessing of pretreated corn cob was found to be more efficient for hemicellulosic ethanol production than simultaneous saccharification and fermentation with addition of commercial hemicellulases. These results show the potential of industrialS. cerevisiae strains for the design of whole-cell biocatalysts and paves the way for the development of more efficient consolidated bioprocesses for lignocellulosic biomass valorization, further decreasing environmental and economic costs.[Refereed]Scientific journal - Elsevier BV, Jun. 2020, Bioresource Technology, 305, 123072 - 123072, English[Refereed]Scientific journal
- May 2020, Science Advances, 6, eaba6712, EnglishSequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments[Refereed]Scientific journal
- d-Lactate is one of the most valuable compounds for manufacturing biobased polymers. Here, we have investigated the significance of endogenous malate dehydrogenase (decarboxylating) (malic enzyme, ME), which catalyzes the oxidative decarboxylation of malate to pyruvate, in d-lactate biosynthesis in the cyanobacterium Synechocystis sp. PCC6803. d-Lactate levels were increased by 2-fold in ME-overexpressing strains, while levels in ME-deficient strains were almost equivalent to those in the host strain. Dynamic metabolomics revealed that overexpression of ME led to increased turnover rates in malate and pyruvate metabolism; in contrast, deletion of ME resulted in increased pool sizes of glycolytic intermediates, probably due to sequential feedback inhibition, initially triggered by malate accumulation. Finally, both the loss of the acetate kinase gene and overexpression of endogenous d-lactate dehydrogenase, concurrent with ME overexpression, resulted in the highest production of d-lactate (26.6 g/L) with an initial cell concentration of 75 g-DCW/L after 72 h fermentation.Feb. 2020, ACS synthetic biology, 9(2) (2), 260 - 268, English, International magazine[Refereed]
- Jan. 2020, Metabolic Engineering, 57, 110 - 117, EnglishNovel strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using different GPI-anchoring domains[Refereed]Scientific journal
- Jan. 2020, Trends in Biotechnology, 38(1) (1), 68 - 82, EnglishDynamic metabolomics for engineering biology: Accelerating learning cycles for bioproduction[Refereed]Scientific journal
- Dec. 2019, Metabolic Engineering, 56, 17 - 27, EnglishProduction of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering[Refereed]Scientific journal
- Dec. 2019, Nature Communications, 10(1) (1)[Refereed]Scientific journal
- Dec. 2019, Metabolites, 9(12) (12), 297, EnglishShort-term temporal metabolic behavior in halophilic cyanobacterium Synechococcus sp. strain PCC 7002 after salt shock[Refereed]Scientific journal
- Nov. 2019, Green Chemistry, 22(1) (1), 153 - 162, EnglishFermentation of pigment-extracted microalgal residue using yeast cell-surface display: direct high-density ethanol production with competitive life cycle impacts[Refereed]Scientific journal
- Oct. 2019, Bioresource Technology, 290, 121786, EnglishA novel process for the mixotrophic production of lutein with Chlorella sorokiniana MB-1-M12 using aquaculture wastewater[Refereed]Scientific journal
- Oct. 2019, ACS Synthetic Biology, 8, 2701 - 2709, EnglishSingle-Stage Astaxanthin Production Enhances the Nonmevalonate Pathway and Photosynthetic Central Metabolism in Synechococcus sp. PCC 7002[Refereed]Scientific journal
- Sep. 2019, Biotechnology Journal, 14(9) (9), e1800704, EnglishCombined cell surface display of β-D-glucosidase (BGL), maltose transporter (MAL11) and overexpression of cytosolic xylose reductase (XR) in Saccharomyces cerevisiae enhance cellobiose/xylose co-utilization for xylitol bio-production from lignocellulosic[Refereed]Scientific journal
- Jul. 2019, mBio, 10(4) (4), e00833-19, EnglishDay/night separation of oxygenic energy metabolism and nuclear DNA replication in the unicellular red alga Cyanidioschyzon merolae[Refereed]Scientific journal
- May 2019, Green Chemistry, 21, 1795 - 1808, EnglishCell-surface display technology and metabolic engineering of Saccharomyces cerevisiae for enhancing xylitol production from woody biomass[Refereed]Scientific journal
- May 2019, Nature Communications, 10, 2015, EnglishMechanism-based tuning of insect 3,4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids[Refereed]Scientific journal
- Apr. 2019, Bioresource Technology, 278, 17 - 25, EnglishEnhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies[Refereed]Scientific journal
- Yeasts are extremely useful, not only for fermentation but also for a wide spectrum of fuel and chemical productions. We analyzed the overall metabolic turnover and transcript dynamics in glycolysis and the TCA cycle, revealing the difference in adaptive pyruvate metabolic response between a Crabtree-negative species, Kluyveromyces marxianus, and a Crabtree-positive species, Saccharomyces cerevisiae, during aerobic growth. Pyruvate metabolism was inclined toward ethanol production under aerobic conditions in S. cerevisiae, while increased transcript abundances of the genes involved in ethanol metabolism and those encoding pyruvate dehydrogenase were seen in K. marxianus, indicating the augmentation of acetyl-CoA synthesis. Furthermore, different metabolic turnover in the TCA cycle was observed in the two species: malate and fumarate production in S. cerevisiae was higher than in K. marxianus, irrespective of aeration; however, fluxes of both the reductive and oxidative TCA cycles were enhanced in K. marxianus by aeration, implying both the cycles contribute to efficient electron flux without producing ethanol. Additionally, decreased hexokinase activity under aerobic conditions is expected to be important for maintenance of suitable carbon flux. These findings demonstrate differences in the key metabolic trait of yeasts employing respiration or fermentation, and provide important insight into the metabolic engineering of yeasts.Mar. 2019, Scientific Reports, 9(1) (1), 5319 - 5319, English, International magazine[Refereed]Scientific journal
- Feb. 2019, Applied Microbiology and Biotechnology, 103(3) (3), 1243 - 1254, EnglishSustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae[Refereed]Scientific journal
- Feb. 2019, Biotechnology for Biofuels, 12, 39, EnglishLight/dark cycling causes delayed lipid accumulation and increased photoperiod-based biomass yield by altering metabolic flux in oleaginous Chlamydomonas sp.[Refereed]Scientific journal
- Feb. 2019, Biochemical Engineering Journal, 142, 117 - 123, English5-Hydroxymethylfurfural production from salt-induced photoautotrophically cultivated Chlorella sorokiniana[Refereed]Scientific journal
- Oxford University Press (OUP), Nov. 2018, FEMS Yeast Research, 18(7) (7), foy074, English[Refereed]Scientific journal
- Sep. 2018, Microbial Cell Factories, 17, 153, EnglishWidespread effect of N-acetyl-D-glucosamine assimilation on the metabolisms of amino acids, purines, and pyrimidines in Scheffersomyces stipitis[Refereed]Scientific journal
- Aug. 2018, eLife, 7, e34595, EnglishEstimating the protein burden limit of yeast cells by measuring expression limits of glycolytic proteins[Refereed]Scientific journal
- Academic Press Inc., Jul. 2018, Metabolic Engineering, 48, 109 - 120, English[Refereed]Scientific journal
- American Society for Microbiology, Jul. 2018, Applied and Environmental Microbiology, 84(15) (15), e02882 - 17, English
ABSTRACT The methylotrophic yeastPichia pastoris is widely used to produce recombinant proteins, taking advantage of this species' high-density cell growth and strong ability to secrete proteins. Circular plasmids containing theP. pastoris -specific autonomously replicating sequence (PARS1 ) permit transformation ofP. pastoris with higher efficiency than obtained following chromosomal integration by linearized DNA. Unfortunately, however, existing autonomously replicating plasmids are known to be inherently unstable. In this study, we used transcriptome sequencing (RNA-seq) data and genome sequence information to independently identify, on each of the four chromosomes, centromeric DNA sequences consisting of long inverted repeat sequences. By examining the chromosome 2 centromeric DNA sequence (Cen2 ) in detail, we demonstrate that an ∼111-bp region located at one end of the putative centromeric sequence had autonomous replication activity. In addition, the full-lengthCen2 sequence, which contains two long inverted repeat sequences and a nonrepetitive central core region, is needed for the accurate replication and distribution of plasmids inP. pastoris . Thus, we constructed a new, stable, autonomously replicating plasmid vector that harbors the entireCen2 sequence; this episome facilitates genetic manipulation inP. pastoris , providing high transformation efficiency and plasmid stability.IMPORTANCE Secretory production of recombinant proteins is the most important application of the methylotrophic yeastPichia pastoris , a species that permits mass production of heterologous proteins. To date, the genetic engineering ofP. pastoris has relied largely on integrative vectors due to the lack of user-friendly tools. Autonomously replicatingPichia plasmids are expected to facilitate genetic manipulation; however, the existing systems, which use autonomously replicating sequences (ARSs) such as theP. pastoris -specific ARS (PARS1 ), are known to be inherently unstable for plasmid replication and distribution. Recently, the centromeric DNA sequences ofP. pastoris were identified in back-to-back studies published by several groups; therefore, a new episomal plasmid vector with centromere DNA as a tool for genetic manipulation ofP. pastoris is ready to be developed.[Refereed]Scientific journal - May 2018, Microbial Cell Factories, 17, 76, EnglishMetabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose[Refereed]Scientific journal
- May 2018, Bioinformatics and Biology Insights, 12, 1 - 7, EnglishMathematical model for small size time series data of bacterial secondary metabolic pathways[Refereed]Scientific journal
- Apr. 2018, AMB Express, 8, 56, EnglishGenetic and physiological basis for antibody production by Kluyveromyces marxianus[Refereed]Scientific journal
- Mar. 2018, Journal of Bioscience and Bioengineering, 125(3) (3), 306 - 310, EnglishEnhanced cell-surface display of a heterologous protein using SED1 anchoring system in SED1-disrupted Saccharomyces cerevisiae strain[Refereed]Scientific journal
- Feb. 2018, Biotechnology for Biofuels, 11, 50, EnglishDirect and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl2 addition[Refereed]Scientific journal
- Elsevier B.V., Jan. 2018, Journal of Bioscience and Bioengineering, 125(1) (1), 76 - 86, English[Refereed]Scientific journal
- Dec. 2017, Frontiers in Bioengineering and Biotechnology, 5, 81, EnglishImprovement of Xylose Fermentation Ability under Heat and Acid Co-Stress in Saccharomyces cerevisiae Using Genome Shuffling Technique[Refereed]Scientific journal
- Dec. 2017, BIORESOURCE TECHNOLOGY, 245(part B) (part B), 1484 - 1490, English[Refereed]Scientific journal
- Dec. 2017, ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 28, 16 - 23, English[Refereed]Scientific journal
- Oct. 2017, JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 44(10) (10), 1459 - 1470, English[Refereed]Scientific journal
- Aug. 2017, Scientific Reports, 7(1) (1), 8239, EnglishSynthesis of sulfo-sialic acid analogues: potent neuraminidase inhibitors in regards to anomeric functionality[Refereed]Scientific journal
- Aug. 2017, Scientific Reports, 7(1) (1), 8993, EnglishDevelopment of a comprehensive set of tools for genome engineering in a cold- and thermo-tolerant Kluyveromyces marxianus yeast strain[Refereed]Scientific journal
- Jun. 2017, BIOTECHNOLOGY AND BIOENGINEERING, 114(6) (6), 1201 - 1207, English[Refereed]Scientific journal
- Apr. 2017, Scientific Reports, 4(7) (7), 45471, EnglishDynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4[Refereed]Scientific journal
- Mar. 2017, Biotechnology Journal, 12(3) (3), 1600400, EnglishSimultaneous conversion of free fatty acids and triglycerides to biodiesel by immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase[Refereed]Scientific journal
- Mar. 2017, COLLOIDS AND SURFACES B-BIOINTERFACES, 151, 134 - 142, English[Refereed]Scientific journal
- Mar. 2017, Microbial Cell Factories, 16, 44, EnglishEnzymatic improvement of mitochondrial thiol oxidase Erv1 for oxidized glutathione fermentation by Saccharomyces cerevisiae[Refereed]Scientific journal
- Mar. 2017, Scientific Reports, 7, 43518, EnglishA systematic approach to time-series metabolite profiling and RNA-seq analysis of Chinese hamster ovary cell culture[Refereed]Scientific journal
- Feb. 2017, CHEMISTRY-AN ASIAN JOURNAL, 12(3) (3), 324 - 331, English[Refereed]Scientific journal
- Feb. 2017, Shimadzu Journal, 5(1) (1), 17 - 21, EnglishApplication of LC-MS/MS analysis for time-lapse amino acid metabolomics in CHO cell culture.[Refereed]Scientific journal
- American Society for Microbiology, 2017, Genome Announcements, 5(5) (5), English[Refereed]Scientific journal
- Jan. 2017, Nature Communications, 8, 14007, EnglishA RuBisCO-mediated carbon metabolic pathway in methanogenic archaea[Refereed]Scientific journal
- Dec. 2016, Frontiers in Microbiology, 7, 2050, EnglishSuccinate and lactate production from Euglena gracilis during dark, anaerobic conditions.[Refereed]Scientific journal
- Dec. 2016, CURRENT OPINION IN BIOTECHNOLOGY, 42, 30 - 39, English[Refereed]Scientific journal
- Wiley-VCH Verlag, Nov. 2016, Industrial Biotechnology: Products and Processes, 161 - 185, English[Refereed]In book
- Nov. 2016, PLANT PHYSIOLOGY, 172(3) (3), 1612 - 1624, English[Refereed]Scientific journal
- Nov. 2016, PLANT AND CELL PHYSIOLOGY, 57(11) (11), 2417 - 2426, English[Refereed]Scientific journal
- Nov. 2016, Applied Spectroscopy, 71(3) (3), 463 - 471, EnglishHigh-speed scanning for the quantitative evaluation of glycogen concentration in bioethanol feedstock Synechocystis sp. PCC6803 by a near-infrared hyperspectral imaging system with a new near-infrared spectral camera.[Refereed]Scientific journal
- Nov. 2016, BIOTECHNOLOGY AND BIOENGINEERING, 113(11) (11), 2358 - 2366, English[Refereed]Scientific journal
- Oct. 2016, AMB EXPRESS, 6, 83, English[Refereed]Scientific journal
- Sep. 2016, BIORESOURCE TECHNOLOGY, 215, 324 - 333, English[Refereed]Scientific journal
- Sep. 2016, ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 18, 305 - 313, English[Refereed]Scientific journal
- Aug. 2016, BIOTECHNOLOGY JOURNAL, 11(8) (8), 1072 - 1081, English[Refereed]Scientific journal
- Jul. 2016, BIORESOURCE TECHNOLOGY, 211, 224 - 230, English[Refereed]Scientific journal
- May 2016, Metabolic Engineering Communications, 3, 130 - 141, EnglishImproved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism.[Refereed]Scientific journal
- Apr. 2016, Scientific Reports, 6, 24550, EnglishEngineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production.[Refereed]Scientific journal
- Apr. 2016, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 100(8) (8), 3477 - 3487, English[Refereed]Scientific journal
- Mar. 2016, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 100(6) (6), 2685 - 2692, English[Refereed]Scientific journal
- Mar. 2016, AMB Express, 6(1) (1), 4, EnglishDisruption of PHO13 improves ethanol production via the xylose isomerase pathway[Refereed]Scientific journal
- Sorghum bagasse pretreated with diluted acid, which was predominantly composed of glucan (59%) and xylan (7.2%), was used as a lignocellulosic feedstock to produce D-phenyllactic acid (PhLA) by a recombinant Escherichia coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens. Compared to filter paper hydrolysate, the PhLA yield was reduced by 35% during fermentation with enzymatic hydrolysate of sorghum bagasse as a carbon source, and metabolomics analysis revealed that intracellular levels of erythrose-4-phosphate and phosphoenolpyruvate and NAD(P)H regeneration for PhLA production from glucose markedly reduced. Compared to the separate hydrolysis and fermentation (SHF) with sorghum bagasse hydrolysate, simultaneous saccharification and fermentation (SSF) of sorghum bagasse under glucose limitation conditions yielded 4.8-fold more PhLA with less accumulation of eluted components of p-coumaric acid and aldehydes, which inhibited PhLA fermentation. These results suggest that gradual hydrolysis of sorghum bagasse during SSF reduces the accumulation of both glucose and fermentation inhibitors, collectively leading to increased PhLA yield.The Japan Institute of Energy, Jan. 2016, Proceedings of the Conference on Biomass Science, 11, 35 - 36, Japanese[Refereed]International conference proceedings
- Jan. 2016, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 100(2) (2), 1027 - 1038, English[Refereed]Scientific journal
- Jan. 2016, BIOCHEMICAL ENGINEERING JOURNAL, 105, 10 - 15, English[Refereed]Scientific journal
- Dec. 2015, CURRENT OPINION IN CHEMICAL BIOLOGY, 29, 1 - 9, English[Refereed]Scientific journal
- Nov. 2015, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 120(5) (5), 510 - 517, English[Refereed]Scientific journal
- Oct. 2015, PLANT AND CELL PHYSIOLOGY, 56(10) (10), 1962 - 1980, English[Refereed]Scientific journal
- Oct. 2015, 化学と生物, 53(10) (10), 689 - 695, Japaneseバイオリファイナリーの現状と展望Scientific journal
- Sep. 2015, 生物工学会誌, 93(9) (9), 523 - 526, Japanese合成生物工学によるモノづくり微生物のデザインに向けてScientific journal
- Sep. 2015, Biotechnology for Biofuels, 8, 162, EnglishCombined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae[Refereed]Scientific journal
- Jun. 2015, BIOTECHNOLOGY JOURNAL, 10(6) (6), 886 - 898, English[Refereed]Scientific journal
- Jun. 2015, Biotechnology for Biofuels, 8, 88, EnglishPrecipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content[Refereed]Scientific journal
- Jun. 2015, BIORESOURCE TECHNOLOGY, 185, 263 - 268, English[Refereed]Scientific journal
- May 2015, バイオインダストリー, 32(5) (5), 26 - 31, JapaneseCBPによるバイオエタノール生産技術の開発Scientific journal
- Apr. 2015, BIORESOURCE TECHNOLOGY, 182, 169 - 178, English[Refereed]Scientific journal
- Apr. 2015, Microbial Cell Factories, 14, 56, EnglishEvaluation of genes involved in oxidative phosphorylation in yeast by developing a simple and rapid method to measure mitochondrial ATP synthetic activity.[Refereed]Scientific journal
- Apr. 2015, Genome Announcements, 3(2) (2), e00389 - 15, EnglishComplete genome sequence of Kluyveromyces marxianus NBRC1777, a nonconventional thermotolerant yeast[Refereed]Scientific journal
- Mar. 2015, 生物工学会誌, 93(3) (3), 122 - 129, Japanese代謝プロファイリングに基づく微生物育種技術の開発と応用Scientific journal
- Mar. 2015, JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 42(3) (3), 375 - 389, English[Refereed]Scientific journal
- Mar. 2015, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 119(3) (3), 297 - 302, English[Refereed]Scientific journal
- Mar. 2015, Biotechnology for Biofuels, 8, 48, EnglishDynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity[Refereed]Scientific journal
- Feb. 2015, BMC Microbiology, 15, 43, EnglishHyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis[Refereed]Scientific journal
- Feb. 2015, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 99(4) (4), 1655 - 1663, English[Refereed]Scientific journal
- 2015, METALLOMICS, 7(2) (2), 322 - 332, English[Refereed]Scientific journal
- Dec. 2014, BIOTECHNOLOGY JOURNAL, 9(12) (12), 1519 - 1525, English[Refereed]Scientific journal
- Dec. 2014, BIOTECHNOLOGY ADVANCES, 32(8) (8), 1448 - 1459, English[Refereed]Scientific journal
- Dec. 2014, Biotechnology for Biofuels, 7, 493, EnglishOverexpression of flv3 improves photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by enhancement of alternative electron flow[Refereed]Scientific journal
- Dec. 2014, Microbial Cell Factories, 13(1) (1), 173, EnglishDevelopment of bio-based fine chemical production through synthetic bioengineering[Refereed]Scientific journal
- Oct. 2014, BIORESOURCE TECHNOLOGY, 169, 380 - 386, English[Refereed]Scientific journal
- Oct. 2014, Microbial Cell Factories, 13(1) (1), 145, EnglishDevelopment of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicel[Refereed]Scientific journal
- Oct. 2014, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 98(20) (20), 8675 - 8683, English[Refereed]Scientific journal
- Sep. 2014, ANALYTICAL METHODS, 6(17) (17), 6628 - 6634, English[Refereed]Scientific journal
- Jul. 2014, 日本エネルギー学会誌, 93(7) (7), 580 - 585, Japaneseアーミング酵母による統合型バイオプロセスの開発Scientific journal
- Jul. 2014, BIOCHEMICAL ENGINEERING JOURNAL, 88, 188 - 194, English[Refereed]Scientific journal
- Jun. 2014, Biotechnology for Biofuels, 7, 97, EnglishOptimizing biodiesel production in marine Chlamydomonas sp.JSC4 through metabolic profiling and an innovative salinity-gradient strategy[Refereed]Scientific journal
- Jun. 2014, Biotechnology for Biofuels, 7, 88, EnglishGlycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment.[Refereed]Scientific journal
- Wiley Blackwell, Apr. 2014, Bioprocessing of Renewable Resources to Commodity Bioproducts, 201 - 226, English[Refereed]In book
- Mar. 2014, オレオサイエンス, 14(3) (3), 95 - 101, Japaneseリグノセルロースからの高効率エタノール生産に向けた新規代謝改変酵母の創製Scientific journal
- Mar. 2014, AMB Express, 4, 17, EnglishIncreased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp. PCC 6803[Refereed]Scientific journal
- Feb. 2014, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 117(2) (2), 165 - 169, English[Refereed]Scientific journal
- Jan. 2014, FEBS LETTERS, 588(3) (3), 466 - 471[Refereed]
- Jan. 2014, FEBS LETTERS, 588(3) (3), 466 - 471, English[Refereed]Scientific journal
- Jan. 2014, Biotechnology for Biofuels, 7(1) (1), 8, EnglishEfficient yeast cell surface display of exo-and endo-cellulase using the SED1 anchoring region and its original promoter[Refereed]Scientific journal
- Jan. 2014, BIORESOURCE TECHNOLOGY, 152, 247 - 252, English[Refereed]Scientific journal
- Japan Society for Bioscience Biotechnology and Agrochemistry, 2014, Bioscience, Biotechnology and Biochemistry, 78(12) (12), 1997 - 2007, English[Refereed]Scientific journal
- We produced organic acids, including lactate and succinate, directly from soluble starch under anaerobic conditions using high cell-density cultures of Corynebacterium glutamicum displaying α-amylase (AmyA) from Streptococcus bovis 148 on the cell surface. Notably, reactions performed under anaerobic conditions at 35 and 40°C, which are higher than the optimal growth temperature of 30°C, showed 32% and 19%, respectively, higher productivity of the organic acids lactate, succinate, and acetate compared to that at 30°C. However, α-amylase was not stably anchored and released into the medium from the cell surface during reactions at these higher temperatures, as demonstrated by the 61% and 85% decreases in activity, respectively, from baseline, compared to the only 8% decrease at 30°C. The AmyA-displaying C. glutamicum cells retained their starch-degrading capacity during five 10 h reaction cycles at 30°C, producing 107.8 g/l of total organic acids, including 88.9 g/l lactate and 14.0 g/l succinate. The applicability of cell surface-engineering technology for the production of organic acids from biomass by high cell-density cultures of C. glutamicum under anaerobic conditions was demonstrated.Dec. 2013, AMB Express, 3(1) (1), 72 - 72, English, International magazine[Refereed]Scientific journal
- Nov. 2013, BIORESOURCE TECHNOLOGY, 147, 84 - 88, English[Refereed]Scientific journal
- Nov. 2013, BIOTECHNOLOGY ADVANCES, 31(6) (6), 754 - 763, English[Refereed]Scientific journal
- Sep. 2013, JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 40(9) (9), 1039 - 1050, English[Refereed]Scientific journal
- Sep. 2013, BIORESOURCE TECHNOLOGY, 143, 163 - 171, English[Refereed]Scientific journal
- Sep. 2013, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 116(3) (3), 333 - 336, English[Refereed]Scientific journal
- Jul. 2013, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 930, 90 - 97, English[Refereed]Scientific journal
- Jun. 2013, Journal of Experimental Botany, 64(10) (10), 2943 - 2954, EnglishDynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion[Refereed]Scientific journal
- May 2013, Journal of Agricultural and Food Chemistry, 61(20) (20), 4850 - 4854, English[Refereed]Scientific journal
- May 2013, Energy & Environmental Science, 6(6) (6), 1844 - 1849, EnglishDirect conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes[Refereed]Scientific journal
- May 2013, BIORESOURCE TECHNOLOGY, 135, 403 - 409, English[Refereed]Scientific journal
- May 2013, BIORESOURCE TECHNOLOGY, 135, 191 - 198, English[Refereed]Scientific journal
- May 2013, BIORESOURCE TECHNOLOGY, 135, 513 - 522, English[Refereed]Scientific journal
- Mar. 2013, Applied Microbiology and Biotechnology, 97(5) (5), 2231 - 2237, English[Refereed]Scientific journal
- Mar. 2013, Applied Microbiology and Biotechnology, 97(6) (6), 2597 - 2607, English[Refereed]Scientific journal
- Feb. 2013, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 97(4) (4), 1669 - 1678, English[Refereed]Scientific journal
- Jan. 2013, Biochemical Engineering Journal, 70, 135 - 139, English[Refereed]Scientific journal
- Jan. 2013, Journal of Biotechnology, 163(1) (1), 50 - 60, English[Refereed]Scientific journal
- Jan. 2013, JOURNAL OF BIOTECHNOLOGY, 163(2) (2), 204 - 216, English[Refereed]Scientific journal
- Elsevier Ltd, 2013, Bioresource Technology, 135, 157 - 165, English[Refereed]Scientific journal
- Nov. 2012, BIOTECHNOLOGY ADVANCES, 30(6) (6), 1207 - 1218, English[Refereed]Scientific journal
- Oct. 2012, ペトロテック, 35(10) (10), 700 - 706, JapaneseバイオリファイナリーとバイオプラスチックScientific journal
- Sep. 2012, PROCESS BIOCHEMISTRY, 47(9) (9), 1287 - 1294, English[Refereed]Scientific journal
- Springer Netherlands, Aug. 2012, Systems Metabolic Engineering, 9789400745346, 329 - 348, English[Refereed]In book
- Jul. 2012, 生物工学会誌, 90(7) (7), 386 - 391, Japanese合成生物工学によるバイオ燃料生産のための微生物細胞工場の創製Scientific journal
- Jun. 2012, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 94(6) (6), 1585 - 1592, English[Refereed]Scientific journal
- May 2012, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 113(5) (5), 665 - 673, English[Refereed]Scientific journal
- May 2012, BIORESOURCE TECHNOLOGY, 111, 161 - 166, English[Refereed]Scientific journal
- Apr. 2012, JOURNAL OF BIOTECHNOLOGY, 158(4) (4), 203 - 210, English[Refereed]Scientific journal
- Mar. 2012, Bioresource Technology, 108, 211-215, EnglishSynergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply[Refereed]Scientific journal
- Mar. 2012, Bioresource Technology, 108, 128-133, EnglishDisplay of cellulases on the cell surface of Saccharomyces cerevisiae affords high yield ethanol production from high-solid lignocellulosic biomass[Refereed]Scientific journal
- Sep. 2011, BIORESOURCE TECHNOLOGY, 102(17) (17), 7917 - 7924, English[Refereed]Scientific journal
- Aug. 2011, Bioscience, Biotechnology, and Biochemistry, 75(8) (8), 1603 - 1605, EnglishVariation in biomass property among rice diverse cultivars.[Refereed]Scientific journal
- Jun. 2011, ANALYTICAL CHEMISTRY, 83(11) (11), 4023 - 4029, English[Refereed]Scientific journal
- May 2011, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 90(3) (3), 997 - 1004, English[Refereed]Scientific journal
- Jan. 2011, Microbial Cell Factories, 10(1), 2, EnglishMetabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xyloseo-fermenting strain ofSaccharomyces cerevisiae[Refereed]Scientific journal
- Nov. 2010, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 88(5) (5), 1215 - 1221, English[Refereed]Scientific journal
- Nov. 2010, Applied Microbiology and Biotechnology, 88, 1215-1221, EnglishConstruction of a xylose-metabolizing Saccharomyces cerevisiae by integration of xylose isomerase gene into the genome and investigation of the effect of xylITOl on fermentation[Refereed]Scientific journal
- Sep. 2010, Applied Microbiology and Biotechnology, 88(1), 381-388, EnglishDirect ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes.; Applied Microbiology and Biotechnology[Refereed]Scientific journal
- Aug. 2010, Applied Microbiology and Biotechnology, 87(5), 1975-1982, EnglishCo-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2[Refereed]Scientific journal
- May 2010, Biotechnology Journal, 5, 449-455, EnglishEthanol production from cellulosic materials using cellulase expressing yeast[Refereed]Scientific journal
- Mar. 2010, Journal of Experimental Botany, 61(4), 1041-1051, EnglishMetabolic turnover analysis by a combination of in vivo C-13-lABEling from (CO2)-C-13 and metabolic profiling with CE-MS/MS reveals rate-limiting steps of the C-3 photosynthetic pathwaty in Nicotiana tabacum leaves[Refereed]Scientific journal
- Mar. 2009, PLANT BIOTECHNOLOGY, 26(1) (1), 39 - 46, EnglishMetabolic pathway engineering by plastid transformation is a powerful tool for production of compounds in higher plants[Refereed]Scientific journal
- Sep. 2008, The Plant Journal, Vol 55. No. 5, pp. 857-868, EnglishBiosynthesis of astaxanthin in tobacco leaves by transplastomic engineering[Refereed]Scientific journal
- May 2008, Journal of Bioscience and Biotechnology, Vol 105. No. 5, pp. 518-526, EnglishOverexpression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production[Refereed]Scientific journal
- Mar. 2008, Tetrahedron Letters, Vol 49. No. 20, pp. 3294-3296, English4-Ketoantheraxanthin, a novel carotenoid produced by the combination of the bacterial enzyme b-carotene ketolase CrtW and endogeneous carotenoid biosynthetic enzymes in hihger plants[Refereed]Scientific journal
- Aug. 2004, Journal of Biotechnology, Vol 111. No. 3, pp. 241-251, EnglishExpression of fungal pectin methylesterase in transgenic tobacco leads to alteration cell wall metabolism and a dwarf phenotype[Refereed]Scientific journal
- Mar. 2004, Analytical Chemistry, Vol 76. No. 5, pp. 1500-1506, EnglishReal-time quantification of methanol in plants using a hybrid alcohol oxidase-peroxidase biosensor[Refereed]Scientific journal
- Dec. 2003, Journal of Biotechnology, Vol 106. No. 1, pp. 45-52, EnglishMethanol production is enhanced by expression of an Aspergillus niger pectin methylesterase in tobacco cells[Refereed]Scientific journal
- Nov. 2001, Bioorganic & Medicinal Chemistry Letters, Vol. 11, No. 22, pp. 2927-2930, EnglishSELEX for tubulin affords specific T-rich DNA aptamers[Refereed]Scientific journal
- Jan. 2023, JST news, 1, 10 - 11, Japanese特集 CO2から有用物質を生産し低炭素社会実現へ:AIと代謝工学を組み合わせ生産株開発を加速
- Oct. 2022, 日本生物工学会100年史, 58 - 60, Japanese第4章 生物工学のこれから これからの生物育種 -代謝工学による育種のこれから-Introduction scientific journal
- Oct. 2022, 日本生物工学会100年史, 29 - 31, Japanese第3章 生物工学の研究100年 育種技術 -突然変異から代謝工学へ-Introduction scientific journal
- Apr. 2022, 化学工学 [特集]「生物機能を利用したモノづくり」に貢献するプロセス強化, 86(4) (4), 157 - 160, Japanese微生物の高速育種を実現するスマートセル創出プラットフォームIntroduction scientific journal
- Mar. 2022, オレオサイエンス, 22(3) (3), 99 - 105, Japanese進化する酵母細胞表層工学 -バイオインターフェイスの高度利用に向けた技術戦略-Introduction scientific journal
- Sep. 2021, 生物工学会誌, 99(9) (9), 456 - 460, Japanese光合成メタボロミクスの物質生産への応用
- Aug. 2021, 生物工学会誌, 99(8) (8), 403 - 403, Japanese特集 藻類バイオマス利用のための新しい生物工学
- Feb. 2020, 化学工学, 84(2) (2), 51, Japaneseスマートセルインダストリーの形成に向けたバイオ×デジタルの技術開発Introduction scientific journal
- Jan. 2020, バイオサイエンスとインダストリー, 78(1) (1), 32 - 33, Japanese新たに設計した代謝経路を用いた大腸菌によるアルカロイド高生産Introduction scientific journal
- Sep. 2019, バイオサイエンスとインダストリー, 77(5) (5), 410 - 411, Japaneseスマートセル開発に資するメタボロミクス技術Introduction scientific journal
- Sep. 2019, バイオサイエンスとインダストリー, 77(5) (5), 390 - 392, Japanese細胞表層提示酵母を利用したクラフトパルプからのキシリトール生産Introduction scientific journal
- Previous studies have utilized monoamine oxidase (MAO) and L-3,4-dihydroxyphenylalanine decarboxylase (DDC) for microbe-based production of tetrahydropapaveroline (THP), a benzylisoquinoline alkaloid (BIA) precursor to opioid analgesics. In the current study, a phylogenetically distinct Bombyx mori 3,4-dihydroxyphenylacetaldehyde synthase (DHPAAS) is identified to bypass MAO and DDC for direct production of 3,4-dihydroxyphenylacetaldehyde (DHPAA) from L-3,4-dihydroxyphenylalanine (L-DOPA). Structure-based enzyme engineering of DHPAAS results in bifunctional switching between aldehyde synthase and decarboxylase activities. Output of dopamine and DHPAA products is fine-tuned by engineered DHPAAS variants with Phe79Tyr, Tyr80Phe and Asn192His catalytic substitutions. Balance of dopamine and DHPAA products enables improved THP biosynthesis via a symmetrical pathway in Escherichia coli. Rationally engineered insect DHPAAS produces (R,S)-THP in a single enzyme system directly from L-DOPA both in vitro and in vivo, at higher yields than that of the wild-type enzyme. However, DHPAAS-mediated downstream BIA production requires further improvement.01 May 2019, Nature communications, 10(1) (1), 2015 - 2015, English, International magazine
- Mar. 2019, 生物工学会誌, 97(3) (3), 150 - 151, JapaneseBranch SpiritIntroduction scientific journal
- Oct. 2018, 生物工学会, 96(10) (10), 598 - 601, Japaneseチャンスを掴むための準備, バイオ系のキャリアデザインIntroduction scientific journal
- Nov. 2017, アグリバイオ, 1(12) (12), 24 - 29, Japaneseバイオリファイナリー実現を加速する先端バイオ技術と情報技術の融合Introduction scientific journal
- Feb. 2017, MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 5(5) (5), EnglishOthers
- 日本農芸化学会 ; 1962-, Feb. 2017, 化学と生物, 55(2) (2), 88 - 97, Japanese多彩な戦略で挑むシアノバクテリア由来の燃料生産 持続可能な第三世代バイオ燃料生産の最前線Introduction scientific journal
- Nov. 2016, レーザー研究, 11, 731 - 734, Japanese微細藻類を利用したバイオ燃料とカロテノイド類の生産Introduction scientific journal
- Nov. 2016, 生物工学, 94(11) (11), 698 - 700, Japanese原子間力顕微鏡による酵母細胞表層セルラーゼの局在評価[Refereed]Introduction scientific journal
- シーエムシー出版, Oct. 2016, バイオマスエネルギーの技術と市場, 第4章, 33 - 45, Japanese次世代バイオエタノール製造技術[Refereed]Introduction scientific journal
- 2016, Journal of Environmental Biotechnology, 16(1) (1), 51 - 58, Japanese代謝プロファイリング法の微生物育種技術への応用Introduction scientific journal
- 日本生物工学会, 2015, 日本生物工学会大会講演要旨集, 67, 250 - 250, English2S-Ca04 Development of microbial cell factories for biorefinery
- 2015, 日本生物工学会大会講演要旨集, 67th好気・低濃度グルコース条件下におけるSaccharomyces cerevisiaeの転写解析
- 2015, 日本生物工学会大会講演要旨集, 67thSaccharomyces cerevisiaeの糖代謝における転写制御ネットワークの予測
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 206 - 206, Japanese3P-045 Effects of hydrolysate of lignocellulosic biomass on phenyllactate fermentation by recombinant Escherichia coli
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 205 - 205, Japanese3P-044 Improvement of CHO cells useful in bio-pharmaceutical development, construction of data leading to the culture state elucidation
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 51 - 51, Japanese1P-134 Development of the novel secretion signal sequence for highly-efficient cell surface display and secretory production of proteins by yeasts
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 246 - 246, Japanese3P-205 Metabolite profiling of oceanic cyanobacteria under salt stress condition
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 252 - 252, Japanese3P-229 Effect of PHO13 gene disruption on xylose production in xylose-fermenting yeast harboring xylose isomerase gene
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 139 - 139, Japanese2P-132 Development of lipid-producing system depending on estimation of cell composition and metabolic analysis for marine green alga Chlamydomonas sp. JSC4
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 140 - 140, English2P-136 Effect of illumination coupled with nitrogen depletion on biodiesel production of a marine microalga Chlamydomonas sp. JSC4 :
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 130 - 130, Japanese2P-095 High-level ethanol production from cyanobacterium Spirulina by amylase displayed yeast
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 98 - 98, Japanese2A-Dp01 Development of microbe breeding technology based on metabolic profiling
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 44 - 44, Japanese1P-110 Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions
- 日本生物工学会, 2014, 日本生物工学会大会講演要旨集, 66, 177 - 177, Japanese3S-Ba05 Challenge for liquid fuel production from algae based on metabolic analysis
- 2014, 日本生物工学会大会講演要旨集, 66thキシロース資化性酵母における遺伝子発現プロファイルの経時変化解析
- 2014, 日本生物工学会大会講演要旨集, 66thKluyveromyces marxianusの好気条件での糖代謝系の解析
- Aug. 2013, 安全工学, 52(4) (4), 249 - 255, Japaneseバイオリファイナリー社会に向けた燃料・化学品生産Introduction scientific journal
- 日本生物工学会, Jun. 2013, 生物工学会誌, 91(6) (6), 314 - 318, Japanese革新的なものづくり実現のための「合成生物工学」Introduction scientific journal
- 日本生物工学会, 2013, 日本生物工学会大会講演要旨集, 65, 43 - 43, Japanese1P-104 Identification of genes related to improved ethanol production from xylose in presence of acetate and formate by regulation of metabolism in Saccharomyces cerevisiae
- 日本生物工学会, 2013, 日本生物工学会大会講演要旨集, 65, 64 - 64, Japanese1P-185 Development of high lipid producing system by green alga Chlamydomonas orbicularis under sea salt condition
- 日本生物工学会, 2013, 日本生物工学会大会講演要旨集, 65, 66 - 66, English1P-196 Phototrophic cultivation of a marine microalga Chlamydomonas orbicularis for CO_2 fixation and biodiesel production: Effect of medium composition, nitrogen depletion, and sea salt concentration :
- 日本生物工学会, 2013, 日本生物工学会大会講演要旨集, 65, 64 - 64, Japanese1P-186 Glycogen production for biorefinery using oceanic cyanobacteria
- 日本生物工学会, 2013, 日本生物工学会大会講演要旨集, 65, 54 - 54, Japanese1P-146 Improvement of ethanol production from xylose by regulation of the PHO pathway in Saccharomyces cerevisiae
- 日本生物工学会, 2013, 日本生物工学会大会講演要旨集, 65, 65 - 65, Japanese1P-191 The effect of sea-salts on the cell-growth and photosynthesis in a remarkable carbon feedstock Spirulina
- 日本生物工学会, 2013, 日本生物工学会大会講演要旨集, 65, 63 - 63, Japanese1P-184 Development of novel yeast cell surface display system for consolidated bioethanol production from lignocellulosic biomass
- 日本生物工学会, 2013, 日本生物工学会大会講演要旨集, 65, 141 - 141, Japanese2P-148 Sugar concentration in liquid hydrolysate of dilute acid pretreated rice straw by nanofiltration
- 2013, 日本生物工学会大会講演要旨集, 65th統合バイオプロセスによる環境調和型セルロース系エタノール生産に資する前処理技術の開発
- 2013, 日本農芸化学会大会講演要旨集(Web), 2013発酵阻害物存在下におけるキシロースからのエタノール発酵向上酵母の構築
- Mar. 2012, 第53回日本植物生理学会, JapaneseCyanobacterium Synechocystis sp. PCC6803 におけるO2存性オルタナティブ・エレクトロン・フロー (AEF)の生理的役割
- 日本生物工学会, 2012, 日本生物工学会大会講演要旨集, 64, 65 - 65, Japanese2Gp16 Metabolome analysis of filamentous fungus Rhizopus oryzae showing different behaviors of lipase secretion
- 日本生物工学会, Oct. 2011, 生物工学会誌, 89(10) (10), 585 - 588, Japanese有用希少イノシトールのバイオアベイラビリティーとバイオコンバージョン生産Introduction scientific journal
- Oct. 2011, ブレインテクノニュース, 144, 17 - 22, JapaneseCBP用スーパー酵母を用いたバイオエタノール生産技術の開発Introduction scientific journal
- 化学工業社, Sep. 2011, ケミカルエンジニヤリング, 56(9) (9), 661 - 668, Japaneseバイオマスからの効率的なバイオ燃料の生産技術 (特集 本格化するバイオマスエネルギー開発)
- Sep. 2011, ケミカルエンジニヤリング, 56(9) (9), 5 - 12, Japaneseバイオマスからの効率的なバイオ燃料の生産技術Introduction scientific journal
- 一般社団法人日本土壌肥料学会, 08 Aug. 2011, 日本土壌肥料学会講演要旨集, (57) (57), 329 - 329, Japanese11 シアノバクテリアでのオルタナティブ・エレクトロン・フロー(AEF)評価系の確立(関西支部講演会,2010年度各支部会講演要旨)
- Apr. 2011, 生物工学会誌, 89(4) (4), 181 - 183, Japanese微細藻類によるバイオリファイナリーIntroduction scientific journal
- 日本生物工学会, 2011, 日本生物工学会大会講演要旨集, 63, 180 - 180, Japanese2Ip14 High efficient ethanol production from hydrothermally-processed rice straw using cellulase-displaying yeast with a rotary fermenter
- 日本生物工学会, 2011, 日本生物工学会大会講演要旨集, 63, 187 - 187, Japanese2Ka04 Reduction of furan derivatives by NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway
- Nov. 2010, バイオインダストリー, 11, 6-12, Japaneseバイオマスからのバイオ燃料生産に向けた戦略Introduction scientific journal
- Jul. 2010, 生物工学, 88(7), 333-335, Japanese次世代燃料・化成品原料製造に向けたバイオリファイナリー戦略Introduction scientific journal
- 日本ビタミン学会, 25 Apr. 2010, ビタミン, 84(4) (4), 206 - 206, Japanese2-IV-14 D-アラビノースは酵母エリスロアスコルビン酸の内在性前駆体ではない(一般演題,日本ビタミン学会第62回大会発表要旨)
- 日本生物工学会, 2010, 日本生物工学会大会講演要旨集, 22, 87 - 87, Japanese3P-1119 Efficient ethanol production from xylose in the presence of fermentation inhibitors
- 日本生物工学会, 2010, 日本生物工学会大会講演要旨集, 22, 202 - 202, Japanese3S-Ba04 Development of bio-fuel production system using microalgae
- 日本生物工学会, 2010, 日本生物工学会大会講演要旨集, 22, 119 - 119, Japanese2P-2051 Efficient fermentation of xylose to ethanol in the presence of furan compound by recombinant Saccharomyces cerevisiae expressing Alcohol dehydrogenase
- 日本生物工学会, 2010, 日本生物工学会大会講演要旨集, 22, 60 - 60, Japanese3P-1011 Construction of the recombinant xylose fermentation yeast with high β-xylosidase activity from OC-2 triple marker strain as a platform
- 2010, Recent Patents on Biotechnology, 4(3) (3), 226 - 234, English[Refereed]Introduction scientific journal
- The Society for Biotechnology, Japan, Nov. 2009, Journal of bioscience and bioengineering, 108(1) (1), S167, EnglishSB-O5 Dynamic metabolic profiling in plant leaves using in vivo stable isotope labeling(Section XI Systems Biotechnology/Metabolic Engineering)
- Nov. 2009, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 108, S167 - S167, EnglishSummary international conference
- Nov. 2009, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 108(1) (1), S53, English[Refereed]Summary international conference
- Nov. 2009, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 108, S53, English[Refereed]Summary international conference
- Mar. 2009, ケミカルエンジニヤリング, Vol 54. No. 3, pp. 24-30, Japaneseバイオマスからの化学品生産を目指したバイオプロセスの開発Introduction scientific journal
- 日本生物工学会, 2009, 日本生物工学会大会講演要旨集, 21, 292 - 292, Japanese3S15a04 Bioproduction through synthetic bioengineering
- 2008, 生化学13CO2を用いた同位体標識による葉内代謝物質のターンオーバー解析
- Dynamic metabolic profiling using in vivo stable isotope labeling生体試料に含まれる代謝産物の量的情報をMSやNMRを利用して網羅的に解析する代謝プロファイリング技術は,微量な中間代謝物質を含む多様な化合物の一斉分析を可能にしたが,ここで得られる情報は代謝物質を抽出した時点での蓄積量のスナップショットであった.生体内で代謝物質が動的定常状態にある時,総量は変わらずに一定の同じ速度で分解と合成が行われて入れ替わっており,新規合成される物質の存在比率を知るためには安定同位体を用いたin vivo標識が必須である.代謝プロファイリングと安定同位体標識法の組合せを利用した「動的代謝プロファイリング」は,代謝産物の量的変動を網羅的に観測することを可能にする.植物の環境変化やストレスに対する応答はシステマティックな代謝変動に基づくことが予想され,「動的代謝プロファイリング」はこうした複雑な応答機構の解明に寄与することが期待できる.Metabolic profiling technique has enabled to analyze the level of various metabolites including minor intermediates by using MS or NMR simultaneously, but the information available from the technique was snapshot in vivo at the time of sampling metabolites. In the dynamic steady state, metabolites are replaced with newly-synthesized compounds at a constant rate and the total amount of metabolites remains unchanged. Therefore, in vivo labeling with stable isotopes is necessary for the determination of turnover rates of metabolites. Dynamic metabolic profiling formed by the combination of metabolic profiling and stable isotope labeling technique enables to determine changes in metabolic flux exhaustively. In plants, responses to stress or environmental changes would be based on systematic variations in metabolism. The dynamic metabolic profiling would contribute to elucidate the complicated response mechanism.光合成研究法. 北海道大学低温科学研究所, 日本光合成研究会共編北海道大学低温科学研究所 = Institute of Low Temperature Science, Hokkaido University, 2008, Low temperature science, 67, 169 - 174, Japanese
- 公益社団法人日本生物工学会, 25 Aug. 2003, 日本生物工学会大会講演要旨集, 15, JapaneseExpression of Aspergillus niger pectin methylesterase in transgenic tobacco (Nicotiana tabacum) leads to alterations on the level of methanol and a dwarf phenotype
- 公益社団法人日本生物工学会, 10 Jul. 2000, 日本生物工学会大会講演要旨集, 12, Japanese
- Joint work, 第9章 バイオマス燃料生産の技術動向, シーエムシー出版, Feb. 2022クリーンエネルギーの技術と市場 2022
- 第2章 醸造の科学, 最近の育種技術, 朝倉書店, Jun. 2021醸造の辞典
- 第11章 スマートセルの動向と効率的創製に向けたAI活用, 第1節 国内におけるスマートセルの動向, 技術情報協会, Apr. 2021バイオリアクターのスケールアップと物質生産事例集
- 応用・展望編 Ⅰ. 応用研究 代謝工学分野へのメタボロミクスの応用, 羊土社, Apr. 2021メタボロミクス 実践ガイド
- Metabolic Engineering for Carotenoid Production Using Eukaryotic Microalgae and Prokaryotic Cyanobacteria, Springer, 2021Carotenoids: Biosynthetic and Biofunctional Approaches
- Joint work, 第Ⅲ編 生物プロセス, 第2章 ラン藻によるバイオコハク酸生産, シーエムシー, Jul. 2020脱石油に向けたCO2資源化技術―化学・生物プロセスを中心に―
- Joint work, 第3章 7. 組織内の分子を網羅的に測る技術, シーエムシー・リサーチ, Jun. 2019骨格筋研究を核とした筋スマート社会
- Joint work, シーエムシー出版, Jun. 2018, Japanese第9章 油脂酵母による油脂発酵生産性改善へ向けた技術開発, スマートセルインダストリー -微生物細胞を用いた物質生産の展望-, 第3編 産業応用へのアプローチScholarly book
- Joint work, シーエムシー出版, Jun. 2018, Japaneseスマートセル設計に資するメタボローム解析, スマートセルインダストリー -微生物細胞を用いた物質生産の展望-, 第1編 ハイスループット合成・分析・評価技術, 第3章 オミクス解析技術Scholarly book
- Joint work, シーエムシー出版, Jun. 2018, Japaneseスマートセルインダストリー –微生物細胞を用いた物質生産の展望–(第1編 ハイスループット合成・分析・評価技術,第2章 ハイスループット微生物構築・評価技術,第1節 「微生物を用いた物質生産とハイスループット微生物構築技術」)Scholarly book
- Joint work, シーエムシー出版, Jun. 2018, Japaneseスマートセルインダストリー, 総論 -微生物細胞を用いた物質生産の展望-Scholarly book
- Joint work, Wiley-VCH, Feb. 2018, EnglishEmerging Areas in Bioengineering:Whole cell biocatalysts using enzymes displayed on yeast cell surfaceScholarly book
- Joint work, Wley, Nov. 2016, EnglishIndustrial Biotechnoligy : Products and Processes, Chapter 5, Production of fuels and chemicals from biomass by integrated bioprocessesScholarly book
- Joint work, 文永堂出版, Aug. 2016, Japanese応用微生物学,第10章 低炭素化社会への取組み,バイオ燃料Scholarly book
- Joint work, Wiley, Apr. 2014, EnglishBioprocessing of Renewable Resources to Commodity Bioproducts, Chapter 8, Ethanol production from yeastsScholarly book
- Joint work, 丸善出版, Jan. 2014, Japanese化学便覧 応用化学編Scholarly book
- Joint work, シーエムシー出版, Nov. 2013, Japanese次世代パワートレイン開発と燃料技術Scholarly book
- Joint work, シーエムシー出版, May 2013, Japaneseリサイクルバイオテクノロジーの最前線, 第I編 第1章, 8 微細藻類・シアノバクテリアからのバイオエタノール生産Scholarly book
- Joint work, シーエムシー出版, May 2013, Japaneseリサイクルバイオテクノロジーの最前線, 第I編 第1章, 1 未来型CBP法によるバイオエタノール生産技術の展開Scholarly book
- Joint work, 化学同人, Oct. 2012, Japaneseひらく、ひらく「バイオの世界」Scholarly book
- Joint work, シーエムシー出版, Jul. 2012, Japanese微細藻類によるエネルギー生産と事業展望Scholarly book
- Joint work, エヌ・ティー・エス, Jul. 2012, Japanese藻類ハンドブックScholarly book
- Joint work, シーエムシー出版, Apr. 2012, Japanese合成生物工学の隆起Scholarly book
- Joint work, 三共出版, Mar. 2012, Japanese微生物機能学Scholarly book
- Joint work, シーエムシー出版, Mar. 2012, Japaneseバイオマス分解酵素研究の最前線, 第7編, 第28章 セルラーゼ細胞表層提示酵母を用いたバイオマス変換Scholarly book
- Joint work, シーエムシー出版, Mar. 2012, Japaneseバイオマス分解酵素研究の最前線, 序章, 2 バイオマス分解酵素研究の新たな展開Scholarly book
- Joint work, Springer, 2012, EnglishSystem Metabolic EngineeringScholarly book
- Joint work, シーエムシー出版, Dec. 2010, JapaneseエコバイオリファイナリーScholarly book
- Joint work, シーエムシー出版, Apr. 2010, Japaneseグリーンバイオケミストリーの最前線Scholarly book
- Joint work, Humana Press, Feb. 2010, EnglishMethods in Molecular BiologyScholarly book
- Joint work, フロンティア出版, Jan. 2010, Japanese次世代バイオエタノール生産の技術革新と事業展開, 第7章, 4 アーミング酵母を用いた統合プロセスによるバイオエタノール生産Scholarly book
- Joint work, フロンティア出版, Jan. 2010, Japanese次世代バイオエタノール生産の技術革新と事業展開, 第10章, 7 アーミング技術を応用した新規セルロース分解システムの構築Scholarly book
- Joint work, シーエムシー出版, Apr. 2009, Japanese第二世代バイオ燃料の開発と応用展開Scholarly book
- Joint work, 生物研究社, Mar. 2009, Japanese水環境の今と未来 藻類と植物のできることGeneral book
- Joint work, 北海道大学低温科学研究所・日本光合成研究会共編, Mar. 2009, Japanese光合成研究法Scholarly book
- レーザー学会学術講演会第41回年次大会シンポジウム, Jan. 2021, Japaneseポストコロナ時代の産学連携について考える
- 第一回先端膜工学研究推進機構特定テーマフォーラム~医薬・バイオプロセスにおける膜利用の現状と将来展望~, Dec. 2020, Japaneseバイオプロセスにおける膜利用の現状と将来展望
- 2nd ASBA Webinar, Dec. 2020, EnglishMetabolomics-based engineering biology for microbial bio-production with sustainability
- CBI学会2020年大会, Oct. 2020, Japaneseハイスループットプラットフォームの開発による微生物スマートセルの構築
- JPC関西特別報告会, Oct. 2020, Japanese微細藻類を利用した物質生産プロセスへのLEDの応用
- Laboratory Automation勉強会, Aug. 2020, Japaneseメタボローム解析の自動化に向けた挑戦
- 質量分析インフォマティクス研究会 第5回ワークショップ, Aug. 2020, Japaneseバイオ×デジタルの技術融合による有用微生物「スマートセル」開発への挑戦[Invited]
- 日本農芸化学会2020年度大会, Japaneseスマートセルインダストリーに資するハイスループット微生物構築・評価技術の開発
- NEDOフェスタin関西 2019, Dec. 2019, Japanese, Domestic conferenceスマートセル開発に資するハイスループット微生物構築・評価技術の概要[Invited]Public discourse
- 日本農芸化学会関西支部 支部例会(第511回講演会), Dec. 2019, Japanese, Domestic conference酵母Saccharomyces cerevisiaeの鉄代謝改変に基づくキシロースからの1,2,4-ブタントリオール発酵生産Oral presentation
- 日本農芸化学会関西支部 支部例会(第511回講演会), Dec. 2019, Japanese, Domestic conferenceスマートセルインダストリーに資するメタボローム解析技術の開発と応用[Invited]Invited oral presentation
- 藍藻の分子生物学2019, Nov. 2019, Japanese, Domestic conference藍藻の動的メタボローム解析技術の開発と応用[Invited]Invited oral presentation
- Bio Japan 2019, Oct. 2019, Japanese, Domestic conferenceバイオ×デジタルによるスマートセル開発への挑戦[Invited]Nominated symposium
- Metabolic Engineering Summit 2019, Oct. 2019, English, International conferenceMetabolomics-based engineering for smart cell developmentOral presentation
- 2019 Asian Synthetic Biology Association (ASBA) Meeting, Oct. 2019, English, International conferenceMetabolomics-based engineering biology for bio-productionOral presentation
- 第61回天然有機化合物討論会, Sep. 2019, English, Domestic conferenceRe-design, synthesis, and bio-analysis of sulfosialic acids as covalent inhibitors of neuraminidasePoster presentation
- 2019年度NEDOスマートセルプロジェクト技術セミナー, Sep. 2019, Japanese, Domestic conferenceスマートセル開発に資するハイスループット微生物構築・評価技術の概要Invited oral presentation
- 第71回日本生物工学会大会, Sep. 2019, Japanese, 岡山大学, Domestic conference窒素源存在下で油脂を高蓄積する海洋性クラミドモナス変異株の選択的育種Oral presentation
- 第71回日本生物工学会大会, Sep. 2019, Japanese, 岡山大学, Domestic conference食農産業における LED の利活用技術の開発Oral presentation
- 第71回日本生物工学会大会, Sep. 2019, Japanese, 岡山大学, Domestic conference細胞表層提示システムに適した宿主酵母の開発Oral presentation
- 第71回日本生物工学会大会, Sep. 2019, Japanese, 岡山大学, Domestic conference海洋性クラミドモナス油脂高蓄積変異株における油脂・カロテノイド増産メカニズムの解明Oral presentation
- 第71回日本生物工学会大会, Sep. 2019, Japanese, 岡山大学 津島キャンパス, Domestic conferencePichia pastorisにおいて分泌シグナル配列の1アミノ酸置換はタンパク質分泌生産量を劇的に増大させるOral presentation
- The 14th Asian Congress on Biotechnology (ACB2019), Jul. 2019, English, International conferenceSmart Cell Development Based on High Throughput Technology, Advanced Analysis and Computational Science for Bio-production in Microorganisms[Invited]Invited oral presentation
- 生物工学若手研究者の集い 夏のセミナー2019, Jul. 2019, Japanese, Domestic conference酵母 Scheffersomyces stipitisを用いたバイオマス資源からの有用芳香族化合物生産プロセスの開発Poster presentation
- Metabolomics 2019, Jun. 2019, English, International conferenceMetabolomics-based engineering biology of microorganismsOral presentation
- 第6回SBJシンポジウム, May 2019, Japanese, 千里ライフサイエンスセンター, Domestic conferenceスマートセル創出プラットフォーム構築へ向けた挑戦Oral presentation
- 日本農芸化学会2019年度大会, Mar. 2019, Japanese, 東京農業大学 世田谷キャンパス, Domestic conference緑色LEDを用いた微細藻類バイオマス増産技術の開発Poster presentation
- 日本農芸化学会2019年度大会, Mar. 2019, Japanese, 東京農業大学 世田谷キャンパス, Domestic conference4-アミノフェニルアラニン発酵における組換え大腸菌の代 謝改変Poster presentation
- 関西スマートセルフォーラム2018 第3回セミナー, Jan. 2019, Japanese, 大阪中之島センター, Domestic conferenceスマートセル創出プラットフォームの構築と実証に向けてOral presentation
- Asian Synthetic Biology Association 2018, Nov. 2018, English, Hyatt Regency Jeju, International conferencePlatform Technologies for Development of Smart CellOral presentation
- IEE CPMT Symposium Japan 2018, Nov. 2018, English, 京都大学, International conferenceDevelopment of "smart cell" construction platform for next-generation microbial breeding[Invited]Invited oral presentation
- The Symposium on Biorefinery and Biprocess Topics, 2018 (iBio-N 2018), Nov. 2018, English, Nanjing, China, International conferenceConstruction of a stable, autonomously replicating plasmid vector containing Pichia pastoris centromeric DNAPoster presentation
- BioJapan 2018, Oct. 2018, Japanese, パシフィコ横浜, Domestic conference次世代型微生物育種に資するスマートセル創出プラットフォームの開発[Invited]Invited oral presentation
- 日本農芸化学会 関西・中部支部 2019年度合同神戸大会, Sep. 2018, Japanese, Domestic conferenceM2p3 Non-conventional酵母 Scheffersomyces stipitisを用いたレスベラトロール生産プロセスの開発Oral presentation
- 第70回日本生物工学会大会 SK-IIランチョンセミナー, Sep. 2018, Japanese, Domestic conference酵母の代謝解析の最新知見と化粧品原料への応用Public discourse
- iBioK第8回合成生物工学シンポジウム, Sep. 2018, Japanese, Domestic conference先端バイオ工学研究センターについてNominated symposium
- 第70回日本生物工学会大会, Sep. 2018, Japanese, 日本生物工学会, 関西大学 千里山キャンパス, Domestic conference二次代謝系の動的特性解析における大過剰化合物測定の有無の影響の数理解析Poster presentation
- 第70回日本生物工学会大会, Sep. 2018, Japanese, 日本生物工学会, 関西大学 千里山キャンパス, Domestic conference鉄硫黄タンパク質高活性化に基づくキシロースからの1,2,4-ブタントリオール生産技術の開発Poster presentation
- 第70回日本生物工学会大会, Sep. 2018, Japanese, 関西大学 千里山キャンパス, Domestic conference組換え出芽酵母Saccharomyces cerevisiaeによるキシロースからのグルタチオン生産Poster presentation
- 第70回日本生物工学会大会, Sep. 2018, Japanese, 日本生物工学会, 関西大学 千里山キャンパス, Domestic conference接合型変換を利用したセルラーゼ群表層提示酵母の糖化活性及び発酵阻害物耐性向上Poster presentation
- 第70回日本生物工学会大会, Sep. 2018, Japanese, 日本生物工学会, 関西大学 千里山キャンパス, Domestic conference酵母Scheffersomyces stipitisを用いたレスベラトロール生産プロセスの開発Poster presentation
- 第70回日本生物工学会大会, Sep. 2018, Japanese, 日本生物工学会, 関西大学 千里山キャンパス, Domestic conference酵母Scheffersomyces stipitisを宿主とした新規細胞表層提示システムの開発Poster presentation
- 第70回日本生物工学会大会, Sep. 2018, Japanese, 日本生物工学会, 関西大学 千里山キャンパス, Domestic conference遺伝子組換え効率向上に向けたDNAリガーゼIV欠損Pichia pastoris株の開発Oral presentation
- 第70回日本生物工学会大会, Sep. 2018, Japanese, 関西大学 千里山キャンパス, Domestic conferenceラン藻窒素代謝メカニズムの解明と物質生産への応用Poster presentation
- 第70回日本生物工学会大会, Sep. 2018, Japanese, 関西大学 千里山キャンパス, Domestic conferenceスマートセル創出プラットフォームに資するメタボローム解析技術の開発Oral presentation
- 第70回日本生物工学会大会, Sep. 2018, Japanese, 日本生物工学会, 関西大学 千里山キャンパス, Domestic conferencePichia pastorisにおけるセントロメアDNA配列を用いた自律複製型プラスミドベクターの開発Oral presentation
- The International Symposium on Phototrophic Prokaryotes (ISPP), Aug. 2018, English, the Life Sciences Centre, The University of Buritish Columbia, International conferenceTemperature dependent succinate biosynthesis concurrent with alteration in central metabolism turnover in synechocystis SP.PCC6803Oral presentation
- 第13回 アジレントメタボロミクスセミナー, Jul. 2018, Japanese, 慶応義塾大学 三田キャンパス, Domestic conference動的メタボロミクスの開発とスマートセルインダストリーへの展開[Invited]Invited oral presentation
- 第20回 新産業技術促進検討会, Jul. 2018, Japanese, TKPガーデンシティPREMIUM神保町 プレミアムボールルーム, Domestic conferenceスマートセル創出プラットフォームに資するハイスループット微生物構築・評価技術の開発Oral presentation
- Metabolic Engineering 12, Jun. 2018, English, The Westin Grand Munich, International conferenceDynamic Metabolomics of Crabtree-Negative Yeast Kluyveromyces MarxianusOral presentation
- The 8th International Conference on Algal Biomass, Biofuels and Bioproducts (AlgalBBB 2018), Jun. 2018, English, Motif Seattle, International conferenceConverting Chlamydomonas sp. JSC4 lipids to biodiesel via biocatalysis with Fusarium heterosporum lipase-expressing Aspergillus oryzae whole-cellPoster presentation
- ライフサイエンス技術部会・反応分科会講演会講演会「スマートセルインダストリーに関する研究開発動向」, Feb. 2018, Japanese, Domestic conferenceスマートセルインダストリーの創出に資する微生物育種プラットフォームの開発[Invited]Public discourse
- The 9th International Symposium of Innovative BioProduction Kobe (iBioK), Feb. 2018, English, Kobe, Japan, International conferenceEnhanced protein secretion by accumulation of novel effective factors in Pichia pastorisPoster presentation
- The 9th International Symposium of Innovative BioProduction Kobe (iBioK), Feb. 2018, English, Kobe, Japan, International conferenceA new autonomous replicating plasmid vector containing Pichia pastoris centromeric DNAPoster presentation
- シンポジウム「微細藻類を利用したバイオ燃料生産の研究開発動向」, Jan. 2018, Japanese, オフィス東京, Domestic conference藻類オイル生産の実用化に向けた代謝メカニズム解析の重要性Oral presentation
- 5th Asian Conference on Biomass Science, Jan. 2018, English, 日本エネルギー学会, 仙台市, International conferenceEfficient Xylitol Production from Kraft Pulp by a Cell Surface Engineered Strain ofSaccharomyces cerevisiaePoster presentation
- 静岡大学グリーン科学研究所 第4回シンポジウム, Nov. 2017, Japanese, Domestic conferenceEngineering Biologyによるバイオリファイナリーの構築とスマートセルインダストリーへの展開[Invited]Invited oral presentation
- 第11回メタボロームシンポジウム, Nov. 2017, Japanese, ホテル阪急エキスポパーク, Domestic conference動的メタボロミクスの開発とスマートセルインダストリーへの展開Oral presentation
- The 8th Kobe University Brussels European Centre Symposium, Nov. 2017, English, Vrije Universiteit Brussel U-Residence, International conferenceDevelopment of dynamic metabolomics and its application to metabolic engineeringOral presentation
- BioJapan 2017, Oct. 2017, Japanese, パシフィコ横浜, Domestic conferenceスマートセルを創出する合成バイオプラットフォームの開発Oral presentation
- 第69回日本生物工学会大会, Sep. 2017, Japanese, 日本生物工学会, 東京都新宿区, Domestic conference油脂高蓄積クラミドモナス株の選抜育種によるバイオ燃料生産「明暗周期問題」の克服Oral presentation
- 第31回カロテノイド研究談話会, Sep. 2017, Japanese, 京都薬科大学, Domestic conference代謝工学的手法による海洋性ラン藻でのアスタキサンチン生産Poster presentation
- 第69回日本生物工学会大会, Sep. 2017, Japanese, 日本生物工学会, 東京都新宿区, Domestic conference代謝工学による黄色天然色素ルテイン高蓄積クラミドモナス株の創出Poster presentation
- 第69回日本生物工学会大会, Sep. 2017, Japanese, 日本生物工学会, 東京都新宿区, Domestic conferenceアスタキサンチン生産能を付与した高増殖性ラン藻のトランスクリプトミクスおよび動的メタボロ ミクスPoster presentation
- 第69回日本生物工学会大会, Sep. 2017, Japanese, 日本生物工学会, 早稲田大学 西早稲田キャンパス, Domestic conferencePichia pastorisのタンパク質分泌生産における新規有用因子の獲得とその蓄積による効果の検証Poster presentation
- 第69回日本生物工学会大会, Sep. 2017, Japanese, 日本生物工学会, 早稲田大学 西早稲田キャンパス, Domestic conferencePichia pastorisにおけるセントロメア配列を含む自律複製型プラスミドの開発Poster presentation
- 第69回日本生物工学会大会, Sep. 2017, Japanese, 日本生物工学会, 東京都新宿区, Domestic conferenceN-アセチルグルコサミン資化性酵母Scheffersomyces stipitisの基質別代謝特性の解析Oral presentation
- 第69回日本生物工学会大会, Sep. 2017, Japanese, 日本生物工学会, 東京都新宿区, Domestic conferenceEnhanced cell surface engineering of Saccharomyces cerevisiae and optimization of the fermentation process for efficient xylitol production from kraft pulpOral presentation
- 第69回日本生物工学会大会 国際シンポジウム, Sep. 2017, English, 早稲田大学 西早稲田キャンパス, International conferenceChallenge to development of “smart” microorganisms based on information analysis and its application to production of highly functional compoundsOral presentation
- 合成生物工学シンポジウム, Aug. 2017, Japanese, 神戸大学百年記念館六甲ホール, Domestic conferenceスマートセルを創出する合成バイオプラットフォームの開発と応用への挑戦Oral presentation
- The 18th International Symposium on Carotenoids 2017, Jul. 2017, English, The Lucerne Hall, International conferenceEnhancement in central metabolism and carotenoid biosynthesis by photosynthetic astaxanthin production in the recombinant marine cyanobacteriumOral presentation
- SB7.0 The Seventh International Meeting on Synethetic Biology, Jun. 2017, English, University Cultural Center, International conferenceCell surface engineering of Saccharomyces cerevisiae for biomass breakdownOral presentation
- エネルギー・資源技術部会 バイオマス分科会 講演会「バイオマス資源変換触媒の研究動向」, Apr. 2017, Japanese, Domestic conference進化した細胞表層工学によるバイオマス変換プロセスの開発と機能性物質生産への新展開[Invited]Invited oral presentation
- 日本農芸化学2017年度大会, Mar. 2017, Japanese, 日本農芸化学会, 京都市, Domestic conference変異チオール酸化酵素による酵母の酸化型グルタチオン 生産Oral presentation
- 日本農芸化学2017年度大会, Mar. 2017, Japanese, 日本農芸化学会, 京都市, Domestic conference代謝工学によるアスタキサンチン産生海洋性ラン藻の 開発と代謝メカニズムの解明Oral presentation
- 日本農芸化学会2017年度大会, Mar. 2017, Japanese, 京都女子大学, Domestic conferenceバイオ燃料生産に向けた耐塩性緑藻の進化工学的育種と 塩ストレス耐性による油脂生産低下メカニズムの解明Oral presentation
- 日本農芸化学2017年度大会, Mar. 2017, Japanese, 日本農芸化学会, 京都市, Domestic conferenceバイオ燃料生産に向けた耐塩性緑藻の進化工学的育種と 塩ストレス耐性による油脂生産低下メカニズムの解明Oral presentation
- 日本農芸化学2017年度大会, Mar. 2017, Japanese, 日本農芸化学会, 京都女子大学, Domestic conferenceゲノム編集による Kluyveromyces marxianus の自在な 遺伝子改変Oral presentation
- 日本農芸化学2017年度大会, Mar. 2017, Japanese, 日本農芸化学会, 京都市, Domestic conferenceSaccharomyces cerevisiae による1,2,4-ブタントリオー ル生産技術の開発Oral presentation
- 第12回バイオマス科学会議, Jan. 2017, Japanese, 日本エネルギー学会, 東京都文京区, Domestic conference統合型バイオエタノール生産プロセスの構築に資する改良型酵 母細胞表層提示用遺伝子カセットの開発Oral presentation
- 第21回関西大学先端科学技術シンポジウム, Jan. 2017, Japanese, 関西大学 千里山キャンパス, Domestic conferenceバイオリファイナリーの構築に資する微生物細胞工場の創製[Invited]Invited oral presentation
- 「植物等の生物を用いた高機能品生産技術の開発」キックオフシンポジウム, Nov. 2016, Japanese, ベイサイドホテル アジュール竹芝, Domestic conference日本独自の超高速微生物育種プラットフォーム「スマートセル・ファウンドリ」の開発Oral presentation
- The 9th Asia-Pacific Conference on Algal Biotechnology (APCAB), Nov. 2016, English, Century Park Hotel, International conferenceDevelopment of dynamic metabolic profiling and its application to fuel and chemical production in algaeOral presentation
- 第68回日本生物工学会大会, Sep. 2016, Japanese, 日本生物工学会, 富山市, Domestic conference藍藻 Synechocystis sp. PCC 6803 hox遺伝子変異株のコントロールされた培養条件における有機酸 生産Oral presentation
- 第68回日本生物工学会大会, Sep. 2016, Japanese, 日本生物工学会, 富山市, Domestic conference明暗周期下で効率的に油脂を生産するための海洋性緑藻培養技術の開発Oral presentation
- 第68回日本生物工学会大会, Sep. 2016, Japanese, 日本生物工学会, 富山市, Domestic conference酵母表層への酵素立体的配置技術の開発Oral presentation
- 第68回日本生物工学会大会, Sep. 2016, Japanese, 日本生物工学会, 富山市, Domestic conferenceラン藻スピルリナからの高生産エタノール変換プロセスの開発Oral presentation
- 第68回日本生物工学会大会, Sep. 2016, Japanese, 日本生物工学会, 富山市, Domestic conferenceバイオ医薬生産に向けたCHO細胞培養情報データ解析システムの構築Oral presentation
- 第118回触媒討論会, Sep. 2016, Japanese, 岩手大学, Domestic conferenceバイオリファイナリーの構築に資する微生物細胞工場の創生[Invited]Invited oral presentation
- 第68回日本生物工学会大会, Sep. 2016, Japanese, 日本生物工学会, 富山市, Domestic conferenceN-アセチルグルコサミン資化性酵母Scheffersomyces stipitisの特性解析Oral presentation
- The 14th International Congress on Yeasts (ICY2016), Sep. 2016, English, ICY14組織委員会, 淡路市, International conferenceEnhanced protein secretion by accumulation of novel effective factors in Pichia pastorisPoster presentation
- The 4th Asia-Oceania Algae Innovation Summit (AOAIS2016), Sep. 2016, English, East Lake International Conference Center, Wuhan, China, International conferenceBio-based fuel and chemicalproduction based on dynamic metabolic profiling of cynobacteria and microalgaeOral presentation
- The 14th International Congress on Yeasts (ICY2016), Sep. 2016, English, Awaji, Japan, International conferenceA new autonomous replicating plasmid vector containing centromere DNA sequence of Pichia pastorisPoster presentation
- 生物工学若手研究者の集い夏のセミナー2016, Jul. 2016, Japanese, 生物工学会, 府中市, Domestic conference海洋性ラン藻Synechococcus sp. PCC 7002を用いたアスタキサンチン生産技術の開発Poster presentation
- KMB2016 Annual meeting and international symposium, Jun. 2016, English, International conferenceDevelopment of cell factories of microalgae and cyanobacteria based on metabolic analysis[Invited]Invited oral presentation
- 環境バイオテクノロジー学会2016年度大会, Jun. 2016, Japanese, サテライトキャンパスひろしま, Domestic conference代謝プロファイリング法の紹介と微生物育種技術への応用Oral presentation
- Metabolic Engineering 11, Jun. 2016, English, Metabolic Engineering 11, 淡路市, International conferenceSynthetic Promoter Systems for Controlling Saccharomyces Cerevisiae Gene ExpressionOral presentation
- Metabolic Engineering 11, Jun. 2016, English, Metabolic Engineering 11, 淡路市, International conferenceEngineering of a Novel Cellulose-Adherent Cellulolytic Saccharomyces Cerevisiae for Cellulosic Biofuel ProductionPoster presentation
- Metabolic Engineering 11, Jun. 2016, English, Metabolic Engineering 11, 淡路市, International conferenceDisruption of PHO13 Improves Ethanol Production Via the Xylose Isomerase PathwayOral presentation
- Metabolic Engineering 11, Jun. 2016, English, Metabolic Engineering 11, 淡路市, International conferenceDirect and High-Productive Conversion from a Cyanobacterium Arthrospira Platensis to EthanolOral presentation
- Metabolic Engineering 11, Jun. 2016, English, Metabolic Engineering 11, 淡路市, International conferenceAlternative Inverse Metabolic Engineering Based on Transient Acclimation of Yeast Improves Acid-Containing Xylose Fermentation and Tolerance to Formic and Acetic AcidsOral presentation
- 第340回細胞工学研究会後援会/第220回遺伝子機能解析部門セミナー, Mar. 2016, Japanese, Domestic conference動的代謝プロファイリング技術の開発とバイオリファイナリーへの展開[Invited]Invited oral presentation
- 化学工学会第81年会, Mar. 2016, Japanese, Domestic conferenceAFM力計測を用いた細胞表層提示酵素の特異的検出とマッピング評価Oral presentation
- 日本化学会第96春季年回, Mar. 2016, Japanese, Domestic conferenceAFM力学計測法を利用した細胞表層空間に提示した酵素検出Oral presentation
- the 7th International Symposium of Innovative BioProduction Kobe (iBioK), Jan. 2016, English, International conferenceDynamic metabolic analysis of microorganisms for the development of bio-based chemical productionInvited oral presentation
- 平成27 年度新資源生物変換研究会 シンポジウム, Jan. 2016, Japanese, バイオインダストリー協会, Domestic conference藻類を利用したバイオエタノール、バイオベース化学品生産Oral presentation
- 第11回バイオマス科学会議, Jan. 2016, Japanese, International conferenceリグノセルロース系バイオマスの同時糖化発酵によるフェニル乳酸生産Oral presentation
- The 2015 International Chemical Congress of Pacific Basin Societies (Pacifichem 2015), Dec. 2015, English, International conferenceLive cell imaging and membrane protein mapping with atomic force microscopeOral presentation
- Pacifichem 2015, Dec. 2015, English, International conferenceDynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil productionOral presentation
- New Horizon in Biotechnology 2015, Nov. 2015, English, International conferenceDevelopment of cell factories of microalgae and cyanobacteria based on metabolic analysis[Invited]Invited oral presentation
- 藍藻の分子生物学2015, Nov. 2015, Japanese, Domestic conferenceラン藻Arthrospira platenisからの高収率エタノール生産プロセスの開発Oral presentation
- 第67回日本生物工学会大会 国際シンポジウム, Oct. 2015, Japanese, Domestic conference好機・低濃度グルコース条件下におけるSaccharomyces cerevisiaeの転写解析Oral presentation
- 第67回日本生物工学会大会 国際シンポジウム, Oct. 2015, Japanese, Domestic conferenceキチン系基室からのバイオ燃料生産の検討Oral presentation
- 第67回日本生物工学会大会 国際シンポジウム, Oct. 2015, Japanese, Domestic conferenceSaccharomyces cerevisiae の糖代謝における転写制御ネットワークの予測Oral presentation
- The 21th Symposium of Yong Asian Biochemical engineer's Communyty, Oct. 2015, English, International conferenceEffect of PHO13 gene disruption on xylose productivity of yeast harboring xylose isomerase geneOral presentation
- 第67回日本生物工学会大会 国際シンポジウム, Oct. 2015, English, Domestic conferenceDevelopment of microbial cell factories for biorefineryOral presentation
- The 21th Symposium of Yong Asian Biochemical engineer's Communyty, Oct. 2015, English, International conferenceConversion of high phospholipid-containing oils to biodiesel using immobilizes Aspergillus oryzae whole cell biocatalyst ezpressing Fusarium heteroporum lipaseOral presentation
- 第67回日本生物工学会大会 国際シンポジウム, Oct. 2015, Japanese, Domestic conferenceCombined cell-surface display-and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiaeOral presentation
- 日本植物学会第79回大会, Sep. 2015, Japanese, 新潟コンベンションセンター, Domestic conference藻類のエネルギー生産における物質代謝メカニズムの解析Oral presentation
- iBioK第5回 合成生物工学シンポジウム, Aug. 2015, Japanese, Domestic conferenceメタボロームのターンオーバー解析技術(代謝プロファイリング)の開発と物質生産への応用[Invited]Nominated symposium
- HMTセミナー 物質生産におけるメタボロミクスのいま, Jul. 2015, Japanese, Domestic conferenceマルチオミクス解析に基づく合理的細胞育種技術の開発[Invited]Public discourse
- 11th Annual International Conference of the Metabolomics Society, Jun. 2015, English, Hyatt Regency Burlingame, International conferenceDynamic metabolic profiling of cyanobacteria for bio-based chemical productionOral presentation
- KMB2015, 42nd Annual Meeting & International Symposium, Jun. 2015, English, HICO, Gyeongju, Korea, International conferenceBiofuel Production from Microalgae and Cyanobacteria Based on Metabolic ProfilingOral presentation
- 2015 KSBB Spring Meeting and International Symposium, Apr. 2015, English, International conferenceDevelopment of microbial cell factories based on metabolic engineering[Invited]Invited oral presentation
- 日本農芸化学会2015年度大会, Mar. 2015, Japanese, 日本農芸化学会, 岡山市, Domestic conference産業用酵母のゲノムシャッフリングによる高温及び酸耐性の付与と高効率キシロース発酵Oral presentation
- 日本農芸化学会2015年度大会, Mar. 2015, Japanese, 日本農芸化学会, 岡山市, Domestic conferenceアミラーゼ表層提示酵母によるシアノバクテリアArthrospira platensisからの高濃度エタノール生産Oral presentation
- 広島大学バイオマスイブニングセミナー, Dec. 2014, Japanese, Domestic conference合成生物工学によるバイオ燃料生産に資する微生物の創製[Invited]Public discourse
- 第30回バイオロジカルズ(タンパク医薬)製造技術研究会セミナー, Nov. 2014, Japanese, Domestic conference代謝システム解析に基づく細胞育種とバイオ医薬品生産への応用[Invited]Public discourse
- iBioK 第4回合成生物工学シンポジウム, Nov. 2014, Japanese, Domestic conference代謝システム解析に基づく合理的細胞育種技術の開発Nominated symposium
- バイオマス研究会, Nov. 2014, Japanese, Domestic conference微細藻類の代謝系解析に基づく次世代バイオ燃料生産への挑戦[Invited]Public discourse
- 5th International Symposium on Innovative Bioprocess in Tainan(i-BioT2014), Nov. 2014, English, National Cheng Kung University, Tainan, China, International conferenceThe development of bioconversion process to bio-ethanol from cyanobacteria Spirulina biomassOral presentation
- 5th International Symposium on Innovative Bioprocess in Tainan(i-BioT2014), Nov. 2014, English, National Cheng Kung University, Tainan, China, International conferenceDevelopment of the novel yeast cell-surface display system for consolidated bioethanol production from biomass resourcesOral presentation
- 3rd Asia-Oceania Algae Innovation Summit 2014, Nov. 2014, English, AOAIS2014, 済州、韓国, International conferenceDevelopment of Dynamic Metabolic Profiling of Cyanobacteria and MicroalgaeOral presentation
- 5th International Symposium on Innovative Bioprocess in Tainan(i-BioT2014), Nov. 2014, English, National Cheng Kung University, Tainan, China, International conferenceDevelopment of dynamic metabolic profiling of cyanobacteria and microalgaeOral presentation
- アジレント・メタボロミクスデイズ2014, Oct. 2014, Japanese, Domestic conferenceオミクス解析のバイオリファイナリー[Invited]Public discourse
- Korean Marine Biology and Biotechnology International Symposium, Oct. 2014, English, International conferenceBiodiesel production in marine microalgae through metabolic profiling and an innovative salinity-gradient strategy[Invited]Invited oral presentation
- 日本植物学会第78回大会, Sep. 2014, Japanese, 日本植物学会, 川崎市, Domestic conference代謝系解析に基づくラン藻・微細藻からのバイオ燃料生産への挑戦Oral presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conference代謝プロファイリングに基づく微生物育種技術の開発と応用Poster presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conference酵母によるタンパクの高効率細胞表層提示ならびに分泌生産のための新規分泌シグナル配列の検討Poster presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conference海産性緑藻 Chlamydomonas sp. JSC4 の細胞組成評価と代謝解析に基づいた油脂高生産系の開発Poster presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conference塩ストレス下での海洋性シアノバクテリアの代謝プロファイリングPoster presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conferenceバイオ医薬開発に有用なCHO 細胞の改良、培養状態解明につながるデータの構築Poster presentation
- 日本植物学会第78回大会ランチョンセミナー, Sep. 2014, Japanese, 島津製作所, 川崎市, Domestic conferenceバイオリファイナリーに向けた微生物の開発と代謝系解析の応用[Invited]Invited oral presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conferenceバイオマス糖化液由来成分が大腸菌のフェニル乳酸発酵に与える影響Poster presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conferenceコリネ菌におけるフルフラールの分解Poster presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conferenceキシロース資化性酵母における遺伝子発現プロファイルの経時変化解析Poster presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conferenceアミラーゼ表層提示酵母によるラン藻スピルリナからの高濃度エタノール生産Poster presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conferencePHO13 遺伝子の欠損がキシロースイソメラーゼ導入酵母のエタノール生産へ与える影響Poster presentation
- 第66回日本生物工学会大会, Sep. 2014, Japanese, 日本生物工学会, 札幌市, Domestic conferenceluyveromyces marxianus の好気条件での糖代謝系の解析Poster presentation
- 第66回日本生物工学会大会, Sep. 2014, English, 日本生物工学会, 札幌市, Domestic conferenceEffect of illumination coupled with nitrogen depletion on biodiesel production of a marine microalga Chlamydomonas sp. JSC4Poster presentation
- 生物工学若手研究者の集い夏のセミナー, Jul. 2014, Japanese, 生物工学会, 神戸市, Domestic conference色素生産を指標としたCoA代謝経路の評価系Poster presentation
- 生物工学若手研究者の集い夏のセミナー, Jul. 2014, Japanese, 生物工学会, 神戸市, Domestic conferenceキシロースイソメラーゼ導入酵母におけるPHO13遺伝子欠損がエタノール生産へ与える影響Poster presentation
- Metabolic Engineering X, Jun. 2014, English, Society for Biological Engineering, Vancouver, Canada, International conferenceDynamic Metabolic Profiling of Cyanobacteria Under Conditions of Nitrate DepletionOral presentation
- 第16回マリンバイオテクノロジー学会大会, May 2014, Japanese, マリンバイオテクノロジー学会, 津市, Domestic conference発酵生産プロセスのための海洋性ラン藻の利用Poster presentation
- 日本化学会第94春季年会, Mar. 2014, Japanese, 日本化学会, 名古屋市, Domestic conference微細藻類によるバイオ燃料や化学物質製造Oral presentation
- 日本農芸化学会2014年度大会, Mar. 2014, Japanese, 日本農芸化学会, 川崎市, Domestic conference統合型リグノセルロース系エタノール生産プロセスに資するセルラーゼ表層提示酵母の開発Oral presentation
- 第16回化学工学会学生発表会(堺大会), Mar. 2014, Japanese, 化学工学会, 大阪市, Domestic conference代謝工学的手法によるグリコーゲン高生産藍藻の創製Oral presentation
- Asian Congress on Biotechnology - ACB 2013, Dec. 2013, English, Asian Federation of Biotechnolgy, New Delhi, India, International conferenceDevelopment of lipid productive engineering with Chlamydomonas sp. Under marine conditionPoster presentation
- ラン藻の分子生物学2013, Nov. 2013, Japanese, かずさDNA研究所, 木更津市, Domestic conferenceラン藻動的代謝プロファイリング技術の開発と応用Oral presentation
- 1st Korea-Japan Microalgae Symposium, Oct. 2013, English, International conferenceDevelopment of microalgal cell factories based on sysmtems biology approach[Invited]Invited oral presentation
- i-BioB 2013, Oct. 2013, English, International conferenceBiofuel production from halophilic algae[Invited]Invited oral presentation
- 第28回つくば藻類・プロティストフォーラム, Oct. 2013, Japanese, Domestic conferencein vivo 13C標識法によるラン藻動的代謝プロファイリング[Invited]Nominated symposium
- INCHEM TOKYO 2013 産学官マッチングフォーラム, Oct. 2013, Japanese, Domestic conference新たな挑戦:イノベーティブ・バイオプロダクション[Invited]Nominated symposium
- 第65回日本生物工学会大会, Sep. 2013, Japanese, 日本生物工学会, 広島市, Domestic conference緑藻Chlamydomonas orbicularisを用いた海水塩存在下での油脂高生産条件の開発Poster presentation
- 第65回日本生物工学会大会, Sep. 2013, Japanese, 日本生物工学会, 広島市, Domestic conference統合型リグノセルロース系エタノール生産プロセスに資する新規酵母細胞表層提示システムの開発Poster presentation
- 第65回日本生物工学会大会, Sep. 2013, Japanese, 日本生物工学会, 広島市, Domestic conference統合バイオプロセスによる環境調和型セルロース系エタノール生産に資する前処理技術の開発Poster presentation
- 第65回日本生物工学会大会, Sep. 2013, Japanese, 日本生物工学会, 広島市, Domestic conference海洋性シアノバクテリアによるバイオリファイナリーのためのグリコーゲン生産Poster presentation
- 第65回日本生物工学会大会, Sep. 2013, Japanese, 日本生物工学会, 広島市, Domestic conference海水中のイオン濃度が糖質源Spirulinaの増殖;光合成に与える影響Poster presentation
- 第65回日本生物工学会大会, Sep. 2013, Japanese, 日本生物工学会, 広島市, Domestic conference稲わら希硫酸処理液のナノフィルトレーションによる糖濃縮Poster presentation
- 第65回日本生物工学会大会, Sep. 2013, Japanese, 日本生物工学会, 広島市, Domestic conferenceキシロース資化性Saccharomyces cerevisiaeにおける代謝プログラム制御によるギ酸;酢酸耐性関連遺伝子の同定Poster presentation
- 第65回日本生物工学会大会, Sep. 2013, Japanese, 日本生物工学会, 広島市, Domestic conferenceキシロース資化性Saccharomyces cerevisiaeにおけるリン酸シグナル伝達系の制御によるキシロースからのエタノール生産の高効率化Poster presentation
- 第65回日本生物工学会大会, Sep. 2013, Japanese, 日本生物工学会, 広島市, Domestic conferencePhototrophic cultivation of a marine microalga Chlamydomonas orbicularis CO2 fixation and biodiesel production:Effect of medium composition, nitrogen deplection, and sea salt concentrationPoster presentation
- 微細藻類研究会2013, Jun. 2013, Japanese, Domestic conferenceメタボローム解析による次世代バイオ燃料生産のための微細藻代謝改変戦略の導出[Invited]Public discourse
- The 3rd International Conference on Algal Biomass、Biofuels and Bioproducts, Jun. 2013, English, Elsevier, Toronto, Canada, International conferenceDirect conversion of cyanobacteria to ethanol without pretreatment or enzymatic hydrolysis processPoster presentation
- 第4回日本光合成学会年会, May 2013, Japanese, 日本光合成学会, 名古屋市, Domestic conferenceシアノバクテリアからの直接バイオエタノール変換技術の開発Poster presentation
- Internatinal meeting of the Microbiorogical Society of Korea, May 2013, English, Microbiorogical Society of Korea, Jeonju, Korea, International conferenceDevelopment of Microbial Cell Factories for Bio-refineryOral presentation
- 日本農芸化学会2013年度大会, Mar. 2013, Japanese, 日本農芸化学会, 仙台市, Domestic conference微細藻バイオリファイナリーに資する動的代謝プロファイリング解析Oral presentation
- 日本農芸化学会2013年度大会, Mar. 2013, Japanese, 日本農芸化学会, 仙台市, Domestic conference発酵阻害物存在下におけるキシロースからのエタノール発酵向上酵母の構築Oral presentation
- 日本農芸化学会2013年度大会, Mar. 2013, Japanese, 日本農芸化学会, 仙台市, Domestic conference耐塩性シアノバクテリアArthrospira platensisからの効率の良いグリコーゲン回収法の構築Oral presentation
- 化学工学会第78年会, Mar. 2013, Japanese, 化学工学会, 豊中市, Domestic conference神戸大学におけるバイオリファイナリーの進展Oral presentation
- 日本農芸化学会2013年度大会, Mar. 2013, Japanese, 日本農芸化学会, 仙台市, Domestic conferenceリグノセルロース系バイオマスからの統合型バイオエタノール生産に資する新規酵母細胞表層提示システムの開発Oral presentation
- SBJ 64th Annual Meeting, Oct. 2012, English, International conferenceBiorefinery from microalgae through fermentation and metabolic engineering[Invited]Invited oral presentation
- 第64回日本生物工学会大会, Oct. 2012, Japanese, 日本生物工学会, 神戸市, Domestic conferenceリパーゼ分泌挙動の異なる糸状菌Rhizopus oryzae のメタボローム解析Oral presentation
- 第64回日本生物工学会大会, Oct. 2012, Japanese, 日本生物工学会, 神戸市, Domestic conferenceイオン液体前処理とキシロース資化性酵母株を用いたバイオマス糖化発酵プロセスの効率化Oral presentation
- 5th International Conference on Industrial Bioprocesses (IFIB-2012), Oct. 2012, English, National Taiwan University of Science and Technology, Taiwan, China, International conferenceDevelopment of sustainable biorefinery based on microalgaeOral presentation
- The 15th International Biotechnology Symposium (IBS 2012), Sep. 2012, English, The Korean Society for Biotechnology and Bioengineering, Deague, Korea, International conferenceFlux balance analysis of xylose-fermenting Saccharomyces cerevisiae strainOral presentation
- The 13th International Congress on Yeasts, Aug. 2012, English, ICY 2012 Organizing Committee, Madison, USA, International conferenceCell recycle batch fermentation of high‐solid lignocellulose using a recombinant cellulase‐displaying yeast strain for high yield ethanol productionOral presentation
- アジレント・メタボロミクスセミナー2012, Jul. 2012, Japanese, アジレント・テクノロジー㈱, 豊中市, Domestic conferenceバイオリファイナリー構築に資する微生物細胞工場の創製Oral presentation
- Metabolic EngineeringⅨ, Jun. 2012, English, Engineering Conferences International, Biarritz, France, International conferenceControl of phosphate metabolism in a xylose-fermenting yeast strain improves ethanol production from xyloseOral presentation
- 4th A-IMBN Annual Conference, Mar. 2012, English, International conferenceMicrobial engineering for production of biofuels and biorefinery products[Invited]Invited oral presentation
- 日本農芸化学会2012年度大会, Mar. 2012, Japanese, 日本農芸化学会, 京都市, Domestic conferenceシアノバクテリアArthrospira platensisを炭素源としたアミラーゼ発現酵母による直接エタノール生産Oral presentation
- 日本農芸化学会2012年度大会, Mar. 2012, Japanese, 日本農芸化学会, 京都市, Domestic conferenceMetabolic pathway engineering in cyanobacteria Synechocystis sp.PCC 6803 for the production of lactateOral presentation
- 第2回イオン液体討論会, Dec. 2011, Japanese, イオン液体研究会, 京都市, Domestic conferenceイオン液体共存下における酵母のキシロース発酵能評価Oral presentation
- 5th International Algae Congress 2011, Dec. 2011, English, DLG BENELUX, Berlin, Germany, International conferenceProduction of bio-ethanol from microalgae through cell surface engineeringOral presentation
- LECOジャパン・食品分析セミナー, Nov. 2011, Japanese, Domestic conference補助食品・スピルリナのメタボローム解析[Invited]Public discourse
- 第31回キャピラリー電気泳動シンポジウム, Nov. 2011, Japanese, 日本分析化学会電気泳動分析研究懇談会, 山形県鶴岡市, Domestic conferenceCE-TOFMSを用いたバイオエタノール生産酵母の代謝プロファイリングOral presentation
- 第63回日本生物工学会大会, Sep. 2011, Japanese, 日本生物工学会, 小金井市, Domestic conference発酵阻害物耐性遺伝子を導入したキシロース資化性二倍体酵母によるリグノセルロース水熱分解液の繰返し発酵Oral presentation
- 第63回日本生物工学会大会, Sep. 2011, Japanese, 日本生物工学会, 小金井市, Domestic conference細胞内酸化還元バランス調整能を付与したキシロース資化性酵母の取得Oral presentation
- 第63回日本生物工学会大会, Sep. 2011, Japanese, 日本生物工学会, 小金井市, Domestic conference回転式発酵槽を用いた稲わら水熱処理物からのエタノール生産の効率化Oral presentation
- 第63回日本生物工学会大会, Sep. 2011, Japanese, 日本生物工学会, 小金井市, Domestic conferenceユーグレナによるバイオ燃料生産のための高密度CO2 固定サイクルの構築Oral presentation
- 第3回 神戸大学バイオサイエンス研究会・若手研究者交流会, Sep. 2011, Japanese, 神戸大学バイオサイエンス研究会・若手研究者交流会, 神戸市, Domestic conferenceメタボロミクスによるリン酸代謝関連遺伝子欠損酵母の発酵特性の解析Poster presentation
- 第63回日本生物工学会大会, Sep. 2011, Japanese, 日本生物工学会, 小金井市, Domestic conferenceフラン化合物存在下でのXR-XDH 発現酵母を用いたキシロース発酵におけるNADH 依存性Adh1過剰発現のインパクトOral presentation
- 第63回日本生物工学会大会, Sep. 2011, Japanese, 日本生物工学会, 小金井市, Domestic conferenceキシロース資化性酵母Saccharomyces cerevisiae におけるPHO13 遺伝子欠損がエタノール生産に与える影響及び発酵阻害物耐性の評価Oral presentation
- 第99回 醗酵学懇話会, Aug. 2011, Japanese, 日本生物工学会 関西支部, 神戸市, Domestic conferenceシンセティックバイオエンジニアリングによるバイオエタノール生産酵母の育種Invited oral presentation
- SIM2011 Annual Meeting and Exhibition, Jul. 2011, English, Society for Industrial Microbiology, New Orleans, USA, International conferenceRepeated batch-fermentation of rice straw hydrolysate to ethanol using metabolically engineered Saccharomyces cerevisiae strainsOral presentation
- SIM2011 Annual Meeting and Exhibition, Jul. 2011, English, Society for Industrial Microbiology, New Orleans, USA, International conferenceDevelopment of microbial cell factories for biofuel production from biomass by conslidated bioprocessingOral presentation
- バイオマスの今、そして未来, Jun. 2011, Japanese, Domestic conference合成生物工学によるバイオ燃料生産のための微生物細胞工場の創製[Invited]Public discourse
- 2011 International Conference for Bioeconomy, Jun. 2011, English, Tianjin Institute of Scientific and Technical Information, Tianjin、China, International conferenceDevelopment of Microbial Cell Factories for Biofuel Production from BiomassOral presentation
- Asian Congress on Biotechnology 2011, May 2011, English, ACB-2011Organizing Committee, Shanghai, China, International conferenceCellulosic ethanol Production in Saccharomyces cerevisiae through Metabolic Engineering Based on Metabolomic ApproachOral presentation
- 日本農芸化学会2011年度大会, Mar. 2011, Japanese, 日本農芸化学会, 京都市, Domestic conferenceセルラーゼ表層提示株を用いた稲わら水熱処理物からの エタノール生産プロセスの効率化Oral presentation
- 日本農芸化学会2011年度大会, Mar. 2011, Japanese, 日本農芸化学会, 京都市, Domestic conferenceセルラーゼを表層提示した高温耐性酵母Kluyveromyces marxianusを用いたセルロースからのエタノール生産Oral presentation
- 日本農芸化学会2011年度大会, Mar. 2011, Japanese, 日本農芸化学会, 京都市, Domestic conferenceキシロース発酵形質転換酵母における代謝コントロールの解析Oral presentation
- 日本農芸化学会2011年度大会, Mar. 2011, Japanese, 日本農芸化学会, 京都市, Domestic conferencePHO13欠損株を用いたキシロースからのエタノール生産Oral presentation
- 化学工学会第15回学生発表会, Mar. 2011, Japanese, (社)化学工学会, 神戸市, Domestic conferencePHO13欠損株を用いたキシロースからのエタノール生産Oral presentation
- 4th Japan-Korea Biomass Symposium, Nov. 2010, English, International conferenceProduction of bio-ethanol from lignocellulosic materials through the engineering of yeast cell surface and metabolic pathway[Invited]Invited oral presentation
- 第62回日本生物工学会大会, Oct. 2010, Japanese, (社)日本生物工学会, 宮崎市, Domestic conference有用希少イノシトールのバイオアベイラビリティーとバイオコンバージョン生産Oral presentation
- 第62回日本生物工学会大会, Oct. 2010, Japanese, (社)日本生物工学会, 宮崎市, Domestic conference微細藻を利用したバイオ燃料生産システムの構築へ向けてOral presentation
- 第62回日本生物工学会大会, Oct. 2010, Japanese, (社)日本生物工学会, 宮崎市, Domestic conference発酵阻害物存在下におけるキシロースからの効率的なエタノール生産Poster presentation
- 第62回日本生物工学会大会, Oct. 2010, Japanese, (社)日本生物工学会, 宮崎市, Domestic conference海洋性微細藻のシステムバイオロジー解析に向けての網羅的代謝プロファイリング技術の開発Poster presentation
- 第62回日本生物工学会大会, Oct. 2010, Japanese, (社)日本生物工学会, 宮崎市, Domestic conferenceワイン酵母OC-2 トリプルマーカー株をプラットフォームとした高β – グルコシダーゼ活性と高キシロシダーゼ活性を持つキシロース発酵酵母の作製Poster presentation
- 第62回日本生物工学会大会, Oct. 2010, Japanese, (社)日本生物工学会, 宮崎市, Domestic conferenceラン藻Spirulina (Arthrospira) platensis のグリコーゲン蓄積量と増殖速度に対する光強度の影響Poster presentation
- 第62回日本生物工学会大会, Oct. 2010, Japanese, (社)日本生物工学会, 宮崎市, Domestic conferenceキシロース資化性形質転換酵母の代謝解析Poster presentation
- 第62回日本生物工学会大会, Oct. 2010, Japanese, (社)日本生物工学会, 宮崎市, Domestic conferenceキシロース資化性Saccharomyces cerevisiae におけるアルコールデヒドロゲナーゼ過剰発現およびフラン化合物存在下でのキシロース発酵特性Poster presentation
- 第5回メタボロームシンポジウム, Sep. 2010, Japanese, メタボロームシンポジウム実行委員会, 山形県鶴岡市, Domestic conferenceメタボロームを利用した新規バイオエタノール生産酵母の育種Oral presentation
- SIM 2010 Annual Meeting, Aug. 2010, English, Society for Industrial Microbiology, San Francisco, USA, International conferenceProduction of bio-ethanol from lignocellulosic materials through engineering yeast cell surface and metabolic pathwayOral presentation
- SIM 2010 Annual Meeting, Aug. 2010, English, Society for Industrial Microbiology, San Francisco, USA, International conferenceEthanol production from cellulosic material using the thermotolerant yeast displaying cellulolytic enzymes on the cell surfaceOral presentation
- The 1st International Symposium on the Nitrogen Nutrition of Plants, Jul. 2010, English, Nitrogen 2010 Organizing Committee, 犬山市, International conferenceDevelopment of bioethanol production from marine microalgaePoster presentation
- 2010 International Symposium on Advanced Biological Engineering, Jul. 2010, English, Biotechnology for Sustainable Industry and Society, Beijing, China, International conferenceDevelopment of bioethanol production from marine microalgaeOral presentation
- The 1st International Symposium on the Nitrogen Nutrition of Plants, Jul. 2010, English, Nitrogen 2010 Organizing Committee, 犬山市, International conferenceAmmonium assimilation in rice leaves: functions of the chloroplastic andcytosolic phosphoenolpyruvate carboxylases (PEPCs) in supplying carbonskeletonsPoster presentation
- Metabolic Engineering VIII: Metabolic Engineering for Green Growth, Jun. 2010, English, Engineering Conferences International, Jeju、Korea, International conferenceMetabolomic approach to identify molecules that are important for acetic acid tolerance in a recombinant xylose-fermenting yeast strainOral presentation
- Microbes at Work JSPS-SLU colloquium, Jun. 2010, English, JSPS-SLU, Uppsala, Sweden, International conferenceEfficient Production of Cellulosic Ethanol in Saccharomyces cerevisiae through Metabolic Engineering Based on a Metabolomic ApproachOral presentation
- RENEWABLE ENERGY 2010, Jun. 2010, English, International Solar Energy Society, 横浜市, International conferenceConstruction of consolidated bioprocesses for production of bio-fuels and chemicals by using cell surface engineered microbial cellsOral presentation
- 日本農芸化学会2010年度大会, Mar. 2010, Japanese, (社)日本農芸化学会, 東京都目黒区, Domestic conference酢酸耐性酵母によるキシロースからの効率的バイオエタノール生産Oral presentation
- 日本農芸化学会2010年度大会, Mar. 2010, Japanese, (社)日本農芸化学会, 東京都目黒区, Domestic conference細胞表層工学技術を用いたヘミセルロース系バイオマスからのエタノール生産Oral presentation
- 日本農芸化学会2010年度大会, Mar. 2010, Japanese, (社)日本農芸化学会, 東京都目黒区, Domestic conferenceバイオマスからの燃料・化学品生産を目指した細胞工場の創製Oral presentation
- 日本農芸化学会2010年度大会, Mar. 2010, Japanese, (社)日本農芸化学会, 東京都目黒区, Domestic conferenceキシロース資化性遺伝子組換え酵母の代謝フラックス解析Oral presentation
- 日本農芸化学会2010年度大会, Mar. 2010, Japanese, (社)日本農芸化学会, 東京都目黒区, Domestic conferenceD-アラビノースは酵母のエリスロアスコルビン酸の内在前駆体かOral presentation
- The 2nd International Symposium of Innovative BioProduction Kobe, Jan. 2010, English, International conferenceA synthetic biology approach for efficient production of cellulosic ethanol in Saccharomyces cerevisiaeInvited oral presentation
- Airbus meeting, Nov. 2009, English, International conferenceEffective biofuel production process from biomass reseources by whole-cell biocatalyst[Invited]Invited oral presentation
- 日本化学会関東支部講演会 「バイオマス変換最前線」, Nov. 2009, Japanese, Domestic conferenceアーミング酵母を用いた統合プロセスによるバイオエタノール生産[Invited]Invited oral presentation
- APBioChEC'09, Nov. 2009, English, APBioChEC'09 Committee, 神戸市, International conferenceDynamic metabolic profiling in plant leaves using in vivo stable isotope labelingOral presentation
- APBioChEC'09, Nov. 2009, English, APBioChEC'09 Committee, 神戸市, International conferenceBioethaol fermentation from mixed sugar by the recombinant yeast with xyloseisomerase pathwayPoster presentation
- APBioChEC'09, Nov. 2009, English, APBioChEC'09 Committee, 神戸市, International conferenceBioethanol production from mixed sugars using sugar uptake ability enhanced yeast strain by overexpression of transportersPoster presentation
- 農芸化学会2009年度大会, Mar. 2009, Japanese, 日本農芸化学会, 福岡県福岡市, Domestic conferenceバイオエタノール生産を目指したスーパー酵母の創製Oral presentation
- 化学工学会第74年会, Mar. 2009, Japanese, 化学工学会, 横浜市, Domestic conferenceキシロースからの効率的なエタノール生産を行う酵母の創製Oral presentation
- NAISTグローバルCOE公開ワークショップ「光合成の環境応答」, Mar. 2009, Japanese, 日本分子生物学会・日本生化学会, 奈良県生駒市, Domestic conferenceC3 photosynthetic pathway analysis by combination of in vivo 13C-labeling and metabolic profiling[Invited]Invited oral presentation
- 日本分子生物学会年会・日本生化学会大会 合同大会, Dec. 2008, Japanese, 日本分子生物学会・日本生化学会, 神戸市, Domestic conference13CO2を用いた同位体標識による葉内代謝物質のターンオーバー解析[Invited]Invited oral presentation
- メタボロームシンポジウム, Oct. 2008, Japanese, 慶應義塾大学先端生命科学研究所, 山形県鶴岡市, Domestic conferencein vivo安定同位体濃縮による葉内炭素代謝ターンオーバー解析Poster presentation
- 関西光合成研究会シンポジウム, Sep. 2008, Japanese, 関西光合成研究会, 神戸市, Domestic conferencein vivo 13Cエンリッチメントによる葉内炭素代謝解析システムの構築[Invited]Invited oral presentation
- 5th International conference on plant metabolomics, Jul. 2008, English, RIKEN Plant Science Center, 横浜市, Domestic conferenceDevelopment of analytical system to monitor metabolic turnoverin plant leaves using in vivo isotope dilution from 13CO2Poster presentation
- 日本農芸化学会大会, Mar. 2008, Japanese, 日本農芸化学会, 名古屋市, Domestic conference葉緑体形質転換技術を用いたアスタキサンチン生産Oral presentation
- 日本農芸化学会大会, Mar. 2008, Japanese, 日本生物工学会, 名古屋市, Domestic conferenceCE/MSを用いた一次代謝物の安定同位体標識率モニタリング法の開発Oral presentation
- 日本植物生理学会年会, Mar. 2008, Japanese, 日本植物生理学会, 札幌市, Domestic conference13CO2エンリッチメントによる代謝ターンオーバー解析Oral presentation
- カロテノイド研究談話会, Sep. 2007, Japanese, 日本カロテノイド研究会, 大阪市, Domestic conference主要カロテノイドとしてアスタキサンチンを生産する葉緑体形質転換植物の作出Oral presentation
- カロテノイド研究談話会, Sep. 2006, Japanese, 日本カロテノイド研究会, 沖縄県, Domestic conference葉緑体形質転換技術を用いたカロテノイド代謝改変植物の作出Oral presentation
- 日本農芸化学会大会, Mar. 2005, Japanese, 日本農芸化学会, 京都市, Domestic conferenceラン藻Synechosystis sp.由来デオキシキシルロースリン酸レダクトイソメラーゼを導入した葉緑体形質転換タバコの作出Oral presentation
- 日本農芸化学会大会, Mar. 2004, Japanese, 日本農芸化学会, 広島市, Domestic conference安定同位体希釈法による定量メタボローム解析法の開発(2)-15N標識による含窒素化合物群の相対定量法-Oral presentation
- 日本生物工学会大会, Sep. 2003, Japanese, 日本生物工学会, 熊本市, Domestic conferenceAspergillus niger由来ペクチンメチルエステラーゼの植物内過剰発現によるメタノール増産と植物矮化Oral presentation
- 日本農芸化学会大会, Mar. 2003, Japanese, 日本農芸化学会, 神奈川県藤沢市, Domestic conferenceアルコールオキシダーゼ・ペルオキシダーゼ二酵素型バイオセンサーを用いたメタノール定量測定Oral presentation
- 日本農芸化学会大会, Mar. 2002, Japanese, 日本農芸化学会, 仙台市, Domestic conferenceAspergillus niger由来ペクチンメチルエステラーゼの植物内過剰発現によるメタノール産生Oral presentation
- 日本生物工学会大会, Aug. 2000, Japanese, 日本生物工学会, 札幌市, Domestic conferenceチューブリン分子に特異的に結合するDNAアプタマーOral presentation
- 学術研究助成基金助成金/基盤研究(C), Apr. 2016 - Mar. 2021Competitive research funding
- 科学研究費補助金/若手研究(A), Apr. 2015 - Mar. 2018, Principal investigatorCompetitive research funding
- 国立研究開発法人科学技術振興機構, 研究成果展開事業 研究成果最適展開支援プログラム(A-STEP)シーズ育成タイプ, 2017, Principal investigator微細藻類からのカロテノイド色素の生産技術開発Competitive research funding
- 三菱ケミカル株式会社, NEDO委託プロジェクト「植物等の生物を用いた高機能品生産技術の開発」, 2017【NEDO:三菱ケミカル】共同研究員受入Competitive research funding
- 一般財団法人日本宇宙フォーラム, 「きぼう」利用フィジビリティスタディテーマ募集, 2017, Principal investigator【JAXA地上】微小重力環境における藻類による物質循環サイクルの実現可能性検証Competitive research funding
- 一般財団法人日本宇宙フォーラム, 「きぼう」利用フィジビリティスタディテーマ募集, 2017, Principal investigator【JAXA装置】微小重力環境における藻類による物質循環サイクルの実現可能性検証Competitive research funding
- 国立研究開発法人科学技術振興機構, 革新的研究開発推進プログラム(ImPACT), 2017, Principal investigator【ImPACT】動的代謝解析による海洋性緑藻の油脂生合成発動メカニズムの解明と油脂高生産技術開発への応用Competitive research funding
- 国立研究開発法人日本医療研究開発機構, 再生医療実現拠点ネットワークプログラム幹細胞・再生医学イノベーション創出プログラム, 2017【AMED】アセンブラーとしての癌/非癌幹細胞の機能解明とその制御技術の開発Competitive research funding
- 国立研究開発法人科学技術振興機構, 戦略的創造研究推進事業 先端的低炭素化技術開発(ALCA), 2017, Principal investigator【ALCA】ラン藻代謝改変株の代謝解析とコハク酸生産プロセスの検討Competitive research funding
- 国立研究開発法人科学技術振興機構, 研究成果最適展開支援プログラム(A-STEP), 2016, Principal investigator微細藻類からのカロテノイド色素の生産技術開発Competitive research funding
- 「きぼう」利用フィジビリティスタディー, 2016, Principal investigator宇宙空間におけるユーグレナ等の藻類による物質循環サイクルの実現可能性検証Competitive research funding
- 革新的研究開発推進プログラム(ImPACT), 2016, Principal investigator【ImPACT】動的代謝解析による海洋性緑藻の油脂生合成発動メカニズムの解明と油脂高生産技術開発への応用Competitive research funding
- 国立研究開発法人科学技術振興機構, 戦略的創造研究推進事業(ALCA), 2016, Principal investigator【ALCA】ラン藻代謝改変株の代謝解析とコハク酸生産プロセスの検討Competitive research funding
- 新エネルギー・産業技術総合開発機構, 戦略的次世代バイオマスエネルギー利用技術開発事業(次世代技術開発), 2015, Principal investigator海洋性緑藻による油脂生産技術の研究開発Competitive research funding
- 独立行政法人新エネルギー・産業技術総合開発機構, 戦略的次世代バイオマスエネルギー利用技術開発事業(次世代技術開発), 2014, Principal investigator海洋性緑藻による油脂生産技術の研究開発Competitive research funding
- 独立行政法人新エネルギー・産業技術総合開発機構, 戦略的次世代バイオマスエネルギー利用技術開発事業(次世代技術開発), 2013, Principal investigator海洋性緑藻による油脂生産技術の研究開発Competitive research funding
- 戦略的創造研究推進事業 個人型研究さきがけ, 2013, Principal investigatorさきがけ「高増殖性微細藻の合成を目指した微細藻代謝フラックス制御機構の解明」Competitive research funding
- 独立行政法人新エネルギー・産業技術総合開発機構, 戦略的次世代バイオマスエネルギー利用技術開発事業(次世代技術開発), 2012, Principal investigator海洋性緑藻による油脂生産技術の研究開発Competitive research funding
- 戦略的創造研究推進事業 個人型研究さきがけ, 2012, Principal investigatorさきがけ「高増殖性微細藻の合成を目指した微細藻代謝フラックス制御機構の解明」Competitive research funding
- 戦略的創造研究推進事業 個人型研究さきがけ, 2011, Principal investigatorさきがけ「高増殖性微細藻の合成を目指した微細藻代謝フラックス制御機構の解明」Competitive research funding
- 科学研究費補助金/若手研究(B), 2010, Principal investigatorCompetitive research funding
- 油脂成分を製造する方法、及び藻類を使用して高級不飽和脂肪酸を製造する方法特願14/913618, 17 Mar. 2014, 特許10351882, 16 Jul. 2019Patent right
- サンプリング装置PCT/JP2019/027323, 10 Jul. 2019Patent right
- キャップ着脱装置、並びに、これを備えたサンプリング装置及び前処理装置PCT/JP2019/027324, 10 Jul. 2019Patent right
- 攪拌装置及び前処理装置PCT/JP2019/027326, 10 Jul. 2019Patent right
- 攪拌装置及び前処理装置PCT/JP2019/027325, 10 Jul. 2019Patent right
- 固液界面検出装置及びこれを備えた前処理装置PCT/JP2019/027327, 10 Jul. 2019Patent right
- 分泌シグナルペプチドならびにそれを利用したタンパク質の分泌および細胞表層提示特願2016-538422, 30 Jul. 2015, 特許6537076, 14 Jun. 2019Patent right
- 油脂成分を産生する方法、高級不飽和脂肪酸の製造方法、及びクラミドモナス・スピーシーズJSC4株特願14838058.7, 17 Mar. 2014, 特許3037543, 29 May 2019Patent right
- クラミドモナス藻類から油脂成分を産生する方法特願14/913594, 17 Mar. 2014, 特許10214756, 26 Feb. 2019Patent right
- 組換え宿主細胞及びD-ブタントリオールの新規製造方法PCT/JP2019/004582, 08 Feb. 2019Patent right
- 油脂成分を産生する方法、高級不飽和脂肪酸の製造方法特願14837252.7, 17 Mar. 2014, 特許3037542, 13 Jun. 2018Patent right
- 細胞表層発現用ポリヌクレオチド特願2015-508514, 25 Mar. 2014, 大学長, 特許6335161, 11 May 2018Patent right
- バイオマスからのエタノールの生産方法特願2014-531686, 23 Aug. 2013, 大学長, 特許6236634, 10 Nov. 2017Patent right
- 有機酸の製造方法PCT/JP2017/032469, 08 Sep. 2017Patent right
- 有機酸の製造方法特願2018-539683, 08 Sep. 2017Patent right
- 細胞表層発現用ポリヌクレオチド(米国)14/778250, 25 Mar. 2014, 大学長, 9751917, 05 Sep. 2017Patent right
- 前処理済みの植物性バイオマスから発酵処理物を製造するための方法特願2017-77676, 10 Apr. 2017Patent right
- バイオマスからのエタノールの生産方法特願14/422728, 23 Aug. 2013, 大学長, 特許9441249, 13 Sep. 2016Patent right
- エタノールの新規生産方法特願2013-522836, 25 Jun. 2012, 大学長, 特許5935020, 20 May 2016Patent right
- 有機酸の製造方法特願2017-511006, 06 Apr. 2016Patent right
- バイオマスからのエタノールの生産方法特願2011-543349, 29 Nov. 2010, 大学長, 特許5804327, 11 Sep. 2015Patent right
- 油脂成分を産生する方法、及び高級不飽和脂肪酸の製造方法特願2014-541229, 17 Mar. 2014, 大学長, 特許5746796, 15 May 2015Patent right
- 油脂成分を産生する方法、高級不飽和脂肪酸の製造方法、及びクラミドモナス・スピーシーズJSC4株特願2014-550560, 17 Mar. 2014, 大学長, 特許5719977, 27 Mar. 2015Patent right
- エタノールの生産方法特願2010-131364, 08 Jun. 2010, 大学長, 特許5626854, 10 Oct. 2014Patent right