SEARCH

Search Details

YAGUCHI Takaharu
Graduate School of Science / Division of Mathematics
Professor

Researcher basic information

■ Research news
  • 18 Dec. 2020, Artificial Intelligence that can run a simulation faithful to physical laws
■ Research Keyword
  • Machine Learning
  • 社会ネットワーク解析
  • 数理モデリング
  • Morphological Computing
  • Geometric Mechanics
  • Numerical Analysis
■ Research Areas
  • Natural sciences / Applied mathematics and statistics
■ Committee History
  • Apr. 2021 - Present, MDPI Mathematics, Topic Editor
  • May 2015 - Mar. 2024, 日本学術会議, 計算音響学小委員会 委員
  • Oct. 2019 - Sep. 2021, 日本数学会応用数学分科会委員会委員
  • Apr. 2018 - Mar. 2021, 日本応用数理学会, JSIAM Letters 幹事編集委員長
  • Sep. 2015 - Mar. 2018, 日本応用数理学会, JSIAM Letters 副編集委員長
  • Apr. 2015 - Mar. 2017, 日本応用数理学会, 若手の会 幹事
  • 28th International Conference on Artificial Neural Networks, Programme Committee

Research activity information

■ Award
  • Oct. 2024 神戸大学, 学長表彰(財務貢献者)

  • Oct. 2023 神戸大学, 学長表彰(財務貢献者)

  • Sep. 2023 JSIAM Letters Paper Award, JSIAM Letters Paper Award, Causal inference for empirical dynamical systems based on persistent homology
    Hiroaki Bando, Shizuo Kaji, Takaharu Yaguchi

  • Aug. 2021 日本応用数理学会, 日本応用数理学会論文賞 理論部門, 波動方程式と弾性方程式からなる連成系のシンプレクティック性について
    寺川峻平, 谷口隆晴

  • Sep. 2017 日本応用数理学会, 日本応用数理学会論文賞(理論部門), ハミルトン方程式に対する離散勾配法のRiemann構造不変性
    ISHIKAWA AI, YAGUCHI TAKAHARU
    Official journal

  • Jun. 2016 日本応用数理学会, 日本応用数理学会研究部会連合発表会優秀講演賞, 第12回日本応用数理学会研究部会連合発表会における講演「自動離散微分とその応用」
    YAGUCHI TAKAHARU
    Japan society

  • Sep. 2014 日本応用数理学会, 日本応用数理学会論文賞(理論部門), コンパクト差分に基づく離散変分導関数法
    金澤 宏紀, 松尾 宇泰, 谷口 隆晴

  • Aug. 2012 日本応用数理学会, 日本応用数理学会若手優秀講演賞, ホロノミック系に対するラグランジュ力学的離散勾配法
    谷口 隆晴

  • Jul. 2011 SciCADE 2011 (the International Conference on Scientific Computation And Differential Equations 2011), SciCADE 2011 New Talent Award, A Lagrangian Approach to Deriving Energy-Preserving Numerical Schemes for the Euler-Lagrange Partial Differential Equations and Its Applications
    Takaharu Yaguchi

■ Paper
  • Energy-Consistent Neural Operators for Hamiltonian and Dissipative Partial Differential Equations
    May 2025, Proc. of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS2025), English
    [Refereed]
    International conference proceedings

  • Poisson-Dirac Neural Networks for Modeling Coupled Dynamical Systems across Domains
    Razmik Arman Khosrovian, Takaharu Yaguchi, Hiroaki Yoshimura, Takashi Matsubara
    Apr. 2025, Proc. of the Thirteenth International Conference on Learning Representations (ICLR2025), English
    [Refereed]
    International conference proceedings

  • Number Theoretic Accelerated Learning of Physics-Informed Neural Networks
    Takashi Matsubara, Takaharu Yaguchi
    Last, Feb. 2025, Proc. of the 39th Annual AAAI Conference on Artificial Intelligence(AAAI2025), English
    [Refereed]
    International conference proceedings

  • Takashi Matsubara, Takehiro Aoshima, Ai Ishikawa, Takaharu Yaguchi
    2025, IEEE Transactions on Neural Networks and Learning Systems
    Scientific journal

  • Port-Hamiltonian Neural Networks for Learning Coupled Systems and Their Interactions
    Razmik Arman Khosrovian, Takaharu Yaguchi, Takashi Matsubara
    null, Dec. 2024, NeurIPS 2024 Workshop on Machine Learning and the Physical Sciences, English
    [Refereed]
    International conference proceedings

  • Learning Difference and Summation Operators for Discretization of Nonlocal Hamiltonian Partial Differential Equations Using Neural Networks
    Toki Shinogi, Baige Xu, Takaharu Yaguchi
    null, Dec. 2024, Proc. of 2024 International Symposium on Nonlinear Theory and Its Applications (NOLTA2024), English
    [Refereed]
    International conference proceedings

  • Application of the Kernel Method to Learning Symplectic Forms
    Taisei Ueda, Baige Xu, Takashi Matsubara, Takaharu Yaguchi
    null, Dec. 2024, Proc. of 2024 International Symposium on Nonlinear Theory and Its Applications (NOLTA2024), English
    [Refereed]
    International conference proceedings

  • A New Approach to Designing Robust Hamiltonian Neural Networks by Regularisation
    Dehami Kiryu, Baige Xu, Takashi Matsubara, Takaharu Yaguchi
    null, Dec. 2024, Proc. of 2024 International Symposium on Nonlinear Theory and Its Applications (NOLTA2024), English
    [Refereed]
    International conference proceedings

  • Hyperbolic-PDE-Based Neural Network Architecture
    Atsushi Takabatake, Baige Xu, Takaharu Yaguchi
    null, Dec. 2024, Proc. of 2024 International Symposium on Nonlinear Theory and Its Applications (NOLTA2024), English
    [Refereed]
    International conference proceedings

  • Mizuka Komatsu, Takaharu Yaguchi, Kohei Nakajima
    Elsevier BV, Oct. 2024, Physica D: Nonlinear Phenomena, 134382 - 134382, English
    [Refereed]
    Scientific journal

  • Loss Function for Deep Learning to Model Dynamical Systems
    Takahito Yoshida, Takaharu Yaguchi, Takashi Matsubara
    null, Jul. 2024, IEICE Transactions on Information and Systems, E107-D, English
    [Refereed]
    Scientific journal

  • Improved input points estimate for identifying nonlinear dynamic systems in DeepONet
    Dehami Kiryu, Baige Xu, Takaharu Yaguchi
    null, Jun. 2024, Proc. of CAI2024 Workshop on Scientific Machine Learning and Its Industrial Applications (SMLIA2024), English
    [Refereed]
    International conference proceedings

  • Learning Coupled Systems and their Connectivity Using Port-Hamiltonian Neural Networks
    Razmik Arman Khosrovian, Takaharu Yaguchi, Takashi Matsubara
    null, Jun. 2024, Proc. of CAI2024 Workshop on Scientific Machine Learning and Its Industrial Applications (SMLIA2024), English
    [Refereed]
    International conference proceedings

  • Shunpei Terakawa, Takaharu Yaguchi
    Apr. 2024, Mathematics, English
    [Refereed]
    Scientific journal

  • Yuya Note, Masahito Watanabe, Hiroaki Yoshimura, Takaharu Yaguchi, Toshiaki Omori
    Estimating governing equations from observed time-series data is crucial for understanding dynamical systems. From the perspective of system comprehension, the demand for accurate estimation and interpretable results has been particularly emphasized. Herein, we propose a novel data-driven method for estimating the governing equations of dynamical systems based on machine learning with high accuracy and interpretability. The proposed method enhances the estimation accuracy for dynamical systems using sparse modeling by incorporating physical constraints derived from Hamiltonian mechanics. Unlike conventional approaches used for estimating governing equations for dynamical systems, we employ a sparse representation of Hamiltonian, allowing for the estimation. Using noisy observational data, the proposed method demonstrates a capability to achieve accurate parameter estimation and extraction of essential nonlinear terms. In addition, it is shown that estimations based on energy conservation principles exhibit superior accuracy in long-term predictions. These results collectively indicate that the proposed method accurately estimates dynamical systems while maintaining interpretability.
    MDPI AG, Mar. 2024, Mathematics, 12(7) (7), 974 - 974, English
    [Refereed]
    Scientific journal

  • Algebraic Design of Physical Computing System for Time-Series Generation
    M. Komatsu, T. Yaguchi, K. Nakajima
    Dec. 2023, NeurIPS2023 Workshop: Machine Learning with New Compute Paradigms, English, International magazine
    [Refereed]
    International conference proceedings

  • Application of the Neural Operator for Physical Simulations of GENERIC Systems
    B. Xu, T. Matsubara, T. Yaguchi
    Sep. 2023, IEICE Proceedings Series, 76, 419 - 421, English, International magazine
    [Refereed]
    International conference proceedings

  • Super Resolution of Numerical Solutions of Nonlinear Elliptic Equations by DeepONet
    C. Yuhan, T. Matsubara, T. Yaguchi
    Sep. 2023, IEICE Proceedings Series, 76, 370 - 373, English, International magazine
    [Refereed]
    International conference proceedings

  • Generalization Error Analysis of Discrete Hamiltonian Neural Networks
    N. Ogawa, C. Yuhan, T. Matsubara, T. Yaguchi
    Sep. 2023, IEICE Proceedings Series, 76, 259 - 262, English, International magazine
    [Refereed]
    International conference proceedings

  • Variational Principle and Variational Integrators for Neural Symplectic Forms
    Yuhan Chen, Baige Xu, Takashi Matsubara, Takaharu Yaguchi
    Jul. 2023, ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems, English, International magazine
    [Refereed]
    International conference proceedings

  • Equivalence Class Learning for GENERIC Systems
    Baige Xu, Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi
    Jul. 2023, ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems, English, International magazine
    [Refereed]
    International conference proceedings

  • Good Lattice Accelerates Physics-Informed Neural Networks
    Takashi Matsubara, Takaharu Yaguchi
    Jul. 2023, 1st Workshop on the Synergy of Scientific and Machine Learning Modeling at ICML2023, English, International magazine
    [Refereed]
    International conference proceedings

  • FINDE: Neural Differential Equations for Finding and Preserving Invariant Quantities
    T. Matsubara, T. Yaguchi
    May 2023, Proc. of The Eleventh International Conference on Learning Representations (ICLR2023), 11, English, International magazine
    [Refereed]
    International conference proceedings

  • Takashi Matsubara, Yuto Miyatake, Takaharu Yaguchi
    Institute of Electrical and Electronics Engineers (IEEE), 2023, IEEE Transactions on Neural Networks and Learning Systems, 1 - 13
    Scientific journal

  • 幾何学的深層科学技術計算 -深層学習による物理モデリング・シミュレーション-
    松原 崇, 陳 鈺涵, 谷口 隆晴
    Oct. 2022, 応用物理, 91(10) (10), 629 - 633, Japanese
    [Invited]
    Scientific journal

  • Shunpei Terakawa, Takaharu Yaguchi
    The Japan Society for Industrial and Applied Mathematics, Mar. 2022, JSIAM Letters, 14, 37 - 40, English
    [Refereed]
    Scientific journal

  • KAM Theory Meets Statistical Learning Theory: Hamiltonian Neural Networks with Non-Zero Training Loss
    Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi
    Last, Feb. 2022, Thirty-Sixth AAAI Conference on Artificial Intelligence, English
    [Refereed]
    International conference proceedings

  • Learning GENERIC Systems Using Neural Symplectic Forms
    Baige Xu, Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi
    2022, Proceedings of the 2022 International Symposium on Nonlinear Theory and its Applications (NOLTA2022)
    [Refereed]

  • Variational Integrator for Hamiltonian Neural Networks
    Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi
    2022, Proceedings of the 2022 International Symposium on Nonlinear Theory and its Applications (NOLTA2022), English
    [Refereed]
    International conference proceedings

  • Secure Communication Systems Based on Synchronization of Chaotic Vibration of Wave Equations
    Hideki Sano, Masashi Wakaiki, Takaharu Yaguchi
    2022, Journal of Signal Processing, Japanese
    [Refereed]
    Scientific journal

  • Imbalance-Aware Learning for Deep Physics Modeling
    Takahito Yoshida, Takaharu Yaguchi, Takashi Matsubara
    2022, ICLR2022 Workshop on AI for Earth and Space Science (ai4earth), English
    [Refereed]
    International conference proceedings

  • Neural Symplectic Form: Learning Hamiltonian Equations on General Coordinate Systems
    Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi
    Dec. 2021, Advances in Neural Information Processing Systems (NeurIPS), 34, English
    [Refereed]
    International conference proceedings

  • Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
    Takashi Matsubara, Yuto Miyatake, Takaharu Yaguchi
    Dec. 2021, Advances in Neural Information Processing Systems (NeurIPS), 34, English
    [Refereed]
    International conference proceedings

  • Yuhan Chen, Hideki Sano, Masashi Wakaiki, Takaharu Yaguchi
    In a secret communication system using chaotic synchronization, the communication information is embedded in a signal that behaves as chaos and is sent to the receiver to retrieve the information. In a previous study, a chaotic synchronous system was developed by integrating the wave equation with the van der Pol boundary condition, of which the number of the parameters are only three, which is not enough for security. In this study, we replace the nonlinear boundary condition with an artificial neural network, thereby making the transmitted information difficult to leak. The neural network is divided into two parts; the first half is used as the left boundary condition of the wave equation and the second half is used as that on the right boundary, thus replacing the original nonlinear boundary condition. We also show the results for both monochrome and color images and evaluate the security performance. In particular, it is shown that the encrypted images are almost identical regardless of the input images. The learning performance of the neural network is also investigated. The calculated Lyapunov exponent shows that the learned neural network causes some chaotic vibration effect. The information in the original image is completely invisible when viewed through the image obtained after being concealed by the proposed system. Some security tests are also performed. The proposed method is designed in such a way that the transmitted images are encrypted into almost identical images of waves, thereby preventing the retrieval of information from the original image. The numerical results show that the encrypted images are certainly almost identical, which supports the security of the proposed method. Some security tests are also performed. The proposed method is designed in such a way that the transmitted images are encrypted into almost identical images of waves, thereby preventing the retrieval of information from the original image. The numerical results show that the encrypted images are certainly almost identical, which supports the security of the proposed method.
    MDPI AG, Jul. 2021, Entropy, 23(7) (7), 904 - 904, English
    [Refereed]
    Scientific journal

  • Mizuka Komatsu, Takaharu Yaguchi, Kenji Kamada, Gen Izumisawa
    Institute of Electronics, Information and Communications Engineers (IEICE), Jul. 2021, Nonlinear Theory and Its Applications, IEICE, 12(3) (3), 295 - 308, English
    [Refereed][Invited]
    Scientific journal

  • Deep Discrete- Time Lagrangian Mechanics
    Takehiro Aoshima, Takashi Matsubara, Takaharu Yaguchi
    May 2021, ICLR2021 Workshop on Deep Learning for Simulation (SimDL),, English
    [Refereed]
    International conference proceedings

  • Secure Communication Systems Using Distributed Parameter Chaotic Synchronization
    Hideki Sano, Masashi Wakaiki, Takaharu Yaguchi
    Feb. 2021, Transactions of the Society of Instrument and Control Engineers, 57(2) (2), 78 - 85, Japanese
    [Refereed]
    Scientific journal

  • Takuto Jikyo, Tomio Kamada, Chikara Ohta, Takaharu Yaguchi, Kenji Oyama, Takenao Ohkawa, Ryo Nishide
    IEEE, Jan. 2021, Proceedings of 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), 1 - 4, English
    [Refereed]
    International conference proceedings

  • Simplecticity of Coupled System of the Wave Equation and the Elastic Equation
    Shunpei Terakawa, Takaharu Yaguchi
    Dec. 2020, Transactions of the Japan Society for Industrial and Applied Mathematics, 30(4) (4), 269 - 289, Japanese
    [Refereed]
    Scientific journal

  • Deep Energy-Based Modeling of Discrete-Time Physics
    Takashi Matsubara, Ai Ishikawa, Takaharu Yaguchi
    Dec. 2020, Advances in Neural Information Processing Systems (NeurIPS), 33, 13100 - 13111, English
    [Refereed]
    International conference proceedings

  • Parameter estimation for dynamical systems via structural realization
    Mizuka Komatsu, Takaharu Yaguchi, Kenji Kamada, Gen Izumisawa
    Nov. 2020, Proceedings of the 2020 International Symposium on Nonlinear Theory and its Applications (NOLTA2020), 204 - 207, English
    [Refereed]
    International conference proceedings

  • Mizuka Komatsu, Takaharu Yaguchi, Kohei Nakajima
    Recently, soft robots that consist of soft and deformable materials have received much attention for their adaptability to uncertain environments. Although these robots are difficult to control with a conventional control theory owing to their complex body dynamics, research from different perspectives attempts to actively exploit these body dynamics as an asset rather than a drawback. This approach is called morphological computation, in which the soft materials are used for computation that includes a new kind of control strategy. In this article, we propose a novel approach to analyze the computational properties of soft materials based on an algebraic method, called the input–output equation used in systems analysis, particularly in systems biology. We mainly focus on the two scenarios relevant to soft robotics, that is, analysis of the computational capabilities of soft materials and design of the input force to soft devices to generate the target behaviors. The input–output equation directly describes the relationship between inputs and outputs of a system, and hence by using this equation, important properties, such as the echo state property that guarantees reproducible responses against the same input stream, can be investigated for soft structures. Several application scenarios of our proposed method are demonstrated using typical soft robotic settings in detail, including linear/nonlinear models and hydrogels driven by chemical reactions.
    SAGE Publications, Mar. 2020, The International Journal of Robotics Research, 40(1) (1), 027836492091229 - 027836492091229, English
    [Refereed]
    Scientific journal

  • Komatsu, M., Terakawa, S., Yaguchi, T.
    {MDPI} {AG}, Feb. 2020, Mathematics, 8(2) (2), 249 - 249, English
    [Refereed][Invited]
    Scientific journal

  • Differential Algebraic Method for Direct Evaluation of Computational Capabilities of Physical Reservoirs
    KOMATSU Mizuka, YAGUCHI Takaharu, NAKAJIMA Kohei
    Dec. 2019, Proceedings of the 2019 International Symposium on Nonlinear Theory and its Applications (NOLTA2019), 187 - 190, English
    [Refereed]
    International conference proceedings

  • Satoh, T., Yaguchi, T.
    Jan. 2019, Japan Journal of Industrial and Applied Mathematics, 36(1) (1), 3 - -24, English
    [Refereed]
    Scientific journal

  • Yamanaka, Y., Yaguchi, T., Nakajima, K., Hauser, H.
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11141 LNCS, 781 - 794, English
    [Refereed]
    Scientific journal

  • Husbyらの実験データに対するアレルギー発症メカニズムの解析に向けた抗原・抗体の体内動態モデルの構築
    KOMATSU MIZUKA, YAGUCHI TAKAHARU
    2018, 日本応用数理学会論文誌, 28, 162 - 204, Japanese
    [Refereed]
    Scientific journal

  • Ishikawa, A., Michels, D.L., Yaguchi, T.
    Jan. 2018, Japan Journal of Industrial and Applied Mathematics, 35(2) (2), English
    [Refereed]
    Scientific journal

  • Kouhei Masumoto, Takaharu Yaguchi, Hiroshi Matsuda, Hideaki Tani, Keisuke Tozuka, Narihiko Kondo, Shuichi Okada
    Oct. 2017, GERIATRICS & GERONTOLOGY INTERNATIONAL, 17(10) (10), 1752 - 1758, English
    [Refereed]
    Scientific journal

  • 河崎 素乃美, YAGUCHI TAKAHARU, MASUMOTO KOUHEI, KONDO NARIHIKO, OKADA SHUICHI
    Mar. 2017, 応用数理, 27, 13 - 20, Japanese
    [Refereed][Invited]
    Scientific journal

  • 河崎 素乃美, YAGUCHI TAKAHARU, MASUMOTO KOUHEI, KONDO NARIHIKO, OKADA SHUICHI
    日本応用数理学会 ; 1991-, Mar. 2017, 応用数理, 27(1) (1), 13 - 20, Japanese
    [Refereed][Invited]
    Scientific journal

  • Geometric-mechanics-inspired model of stochastic dynamical systems
    YAGUCHI TAKAHARU
    Mar. 2017, MI Lecture Notes of IMI, 74, 31 - 33, English
    International conference proceedings

  • Energy-preserving Discrete Gradient Schemes for the Hamilton Equation Based on the Variational Principle
    ISHIKAWA AI, YAGUCHI TAKAHARU
    Mar. 2017, MI Lecture Notes of IMI, 74, 63 - 68, English
    International conference proceedings

  • ISHIKAWA AI, YAGUCHI TAKAHARU
    Dec. 2016, 日本応用数理学会論文誌, 26(4) (4), 381 - 415, Japanese
    [Refereed]
    Scientific journal

  • IRIE RIN, KOBAYASHI TERUYOSHI, YAGUCHI TAKAHARU
    神戸大学経済経営学会, Nov. 2016, 國民經濟雜誌, 214(5) (5), 39 - 50, Japanese
    Scientific journal

  • ISHIKAWA AI, YAGUCHI TAKAHARU

    In this contribution, we propose a new framework to derive energy-preserving numerical schemes based on the variational principle for Hamiltonian mechanics. We focus on Noether's theorem, which shows that the symmetry with respect to time translation gives the energy conservation law. By reproducing the calculation of the proof of Noether's theorem after discretization using the summation by parts and the discrete gradient, we obtain the scheme and the corresponding discrete energy at the same time. The significant property of efficiency is that the appropriate choice of the discrete gradient makes our schemes explicit if the Hamiltonian is separable.

    The Japan Society for Industrial and Applied Mathematics, Sep. 2016, JSIAM Letters, 8, 53 - 56, English
    [Refereed]
    Scientific journal

  • 地域コミュニティの構造変化に対する検定理論
    KAWASAKI SONOMI, YAGUCHI TAKAHARU, MASUMOTO KOUHEI, KONDO NARIHIKO, OKADA SHUICHI
    Dec. 2015, 2015年度応用数学合同研究集会予稿集, 394 - 401, Japanese
    Symposium

  • Ai Ishikawa, Takaharu Yaguchi
    2015, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 1648, English
    [Refereed]
    International conference proceedings

  • Takaharu Yaguchi
    2015, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 1648, English
    [Refereed]
    International conference proceedings

  • ISHIKAWA Ai, YAGUCHI Takaharu
    We consider application of the discrete gradient method for the Webster equation, which models sound waves in tubes. Typically Hamilton equations are described by the use of gradients of the Hamiltonian and it is indispensable to introduce an inner product to define a gradient. We first apply the discrete gradient method to design an energy-preserving method by using a weighted inner product. Comparing with another scheme that is derived by a standard inner product, we show that the discrete gradient method has a geometric invariance, which implies that the method reflects the symplectic geometric aspect of mechanics.
    The Japan Society for Industrial and Applied Mathematics, Jan. 2015, JSIAM Letters, 7, 17 - 20, English
    [Refereed]
    Scientific journal

  • Takaharu Yaguchi
    Sep. 2013, ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 47(5) (5), 1493 - 1513, English
    [Refereed]
    Scientific journal

  • 金澤 宏紀, 松尾 宇泰, YAGUCHI TAKAHARU
    For partial differential equations having conserved quantities, such as soliton equations, the "structure-preserving methods" which preserve the invariants are advantageous. On the other hand, in the field of computational fluid dynamics, a special difference method, called "compact difference method," has been widely used due to its high efficiency in wave propagation problems. In this paper, it is shown that the two methods can be combined, i.e., the compact difference method can be incorporated into a structure-preserving method, "the discrete variational derivative method," to construct efficient conservative finite difference schemes. Several numerical experiments are also included.
    The Japan Society for Industrial and Applied Mathematics, Jun. 2013, 日本応用数理学会論文誌, 23(2) (2), 203 - 232, Japanese
    [Refereed]
    Scientific journal

  • YAGUCHI TAKAHARU
    We propose a Lagrangian approach to deriving local-energy-preserving finite difference schemes for the Euler-Lagrange partial differential equations regarding that, from Noether's theorem, the symmetry of time translation of Lagrangian yields the energy conservation law. We first observe that the local symmetry of time translation of Lagrangian derives the Euler-Lagrange equation and the energy conservation law, simultaneously. The new method is a combination of a discrete counter part of this statement and the discrete gradient method. As an application of the discrete local energy conservation law, we also discuss discretization of the nonreflecting boundary conditions for the linear wave equation.
    The Japan Society for Industrial and Applied Mathematics, Sep. 2012, 日本応用数理学会論文誌, 22(3) (3), 143 - 169, Japanese
    [Refereed]
    Scientific journal

  • Takaharu Yaguchi, Takayasu Matsuo, Masaaki Sugihara
    May 2012, JOURNAL OF COMPUTATIONAL PHYSICS, 231(10) (10), 3963 - 3986, English
    [Refereed]
    Scientific journal

  • Yuto Miyatake, Takaharu Yaguchi, Takayasu Matsuo
    May 2012, JOURNAL OF COMPUTATIONAL PHYSICS, 231(14) (14), 4542 - 4559, English
    [Refereed]
    Scientific journal

  • Hiroki Kanazawa, Takayasu Matsuo, Takaharu Yaguchi
    We propose a new structure-preserving integrator for the Korteweg-de Vries (KdV) equation. In this integrator, two independent structure-preserving techniques are newly combined; the "discrete variational derivative method" for constructing invariants-preserving integrator, and the "compact finite difference method" which is widely used in the area of numerical fluid dynamics for resolving wave propagation phenomena. Numerical experiments show that the new integrator is in fact advantageous than the existing integrators.
    The Japan Society for Industrial and Applied Mathematics, Mar. 2012, JSIAM Letters, vol. 4, 5-8., 5 - 8, English
    [Refereed]
    Scientific journal

  • Morten Dahlby, Brynjulf Owren, Takaharu Yaguchi
    Jul. 2011, JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 44(30) (30), English
    [Refereed]
    Scientific journal

  • Yuto Miyatake, Takaharu Yaguchi, Takayasu Matsuo
    We consider structure-preserving integration of the Ostrovsky equation, which for example models gravity waves under the influence of Coriolis force. We find a multi-symplectic formulation, and derive a finite difference discretization based on the formulation and by means of the Preissman box scheme. We also present a numerical example, which shows the effectiveness of this scheme.
    The Japan Society for Industrial and Applied Mathematics, Jun. 2011, JSIAM Letters, vol. 3, 41-44., 41 - 44, English
    [Refereed]
    Scientific journal

  • Takaharu Yaguchi
    Dec. 2010, JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 27(3) (3), 425 - 441, English
    [Refereed]
    Scientific journal

  • Takaharu Yaguchi, Takayasu Matsuo, Masaaki Sugihara
    Jun. 2010, JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 234(4) (4), 1036 - 1048, English
    [Refereed]
    Scientific journal

  • Takaharu Yaguchi, Takayasu Matsuo, Masaaki Sugihara
    Jun. 2010, JOURNAL OF COMPUTATIONAL PHYSICS, 229(11) (11), 4382 - 4423, English
    [Refereed]
    Scientific journal

  • Yaguchi Takaharu, Matsuo Takayasu
    The Japan Society for Industrial and Applied Mathematics, 2010, Bulletin of the Japan Society for Industrial and Applied Mathematics, 20(1) (1), 75 - 76, Japanese

  • Mitsui Taketomo, Yaguchi Takaharu
    The Japan Society for Industrial and Applied Mathematics, 2009, Bulletin of the Japan Society for Industrial and Applied Mathematics, 19(3) (3), 205 - 206, Japanese

  • An Energy Conservative Numerical Scheme on Mixed Meshes for the Nonlinear Schrodinger Equation
    Takaharu Yaguchi, Takayasu Matsuo, Masaaki Sugihara
    2009, NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 1168, 892 - 895, English
    [Refereed]
    International conference proceedings

  • Yaguchi Takaharu, Matsuo Takayasu, Sugihara Masaaki
    The discrete variational method is a method to derive finite difference schemes that inherit the conservation/dissipation properties of the original equations. Although this method has been developed on uniform grids, we show that this method is also applicable to multi-dimensional non-uniform grids.
    The Japan Society for Industrial and Applied Mathematics, 2009, Transactions of the Japan Society for Industrial and Applied Mathematics, 19(4) (4), 371-431 - 431, Japanese
    [Refereed]
    Scientific journal

  • Yaguchi Takaharu
    Since the computational resources are finite, one must truncate the computational domain into finite when he/she simulates waves in an unbounded region. However this truncation gives rise to artificial boundaries and boundary conditions on such the artificial boundaries greatly affect the quality of the numerical solutions. In this paper restricting ourselves to compressible inviscid isentropic flows we derive an artificial boundary condition and an energy-type estimate under that condition. Futhermore the obtained boundary condition is shown to be equivalent to the well-known Thompson boundary condition.
    The Japan Society for Industrial and Applied Mathematics, 2008, Transactions of the Japan Society for Industrial and Applied Mathematics, 18(3) (3), 447 - 471, Japanese

  • Yaguchi, T., Sugihara, K.
    2006, Journal of Computational and Applied Mathematics, 197(1) (1)
    Scientific journal

■ MISC
  • 微分方程式モデルによる楽器シミュレーション
    YAGUCHI TAKAHARU, ISHIKAWA AI
    Jun. 2016, シミュレーション, 35(2) (2), Japanese
    [Invited]
    Introduction scientific journal

  • Webster方程式に対する離散勾配法とその力学的不変性について (新時代の科学技術を牽引する数値解析学)
    石川 歩惟, 谷口 隆晴
    京都大学, Jul. 2015, 数理解析研究所講究録, 1957, 14 - 26, Japanese

  • 書評 D. Furihata and T. Matsuo : Discrete Variational Derivative Method : A Structure-Preserving Numerical Method for Partial Differential Equations
    谷口 隆晴
    日本数学会, 2014, 数学, 66(1) (1), 107 - 111, Japanese

  • ある半離散スキームによるソリトンシミュレーションについて (科学技術計算における理論と応用の新展開)
    谷口 隆晴, 谷口 隆晴, 降旗 大介
    京都大学, Apr. 2012, 数理解析研究所講究録, 1791, 87 - 96, Japanese

  • ハミルトン偏微分方程式に対する解析力学的空間離散化法とその応用 (数値解析と数値計算アルゴリズムの最近の展開)
    谷口 隆晴, 松尾 宇泰, 杉原 正顯
    京都大学, Nov. 2010, 数理解析研究所講究録, 1719, 61 - 73, Japanese

  • The Design of Nonreflecting Boundaries for Numerical Simulations of Waves(Superrobust Computation and Modeling/Simulation)
    Yaguchi Takaharu
    Nonreflecting boundary conditions for numerical simulations of waves are reviewed. We describe the idea of the classical Engquist-Majda boundary condition for linear wave equations and the Hedstrom boundary condition for quasilinear hyperbolic systems. Some comments on the theoretical aspects of the boundary treatments such as the validity of the nonreflecting boundary conditions are provided. The recent developments on this subject are also discussed.
    Japan Society for Simmulation Technology, 15 Jun. 2007, Journal of the Japan Society for Simulation Technology, 26(2) (2), 84 - 89, Japanese

  • A Characteristic Nonreflecting Boundary Condition for the Multidimensional Navier-Stokes Equations
    YAGUCHI Takaharu, SUGIHARA Kokichi
    Because the computational resources are finite, one needs to truncate the computational domain when he/she simulates a physical problem. This truncation gives rise to non-physical artificial boundaries and one cannot obtain proper solutions unless appropriate boundary conditions on such boundaries are imposed. Practically nonreflecting boundary conditions, which are boundary conditions that prevent the generation of reflections, are of great importance. By the reason of the practical robustness and the simplicity of implementation, the Poinsot-Lele boundary condition is one of the most popular methods for the Navier-Stokes equations right now. Their method is based on Thompson's boundary condition for the Euler equations, which, however, is essentially one-dimensional. Therefore the Poinsot-Lele boundary condition is valid only when the flow is perpendicular to the boundary theoretically. Here we propose a nonreflecting boundary condition for the Euler equations which does not have the assumption on the direction of flow. We also discuss its extension to the Navier-Stokes equations. Our basic idea is to estimate the direction of the flow from numerical data.
    Japan Society of Fluid Mechanics, 25 Feb. 2005, Journal of Japan Society of Fluid Mechanics, 24(1) (1), 81 - 91, Japanese

  • G221 New Nonreflecting Boundary Condition Based on Method of Characteristics
    YAGUCHI Takaharu, SUGIHARA Kokichi
    Because the computational resources are finite, one needs to truncate the computational domain when he/she simulates a physical problem. This truncation gives rise to non-physical artificial boundaries and one cannot obtain proper solutions without appropriate boundary conditions on such boundaries. Practically nonreflecting boundary conditions, which are boundary conditions that prevent the generation of reflections, are of great importance. Most popular methods for the Navier-Stokes equations right now are boundary conditions by Poinsot and Lele. However, their methods are based on Thompson's boundary condition for the Euler equations, which are essentially one-dimensional, and hence are valid only when the flow is perpendicular to the boundary. Here we propose a boundary condition for the Navier-Stokes equations which does not require the assumption for the direction of flow. Our basic idea is to estimate the direction of the flow with numerical data.
    日本流体力学会, 2004, 日本流体力学会年会講演論文集, 2004, 456 - 457, Japanese

■ Lectures, oral presentations, etc.
  • Navier–Stokes 方程式に対する PINNs の解の誤差解析
    徐百歌, 谷口隆晴
    日本数学会2025年度年会, Mar. 2025, Japanese, Domestic conference
    Oral presentation

  • 幾何学的深層科学技術計算
    谷口隆晴
    日本数学会2025年度年会, Mar. 2025, Japanese, Domestic conference
    [Invited]
    Invited oral presentation

  • Modeling Coupled Systems by Neural Networks with Poisson Structures and Ports
    Razmik Khosrovian, Takaharu Yaguchi, Hiroaki Yoshimura, Takashi Matsubara
    International Conference on Scientific Computing and Machine Learning 2025, Mar. 2025, Japanese, Domestic conference
    Oral presentation

  • Refinement of the average vector field method for Hamiltonian systems using neural networks
    Chong Shen, Baige Xu, Elena Celledoni, Brynjulf Owren, Takaharu Yaguchi
    International Conference on Scientific Computing and Machine Learning 2025, Mar. 2025, Japanese, Domestic conference
    Oral presentation

  • Learning Hamiltonian Partial Differential Equations Using DeepONet with a Symplectic Branch Network
    Makara Yeang, Yusuke Tanaka, Takashi Matsubara, Takaharu Yaguchi
    International Conference on Scientific Computing and Machine Learning 2025, Mar. 2025, Japanese, Domestic conference
    Oral presentation

  • Learning Hamiltonian Density Using DeepONet for Modeling Wave Equations
    Baige Xu, Yusuke Tanaka, Takashi Matsubara, Takaharu Yaguchi
    International Conference on Scientific Computing and Machine Learning 2025, Mar. 2025, Japanese, Domestic conference
    Oral presentation

  • An Infinite Dimensional LSSL with Infinite Dimensional HiPPO
    Atsushi Takabatake, Takaharu Yaguchi
    International Conference on Scientific Computing and Machine Learning 2025, Mar. 2025, Japanese, Domestic conference
    Oral presentation

  • Energy-consistent Neural Operator Learning
    Yusuke Tanaka, Takaharu Yaguchi, Tomoharu Iwata, Naonori Ueda
    International Conference on Scientific Computing and Machine Learning 2025, Mar. 2025, Japanese, Domestic conference
    Oral presentation

  • Model Reduction of Neural Operators by Infinite-Dimensional Singular Value Decomposition
    Takaharu Yaguchi
    Workshop on Dynamical Systems and Machine Learning, Feb. 2025, English, International conference
    [Invited]
    Invited oral presentation

  • Ge-Marsden の定理に基づくSympNets の改良の試み
    瀋翀, 徐百歌, Elena Celledoni, Brynjulf Owren, 谷口隆晴
    日本応用数理学会環瀬戸内応用数理研究部会第28回シンポジウム, Dec. 2024, Japanese, Domestic conference
    Oral presentation

  • On a posteriori estimates of physics-informed neural networks for solving partial differential equations
    Takaharu Yaguchi
    Geometric Structures and Differential Equations -- Symmetry, Singularity, and Dynamical Systems --, Dec. 2024, English, International conference
    [Invited]
    Invited oral presentation

  • 波動方程式のハミルトニアン密度のDeepONetによる作用素学習
    徐百歌, 田中佑典, 松原崇, 谷口隆晴
    第27回情報論的学習理論ワークショップ (IBIS2024), Nov. 2024, Japanese, Domestic conference
    Oral presentation

  • 深層科学技術計算
    谷口隆晴
    第49回ASE研究会開催, Oct. 2024, Japanese, Domestic conference
    [Invited]
    Invited oral presentation

  • 深層科学技術計算:深層学習の物理モデリング・シミュレーションへの応用
    谷口隆晴
    Plasma Simulator Symposium 2024, Sep. 2024, Japanese, Domestic conference
    [Invited]
    Invited oral presentation

  • 非線形波動のモデリングのためのハミルトニアン密度の作用素学習
    徐百歌, 田中佑典, 松原崇, 谷口隆晴
    日本応用数理学会2024年度年会, Sep. 2024, Japanese, Domestic conference
    Oral presentation

  • Hyperbolic Partial Differential Equations Derived From Hippo Matrices
    Atsushi Takabatake, Baige Xu, Takaharu Yaguchi
    REMODEL-DSC Workshop on Machine Learning and Physics, Aug. 2024, English, International conference
    Poster presentation

  • Application of DeepONet for learning Hamiltonian PDEs
    Baige Xu, Yusuke Tanaka, Takashi Matsubara, Takaharu Yaguchi
    REMODEL-DSC Workshop on Machine Learning and Physics, Aug. 2024, English, International conference
    Poster presentation

  • Structure-preserving methods for a class of dissipative differential equations
    Takaharu Yaguchi
    REMODEL-DSC Workshop on Machine Learning and Physics, Aug. 2024, English, International conference
    [Invited]
    Invited oral presentation

  • Geometric Deep Energy-Based Models for Physics
    Takaharu Yaguchi
    REMODEL-DSC Workshop on Structure-Preserving Numerical Methods and Machine Learning, Aug. 2024, English, International conference
    [Invited]
    Invited oral presentation

  • Neural Operators for Hamiltonian and Dissipative PDEs
    Yusuke Tanaka, Takaharu Yaguchi, Tomoharu Iwata, Naonori Ueda
    International Conference on Scientific Computation and Differential Equations (SciCADE) 2024, Jul. 2024, English, International conference
    Poster presentation

  • Improved estimate of the number of input points of DeepONet
    Dehami Kiryu, Baige Xu, Takaharu Yaguchi
    International Conference on Scientific Computation and Differential Equations (SciCADE) 2024, Jul. 2024, English, International conference
    Oral presentation

  • Operator Learning of Hamiltonian Density for Modeling Nonlinear Waves
    Baige Xu, Yusuke Tanaka, Takashi Matsubara, Takaharu Yaguchi
    International Conference on Scientific Computation and Differential Equations (SciCADE) 2024, Jul. 2024, English, International conference
    Oral presentation

  • Enhancing Modeling Accuracy via Discriminating Hamiltonian Systems
    Yuhan Chen, Takaharu Yaguchi
    International Conference on Scientific Computation and Differential Equations (SciCADE) 2024, Jul. 2024, English, International conference
    Oral presentation

  • An error bound of PINNs for solving differential equations
    Takashi Matsubara, Takaharu Yaguchi
    International Conference on Scientific Computation and Differential Equations (SciCADE) 2024, Jul. 2024, English, International conference
    Oral presentation

  • PINNによってエネルギー保存則・エントロピー増大則を保つGENERIC系の作用素学習
    徐百歌, 松原崇, 谷口隆晴
    第29回計算工学講演会, Jun. 2024, Japanese, Domestic conference
    Oral presentation

  • Physics-Informed Neural Networksの誤差解析について
    松原崇, 谷口隆晴
    第29回計算工学講演会, Jun. 2024, Japanese, Domestic conference
    Oral presentation

  • Deep Learning Models for Physical Modeling
    Takaharu Yaguchi
    The Data Science seminar in University of Birmingham, May 2024, English, International conference
    [Invited]
    Invited oral presentation

  • An error bound of physics-informed neural networks for solving differential equations
    Takaharu Yaguchi
    PhysML Workshop 2024, May 2024, English, International conference
    [Invited]
    Invited oral presentation

  • Deep Discrete-Time Models for Physics
    Takaharu Yaguchi
    The DNA (Differential Equations and Numerical Analysis) Seminar, May 2024, English, International conference
    [Invited]
    Invited oral presentation

  • Geometric Deep Energy-Based Models for Physics
    Takaharu Yaguchi
    Cambridge Image Analysis Sminar, May 2024, English, International conference
    [Invited]
    Invited oral presentation

  • 深層科学技術計算とそれを支える数学
    谷口隆晴
    MfIP連携探索ワークショップ「数学を軸とする新たな価値創造に向けて」, Apr. 2024, Japanese, Domestic conference
    [Invited]
    Invited oral presentation

  • Numerical integrators for learning neural ordinary differential equation models
    Takaharu Yaguchi
    BIRS Workshop: Structured Machine Learning and Time–Stepping for Dynamical Systems, Feb. 2024, English, International conference
    [Invited]
    Invited oral presentation

  • DeepONet による発展型偏微分方程式の学習
    岩田実莉,入江凜,久田正樹,松原崇,谷口隆晴
    日本応用数理学会環瀬戸内応用数理研究部会第27回シンポジウム, Dec. 2023, Japanese, Domestic conference
    Oral presentation

  • DeepONet による非線形力学系の解の予測における入力点数の評価の改良
    桐生デハミ,徐百歌,谷口隆晴
    日本応用数理学会環瀬戸内応用数理研究部会第27回シンポジウム, Dec. 2023, Japanese, Domestic conference
    Oral presentation

  • 深層物理モデルにおける数値解析技術の応用について
    谷口隆晴
    IMI研究集会「新時代における高性能科学技術計算法の探究」, Nov. 2023, Japanese, Domestic conference
    [Invited]
    Invited oral presentation

  • 幾何学的深層学習
    Yuhan Chen, 徐百歌,松原崇,谷口隆晴
    RIMS研究集会「新時代における高性能科学技術計算法の探究」, Oct. 2023, Japanese, Domestic conference
    [Invited]
    Invited oral presentation

  • 末梢血造血幹細胞動員データ解析のためのグレブナー基底による変数分 類手法
    徐百歌,谷口隆晴,片山義雄
    日本数学会2023年度秋季総合分科会, Sep. 2023, Japanese, Domestic conference
    Oral presentation

  • アクティブエイジングプロジェクトにおける社会ネットワーク解析
    谷口隆晴
    持続的環境エネルギー社会共創研究機構 研究所間交流会, Sep. 2023, Japanese, Domestic conference
    [Invited]
    Invited oral presentation

  • Application of the Kernel Method to Learning Hamiltonian Equations
    Taisei Ueda, Takashi Matsubara, and Takaharu Yaguchi
    10th International Congress on Industrial and Applied Mathematics (ICIAM2023), Aug. 2023, English, International conference
    Oral presentation

  • Structure-Preserving Learning for GENERIC systems
    Baige Xu, Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi
    10th International Congress on Industrial and Applied Mathematics (ICIAM2023), Aug. 2023, English, International conference
    Oral presentation

  • Geometric Integrators for Neural Symplectic Forms
    Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi
    10th International Congress on Industrial and Applied Mathematics (ICIAM2023), Aug. 2023, English, International conference
    Oral presentation

  • Neural symplectic form and its variational principle
    Takaharu Yaguchi
    Maths4DL Deep Learning for Computational Physics conference, Jul. 2023, English, International conference
    Poster presentation

  • 物理システムにおける深層学習のための損失関数
    吉田崇人, 谷口隆晴, 松原崇
    2023年度 第37回 人工知能学会全国大会 (JSAI2023), Jun. 2023, Japanese, Domestic conference
    Oral presentation

  • カーネル法によるハミルトン系の学習と乱択化による高速化
    植田大晴, 松原崇, 谷口隆晴
    第28回計算工学講演会, Jun. 2023, Japanese, Domestic conference
    Oral presentation

  • 幾何学的深層科学技術計算 ~深層学習による物理モデリング・ シミュレーション~
    谷口隆晴
    数学と諸分野の連携にむけた若手数学者交流会2023, Mar. 2023, Japanese
    [Invited]
    Invited oral presentation

  • 在変数をもつハミルトニアンニューラルネットワークのハミルトン構造をもたないデータへの適用について
    延安歩美, 安田諒子, 松原崇, 谷口隆晴
    日本応用数理学会環瀬戸内応用数理研究部会第26回シンポジウム, Dec. 2022, Japanese
    Oral presentation

  • ハミルトン系に対するカーネル法によるモデリング
    植田大晴, 松原崇, 谷口隆晴
    日本応用数理学会環瀬戸内応用数理研究部会第26回シンポジウム, Dec. 2022, Japanese
    Oral presentation

  • 幾何学的力学と深層学習の連携による物理現象の構造保存型モデリング
    谷口隆晴
    第25回情報論的学習理論ワークショップ (IBIS2022), Nov. 2022, Japanese
    [Invited]
    Invited oral presentation

  • 深層科学技術計算の最新動向 ー幾何学的深層科学技術計算ー
    谷口隆晴
    第35回計算力学講演会, Nov. 2022, Japanese
    [Invited]
    Invited oral presentation

  • 神経ネットワーク動画像からのモデリングの試み
    安田 諒子, 松原 崇, 谷口 隆晴
    日本数学会2022年度秋季総合分科会, Sep. 2022, Japanese
    Oral presentation

  • 一般化 Dissipative SymODEN の GENERIC 形式
    徐 百歌, 陳 鈺涵, 松原 崇, 谷口 隆晴
    日本数学会2022年度秋季総合分科会, Sep. 2022, Japanese
    Oral presentation

  • ニューラルシンプレクティック形式と変分原理の両立性について
    陳 鈺涵, 松原 崇, 谷口 隆晴
    日本数学会2022年度秋季総合分科会, Sep. 2022, Japanese
    Oral presentation

  • 複数の研究分野の連携と数理科学
    谷口 隆晴
    日本応用数理学会2022年度年会, Sep. 2022, Japanese
    [Invited]
    Invited oral presentation

  • GENERICシステムに対する構造保存型深層物理モデル
    徐 百歌, 陳 鈺涵, 松原 崇, 谷口 隆晴
    日本応用数理学会2022年度年会, Sep. 2022, Japanese
    Oral presentation

  • 深層学習を用いてデータから力学系の第一積分を発見し保存するモデル化法
    松原 崇, 谷口 隆晴
    日本応用数理学会2022年度年会, Sep. 2022, Japanese
    Oral presentation

  • 交流アンケートデータからのネットワーク特徴量推定について
    徐 百歌, 谷口隆晴, 増本康平, 原田 和弘, 近藤 徳彦, 岡田 修一
    日本応用数理学会2022年度年会, Sep. 2022, Japanese
    Oral presentation

  • Learning GENERIC Systems Using Neural Symplectic Forms
    Baige Xu, Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi
    International Conference on Scientific Computation and Differential Equations (SciCADE) 2022, Jul. 2022, English
    Oral presentation

  • Theoretical analysis of approximation properties of Hamiltonian neural networks
    Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi
    International Conference on Scientific Computation and Differential Equations (SciCADE) 2022, Jul. 2022, English
    Oral presentation

  • Neural symplectic form and coordinate-free learning of Hamiltonian dynamics
    Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi
    International Conference on Scientific Computation and Differential Equations (SciCADE) 2022, Jul. 2022, English
    Oral presentation

  • 射影法を用いて系の第一積分を発見し保存するNeural ODE
    松原崇, 谷口隆晴
    電子情報通信学会 情報論的学習理論と機械学習研究会(IBISML), Jun. 2022, Japanese
    Oral presentation

  • アンバランスを考慮した深層学習による物理系の学習
    吉田崇人, 谷口隆晴, 松原崇
    2022年度 第36回人工知能学会全国大会(JSAI2022), Jun. 2022, Japanese
    Oral presentation

  • Imbalance-aware lossを用いた深層学習による物理系の学習
    吉田 崇人, 谷口 隆晴, 松原 崇
    電子情報通信学会 NOLTAソサイエティ大会, Jun. 2022, Japanese
    Oral presentation

  • Neural Symplectic 形式によるGENERICシステムの学習
    徐 百歌, 陳 鈺涵, 松原 崇, 谷口 隆晴
    第27回計算工学講演会, Jun. 2022, Japanese
    Oral presentation

  • Geometric Deep Energy- Based Models for Physics
    Takashi Matsubara, Yuhan Chen, Takaharu Yaguchi
    Geometric Deep Energy- Based Models for Physics, Workshop on Functional Inference and Machine Intelligence (FIMI2022), 2022, Mar. 2022, English
    [Invited]
    Invited oral presentation

  • Learning Physical Systems with Imbalance-Aware Deep Learning
    Takahito Yoshida, Takaharu Yaguchi, Takashi Matsubara
    電子情報通信学会技術研究報告 複雑コミュニケーションサイエンス研究会(CCS), Mar. 2022, Japanese
    Oral presentation

  • 社会的つながりの次 数分布からの交流ネットワーク生成モデルの提案
    浅野広大, 谷口隆晴, 増本康平, 原田和弘, 近藤徳彦, 岡田修一
    日本応用数理学会第18 回研究 部会連合発表会, Mar. 2022, Japanese
    Oral presentation

  • ニューラルシンプレクティック形式とその応用
    陳鈺涵, 徐百歌, 松原崇, 谷口隆晴
    日本応用数理学会第18 回研究部会連合発表会, Mar. 2022, Japanese
    Oral presentation

  • 非平衡熱力学による摩擦付き質点バネ系に対する数値解法とその刻み幅条件
    搗本有望, 谷口隆晴
    日本応用数理学会環瀬戸内応用数理研究部会第25 回シンポジウ ム, Dec. 2021, Japanese
    Oral presentation

  • シンプレクティック形式の学習による一般座標系での 深層物理モデル
    陳鈺涵, 松原崇, 谷口隆晴
    日本応用数理学会環瀬戸内応用数理研究部会第25 回シンポジウ ム, Dec. 2021, Japanese
    Oral presentation

  • ハミルトニアンニューラルネットワークの安定性について
    小川乃愛, 谷口隆晴
    日本応用数理学会環瀬戸内応用数理研究部会第25 回シンポジウム, Dec. 2021, Japanese
    Oral presentation

  • シンプレクティック随伴変数法に基づく省メモリな Neural ODE の学習
    松原崇, 宮武勇登, 谷口隆晴
    電子情報通信学会技術研究報告複雑コミュニケーションサイ エンス研究会(CCS), Nov. 2021, Japanese
    Oral presentation

  • ハミルトニアンニューラルネットワークの理論評価と KAM 理論への応用
    陳鈺涵, 松原崇, 谷口隆晴
    第24 回情報論的学習理論ワークショップ(IBIS2021), Nov. 2021, Japanese
    Oral presentation

  • シンプレクティック随伴変数法による高速省メモリ なNeural ODE の勾配計算
    松原崇, 宮武勇登, 谷口隆晴
    第24 回情報論的学習理論ワークショップ(IBIS2021), Nov. 2021, Japanese
    Oral presentation

  • ニューラルシンプレクティック形式とそれによる一般座標系でのハミルトン方程式の学習
    陳鈺涵, 松原崇, 谷口隆晴
    第24 回情報論的学習理論ワークショップ (IBIS2021), Nov. 2021, Japanese
    Oral presentation

  • Geometric Energy-Based Deep-Learning Models for Physics
    Takaharu Yaguchi
    DMV-OMG Annual Conference 2021, Sep. 2021, English
    [Invited]
    Invited oral presentation

  • 同定不可能モデルの解析:パラメータ多様体とその展開
    小松瑞果, 谷口隆晴
    第 31 回日本数理生物学会大会(2021 年度年会), Sep. 2021, Japanese
    Oral presentation

  • シンプレクティック数値積分法を用いたNeural ODE の学習
    松原崇, 宮武勇登, 谷口隆晴
    電子情報通信学会情報論的学習理論と機械学習研究会(IBISML), Jun. 2021, Japanese
    Oral presentation

  • 離散時間ラグランジュ力学のニューラルネットワー クによるモデル化
    青嶋雄大, 松原崇, 谷口隆晴
    第35 回人工知能学会全国大会(JSAI2021), Jun. 2021, Japanese
    Oral presentation

  • 物理現象のエネルギー挙動を離散時間で保証する深層学習シミュレーション
    松原崇, 青嶋雄大, 石川歩惟, 谷口隆晴
    2021 年度第35 回人工知能学会全国大会 (JSAI2021), Jun. 2021, Japanese
    Oral presentation

  • ⼀般座標系におけるエネルギーベース物理モデル
    陳 鈺涵, 松原 崇, 谷口 隆晴
    第26回計算工学講演会, May 2021, Japanese
    Oral presentation

  • 深層学習を用いたエネルギーベースのモデリング・シ ミュレーションフレームワーク
    谷口 隆晴
    明治大学共同利用・共同研究拠点研究集会「高度な自動運転を実現するための数理の現状と課題」, Mar. 2021, Japanese, オンライン, Domestic conference
    [Invited]
    Oral presentation

  • Koopman 作用素を利用した発展型ネットワーク予測の試み
    徐 百歌, 谷口 隆晴
    日本応用数理学会第17回研究部会連合発表会, Mar. 2021, Japanese, オンライン, Domestic conference
    Oral presentation

  • アトラクターのトポロジーに着目した因果推定手法について
    板東 弘晃, 鍛冶 静雄, 谷口 隆晴
    日本応用数理学会第17回研究部会連合発表会, Mar. 2021, Japanese, オンライン, Domestic conference
    Oral presentation

  • 非線形状態空間システム解析における代数的マトロイドの応用について
    小松 瑞果, 谷口 隆晴
    日本応用数理学会第17回研究部会連合発表会, Mar. 2021, Japanese, オンライン, Domestic conference
    Oral presentation

  • 深層学習によるエネルギーベース物理モデル, その2
    谷口 隆晴
    Workshop: シミュレーションとモデリングのための計算代数 2021, Feb. 2021, Japanese, オンライン, Domestic conference
    [Invited]
    Oral presentation

  • 深層学習によるエネルギーベース物理モデル, その1
    谷口 隆晴
    Workshop: シミュレーションとモデリングのための計算代数 2021, Feb. 2021, Japanese, オンライン, Domestic conference
    [Invited]
    Oral presentation

  • Deep Energy-Based Modeling of Discrete-Time Physics
    谷口 隆晴
    日本ディープラーニング協会主催 NeurIPS 2020 技術報告会, Jan. 2021, Japanese, オンライン, Domestic conference
    [Invited]
    Oral presentation

  • DGNet: エネルギー保存・散逸則を保つ深層物理モデリングとそれに関する理論・応用
    谷口 隆晴
    数値解析セミナー, Jan. 2021, Japanese, オンライン, Domestic conference
    [Invited]
    Oral presentation

  • 潜在変数をもつニューラル微分方程式に対する代数的考察
    小松 瑞果, 谷口 隆晴
    2020年度応用数学合同研究集会, Dec. 2020, Japanese, オンライン, Domestic conference
    Oral presentation

  • 深層フェーズフィールドモデリング
    松原 崇, 谷口隆晴
    2020年度応用数学合同研究集会, Dec. 2020, Japanese, オンライン, Domestic conference
    Oral presentation

  • 自然系の連成とシンプレクティック形式
    谷口 隆晴
    日本応用数理学会環瀬戸内応用数理研究部会第24回シンポジウム, Dec. 2020, Japanese, オンライン, Domestic conference
    Oral presentation

  • The Error Analysis of Numerical Integrators for Deep Neural Network Modeling of Differential Equations
    Shunpei Terakawa, Takashi Matsubara, Takaharu Yaguchi
    NeurIPS2020 Workshop on Machine Learning and the Physical Sciences (ML4PS), Dec. 2020, English, オンライン, Domestic conference
    Poster presentation

  • The parameter variety of unidentifiable state-space models and its applications to analysis of biological systems
    Mizuka Komatsu, Takaharu Yaguchi
    Establishing International Research Network of Mathematical Oncology (Fusion of Mathematics and Biology), Oct. 2020, English, Osaka, Domestic conference
    Oral presentation

  • 分布系のカオス同期化とニューラルネットワークを用いた秘匿通信システム
    陳 鈺涵, 佐野 英樹, 若生 将史, 谷口 隆晴
    日本応用数理学会2020年度年会, Sep. 2020, Japanese, オンライン, Domestic conference
    Oral presentation

  • 常微分方程式モデルの学習における離散化手法の影響について
    寺川 峻平, 松原 崇, 谷口隆晴
    日本応用数理学会2020年度年会, Sep. 2020, Japanese, オンライン, Domestic conference
    Oral presentation

  • ピアノの弦と駒の連成シミュレーションによるエネルギー移動の可視化
    寺川峻平,小松瑞果,谷口隆晴,鎌田健二,和泉沢玄
    第25回計算工学講演会, Jun. 2020, Japanese, オンライン, Domestic conference
    Oral presentation

  • 波動方程式と弾性方程式からなる連成系のシンプレクティッ ク性について
    Ai Ishikawa, Takaharu Yaguchi
    日本応用数理学会第16回研究部会連合発表会, Mar. 2020, 東京, Domestic conference
    Oral presentation

  • 時間方向対称性を利用した2つのエネルギー保存数値解法の等価条件について
    石川歩惟, 谷口隆晴
    日本応用数理学会第16回研究部会連合発表会, Mar. 2020, 東京, Domestic conference
    Oral presentation

  • 微分代数の応用に向けた多項式常微分方程式モデルの簡約
    Mizuka Komatsu, Takaharu Yaguchi
    日本応用数理学会第16回研究部会連合発表会, Mar. 2020, 東京, Domestic conference
    Oral presentation

  • 微分代数に基づく数理モデリングアプローチ
    小松 瑞果, YAGUCHI TAKAHARU
    Workshop: シミュレーションとモデリングのための計算代数 2020, Jan. 2020, 神戸, Domestic conference
    Oral presentation

  • 幾何学的離散力学と対称性 II
    Yaguchi Takaharu
    Workshop: シミュレーションとモデリングのための計算代数 2020, Jan. 2020, 神戸, Domestic conference
    [Invited]
    Oral presentation

  • 幾何学的離散力学と対称性 I
    板東 弘晃, YAGUCHI TAKAHARU, 鍛冶 静雄
    Workshop: シミュレーションとモデリングのための計算代数 2020, Jan. 2020, 神戸, Domestic conference
    [Invited]
    Oral presentation

  • 指数型分布族の定める多様体上の離散力学に基づく時系列モデルとネットワーク解析への応用
    谷口隆晴, 小松瑞果, 大川剛直
    日本応用数理学会環瀬戸内応用数理研究部会第23回シンポジウム, Dec. 2019, 神戸, Domestic conference
    Oral presentation

  • 高頻度データに対する再帰型ニューラルネットモデルとその比較
    Takaharu Yaguchi, Mizuka Komatsu
    日本応用数理学会環瀬戸内応用数理研究部会第23回シンポジウム, Dec. 2019, 神戸, Domestic conference
    Oral presentation

  • 波動方程式と弾性方程式の構造保存型連成数値計算
    Mizuka Komatsu, Takaharu Yaguchi
    日本応用数理学会環瀬戸内応用数理研究部会第23回シンポジウム, Dec. 2019, 神戸, Domestic conference
    Oral presentation

  • 同定不可能モデルに対するパラメータ多様体による解析とその近似導出について
    小松 瑞果, 中務 佑治, 谷口 隆晴
    2019 年度応用数学合同研究集会, Dec. 2019, 滋賀, Domestic conference
    Oral presentation

  • 自動微分による離散力学とアルゴリズム的数値解析
    谷口隆晴, 寺川峻平
    2019 年度応用数学合同研究集会, Dec. 2019, 滋賀, Domestic conference
    Oral presentation

  • 微分代数方程式モデルのモデルパラメータと解に関するグレブナー基底を用いた解析
    小松 瑞果, YAGUCHI TAKAHARU
    日本応用数理学会環瀬戸内応用数理研究部会第22回シンポジウム, Dec. 2018, Japanese, 香川, Domestic conference
    Oral presentation

  • 波動型偏微分方程式に対する幾何学的弱形式
    YAGUCHI TAKAHARU
    日本応用数理学会環瀬戸内応用数理研究部会第22回シンポジウム, Dec. 2018, Japanese, 香川, Domestic conference
    Oral presentation

  • アレルギー疾患の個別化医療に向けた抗原・抗体の体内動態シミュレーション
    小松 瑞果, YAGUCHI TAKAHARU
    RIMS研究集会, Nov. 2018, Japanese, 京都, Domestic conference
    Oral presentation

  • Modeling and simulations of the kinetics of antigens and antibodies towards personalized medicine for allergies
    Komatsu Mizuka, Yaguchi Takaharu
    情報計算科学生物学会2018年大会, Oct. 2018, Japanese, 東京, Domestic conference
    Oral presentation

  • 統計多様体上の状態空間モデルを用いた発展型ネットワーク解析
    小松 瑞果, YAGUCHI TAKAHARU, OHKAWA TAKENAO
    日本応用数理学会2018年度年会, Sep. 2018, Japanese, 愛知, Domestic conference
    Oral presentation

  • 抗原・抗体の体内動態の定量的解析に向けたモデルパラメータの多様性に対する考察
    小松 瑞果, YAGUCHI TAKAHARU
    日本応用数理学会2018年度年会, Sep. 2018, Japanese, 愛知, Domestic conference
    Oral presentation

  • アンケートデータを用いた交流ネットワーク推定手法
    佐藤 智久, YAGUCHI TAKAHARU, MASUMOTO Kouhei, KONDO NARIHIKO, OKADA SHUICHI
    日本応用数理学会2018年度年会, Sep. 2018, Japanese, 愛知, Domestic conference
    Oral presentation

  • 情報幾何学を用いた発展型ネットワークモデルに基づく相転移に着目した異常検知の試み
    Yaguchi Takaharu, Komatsu Mizuka
    MIMS現象数理学研究拠点共同研究集会「幾何的解析と形状表現の数理」, Aug. 2018, Japanese, 東京, Domestic conference
    Oral presentation

  • Parameters of Models using Dynamical Systems with Conservation Laws
    Yaguchi Takaharu, Komatsu Mizuka
    SIAM Conference on the Life Science (LS18), Aug. 2018, English, Minneapolis, Domestic conference
    Oral presentation

  • Modeling the Kinetics of Antigens and Antibodies for Analysis of the Mechanism of Allergy
    Komatsu Mizuka, Takaharu Yaguchi
    SIAM Conference on the Life Science (LS18), Aug. 2018, English, Minneapolis, Domestic conference
    Oral presentation

  • Parameter estimation for compartment models of biological systems
    Komatsu Mizuka, Yaguchi Takaharu
    Data Science, Statistics & Visualisation (DSSV 2018), Jul. 2018, English, Wien, Domestic conference
    Oral presentation

  • Autoregressive models on statistical Riemannian manifolds for analysis of evolutionary networks
    Yaguchi Takaharu, Komatsu Mizuka
    Data Science, Statistics & Visualisation (DSSV 2018), Jul. 2018, English, Wien, Domestic conference
    Oral presentation

  • Application of Hamiltonian Flows to Exploring Parameters of Mathematical Models in Situations with Insufficient Data
    Komatsu Mizuka, Yaguchi Takaharu
    The 13th World Congress in Computational Mechanics, Jul. 2018, English, New York, Domestic conference
    Oral presentation

  • 体内動態に対するコンパートメントモデルのモデルパラメータ推定手法について
    小松 瑞果, YAGUCHI TAKAHARU
    第47回数値解析シンポジウム, Jun. 2018, Japanese, 福井, Domestic conference
    Oral presentation

  • 潜在変数ネットワークモデルを用いた放牧牛の交流ネットワーク解析
    小松 瑞果, YAGUCHI TAKAHARU, OHKAWA TAKENAO
    第47回数値解析シンポジウム, Jun. 2018, Japanese, 福井, Domestic conference
    Oral presentation

  • あるテーマパークにおける地形的集客効果の感度分析
    大川 航平, YAGUCHI TAKAHARU
    第47回数値解析シンポジウム, Jun. 2018, Japanese, 福井, Domestic conference
    Oral presentation

  • 有限要素外積解析に対するRRGMRES法
    佐藤 智久, 谷口 隆晴
    日本応用数理学会第14回研究部会連合発表会, Mar. 2018, Japanese, Domestic conference
    Oral presentation

  • 変分原理に基づくエネルギー保存数値解法の Lie 群上への拡張
    石川 歩惟, 谷口 隆晴
    日本数学会2018年度年会, Mar. 2018, Japanese, Domestic conference
    Oral presentation

  • 統計多様体上のARモデルを用いた発展型ネットワーク解析
    谷口 隆晴, 小松 瑞果
    日本応用数理学会環瀬戸内応用数理研究部会第21回シンポジウム, Mar. 2018, Japanese, Domestic conference
    Oral presentation

  • 質点ばね系を用いたレザバーコンピューティングの数値実験
    山中 悠希, 谷口 隆晴, 中嶋 浩平
    応用数理 学生・若手研究者のための研究交流会, Mar. 2018, Japanese, Domestic conference
    Oral presentation

  • アレルギー発症メカニズムの解析に向けた抗原・抗体の体内動態モデルの構築, 及び, Husbyらの実験データに対するパラメータ推定とその考察
    小松 瑞果, 谷口 隆晴
    日本応用数理学会第14回研究部会連合発表会, Mar. 2018, Japanese, Domestic conference
    Oral presentation

  • アレルギー発症シミュレーションに向けた生理学的薬物動態モデルの応用
    小松 瑞果, 谷口 隆晴
    日本応用数理学会環瀬戸内応用数理研究部会第21回シンポジウム, Mar. 2018, Japanese, Domestic conference
    Oral presentation

  • Energy-Preserving Parareal Algorithm for the Hamilton Equation
    Ishikawa Ai, Yaguchi Takaharu, Yokokawa Mitsuo
    SIAM Conference on Parallel Processing for Scientific Computing, Mar. 2018, English, International conference
    Nominated symposium

  • 離散偏導関数法と数値積分の併用
    南部 匡範, 谷口 隆晴, YOKOKAWA MITSUO
    第46回数値解析シンポジウム, 2017, Japanese, Domestic conference
    Oral presentation

  • 離散外積解析における離散 Hodge スター作用素の誤差評価
    佐藤 智久, 谷口 隆晴
    第46回数値解析シンポジウム, 2017, Japanese, Domestic conference
    Oral presentation

  • 離散外積解析から導かれる有限積分法のマルチシンプレクティック性について
    佐藤 智久, 谷口 隆晴
    日本応用数理学会2017年度年会, 2017, Japanese, Domestic conference
    Oral presentation

  • 速度比例減衰項をもつ系に対する変分原理を利用した数値解法とその比較
    石川 歩惟, 谷口 隆晴
    第46回数値解析シンポジウム, 2017, Japanese, Domestic conference
    Oral presentation

  • 指数ランダムグラフモデルに基づくネットワークに対するARモデル
    谷口 隆晴
    日本応用数理学会2017年度年会, 2017, Japanese, Domestic conference
    Poster presentation

  • Regression model on statistical manifolds and its application to evolutionary network analysis
    Yaguchi Takaharu
    the International Conference on Scientific Computation And Differential Equations 2017 (SciCADE 2017), 2017, English, International conference
    Oral presentation

  • Discrete partial derivative method with numerical integrations
    Nanbu Masanori, Yaguchi Takaharu, Yokokawa Mitsuo
    the International Conference on Scientific Computation And Differential Equations 2017 (SciCADE 2017), 2017, English, International conference
    Oral presentation

  • curl-curl型偏微分方程式に対する有限要素外積解析の応用
    佐藤 智久, 谷口 隆晴
    2017年度応用数学合同研究集会, 2017, Japanese, Domestic conference
    Oral presentation

  • Automatic discrete differentiation and its applications
    Ishikawa Ai, Yaguchi Takaharu
    the International Conference on Scientific Computation And Differential Equations 2017 (SciCADE 2017), 2017, English, International conference
    Oral presentation

  • 変分原理に基づくエネルギー保存数値解法の一般のHamilton系への拡張
    石川 歩惟, 谷口 隆晴
    日本応用数理学会2016年度年会, Sep. 2016, Japanese, Domestic conference
    Oral presentation

  • 離散化した heavy-ball-with-friction method のパラメータについて
    石川 歩惟, 今村 成吾, 谷口 隆晴
    研究集会「常微分方程式の数値解法とその周辺2016」, Jul. 2016, Japanese, Domestic conference
    Oral presentation

  • 波動方程式に対するシンプレクティックかつエネルギー保存スキームについて
    石川 歩惟, 谷口 隆晴
    第45回数値解析シンポジウム, Jun. 2016, Japanese, Domestic conference
    Oral presentation

  • 散逸型偏微分方程式に対するある種の変分原理に基づく散逸スキームの導出法
    宮武 勇登, 谷口 隆晴
    第45回数値解析シンポジウム, Jun. 2016, Japanese, Domestic conference
    Oral presentation

  • 曲面上の熱方程式に対する散逸性保存型数値解法の導出と評価
    南部 匡範, 谷口 隆晴
    第45回数値解析シンポジウム, Jun. 2016, Japanese, Domestic conference
    Oral presentation

  • Webster方程式に対するある数値解法の長時間挙動について
    岩井 真理恵, 谷口 隆晴
    第45回数値解析シンポジウム, Jun. 2016, Japanese, Domestic conference
    Oral presentation

  • 地域コミュニティ構造の変化と改善に対する統計解析手法
    KAWASAKI SONOMI, YAGUCHI TAKAHARU, MASUMOTO KOUHEI, KONDO NARIHIKO, OKADA SHUICHI
    日本応用数理学会第12回研究部会連合発表会, Mar. 2016, Japanese, 神戸学院大学, Domestic conference
    Oral presentation

  • 自動離散微分とその応用
    ISHIKAWA Ai, YAGUCHI Takaharu
    日本応用数理学会研究部会連合発表会, Mar. 2016, Japanese, 神戸学院大学, Domestic conference
    Oral presentation

  • 散逸型構造保存型数値解法の多層パーセプトロン学習法への応用
    YAGUCHI TAKAHARU, ISHIKAWA AI
    日本数学会2016年度年会, Mar. 2016, Japanese, 筑波大学, Domestic conference
    Oral presentation

  • 地域コミュニティの構造変化に対する検定理論
    KAWASAKI Sonomi, YAGUCHI Takaharu, MASUMOTO Kouhei, KONDO Narihiko, OKADA Shuichi
    応用数学合同研究集会, Dec. 2015, Japanese, 龍谷大学, Domestic conference
    Oral presentation

  • Caldirola-Kanai型変分原理に基づく構造保存型数値解法と多層パーセプトロン学習法への応用について
    YAGUCHI Takaharu, ISHIKAWA Ai
    研究会「数理構造保存を接点とした数学・HPC・実科学のクロスオーバー」, Dec. 2015, Japanese, 電気通信大学, Domestic conference
    Oral presentation

  • 対称性を利用した離散勾配法におけるLegendre変換に関する考察
    ISHIKAWA Ai, YAGUCHI Takaharu
    日本応用数理学会2015年度年会, Sep. 2015, Japanese, 金沢大学, Domestic conference
    [Invited]
    Invited oral presentation

  • ハミルトン方程式に対する時間対称性を用いた離散勾配スキームの導出法
    ISHIKAWA Ai, YAGUCHI Takaharu
    日本応用数理学会2015年度年会, Sep. 2015, Japanese, 金沢大学, Domestic conference
    Oral presentation

  • シンプレクティック数値積分法による力学的摂動
    IRIE Rini, YAGUCHI Takaharu
    日本応用数理学会2015年度年会, Sep. 2015, Japanese, 金沢大学, Domestic conference
    Oral presentation

  • ある種の散逸型微分方程式に対する構造保存型数値解法
    YAGUCHI Takaharu, ISHIKAWA Ai
    日本応用数理学会2015年度年会, Sep. 2015, Japanese, 金沢大学, Domestic conference
    Oral presentation

  • Structure-preserving method for a certain class of dissipative differential equations
    YAGUCHI Takaharu, ISHIKAWA Ai
    the International Conference on Scientific Computation And Differential Equations 2015 (SciCADE 2015), Sep. 2015, English, University of Potsdam, International conference
    Oral presentation

  • Energy-preserving discrete gradient schemes for the Hamilton equation based on the variational principle
    ISHIKAWA Ai, YAGUCHI Takaharu
    the International Conference on Scientific Computation And Differential Equations 2015 (SciCADE 2015), Sep. 2015, English, University of Potsdam, International conference
    Oral presentation

  • Numerical integrations that preserve energy behaviors using the variational principle
    YAGUCHI Takaharu, ISHIKAWA Ai
    Computational and Geometric Approaches for Nonlinear Phenomena, Aug. 2015, English, 早稲田大学, International conference
    Oral presentation

  • Structure-preserving numerical integrators for the KdV equation using an almost complex structure
    YAGUCHI Takaharu, ISHIKAWA Ai
    Recent developments in numerical analysis with special emphasis on complex analysis, Jul. 2015, English, 東京大学, International conference
    Oral presentation

  • 地域高齢者を対象とした健康教室による参加者間交流ネットワーク形成に関する研究
    MASUMOTO KOUHEI, KONDO NARIHIKO, MATHUDA HIROSHI, TANI HIDEAKI, YAGUCHI TAKAHARU, TAKENAKA YUKO, TOZUKA KEISUKE, OKADA SHUICHI
    日本老年社会科学会第57回大会, Jun. 2015, Japanese, Domestic conference
    Poster presentation

  • 大規模ネットワークにおける複数ノード組に対する重要度の特徴付け
    IRIE Rini, KOBAYASHI Teruyoshi, YAGUCHI Takaharu
    第44回数値解析シンポジウム, Jun. 2015, Japanese, ぶどうの丘, Domestic conference
    Oral presentation

  • ピアノの物理モデルとその効率的な数値計算法の検討
    ISHIKAWA Ai, Dominik L. Michels, YAGUCHI Takaharu
    第44回数値解析シンポジウム, Jun. 2015, Japanese, ぶどうの丘, Domestic conference
    Oral presentation

  • L2射影を用いた離散偏導関数法による弦のサウンドレンダリング
    HASESAKA Yuta, YAGUCHI Takaharu
    第44回数値解析シンポジウム, Jun. 2015, Japanese, ぶどうの丘, Domestic conference
    Oral presentation

  • 測地線方程式に対する離散勾配法の適用とアインシュタイン方程式の数値解を用いるための基礎検討
    IRIE Rin, YAGUCHI Takaharu
    日本応用数理学会研究部会連合発表会, Mar. 2015, Japanese, 東京, Domestic conference
    Oral presentation

  • 境界付き多様体上における有限要素外積解析の弱形式の適切性について
    YAGUCHI TAKAHARU, 土屋 卓也
    日本数学会2014年度年会, Mar. 2014, Japanese, 東京, Domestic conference
    Oral presentation

  • 楽器シミュレーションに対する構造保存型数値解法の応用と関連する数理的課題
    芦辺 健太郎, 石川 歩惟, 上田 怜奈, YAGUCHI TAKAHARU
    研究集会「常微分方程式の数値解法とその周辺2014」, Mar. 2014, Japanese, 静岡, Domestic conference
    Oral presentation

  • 離散勾配法のRiemann構造不変性とシンプレクティック幾何学的再構築
    ISHIKAWA Ai, YAGUCHI Takaharu
    RIMS研究集会「新時代の科学技術を牽引する数値解析学」, 2014, Japanese, 京都, Domestic conference
    [Invited]
    Invited oral presentation

  • 数値相対論のための測地線方程式に対する構造保存型数値解法の適用
    IRIE Rin, YAGUCHI Takaharu
    応用数学合同研究集会, 2014, Japanese, 滋賀, Domestic conference
    Oral presentation

  • 幾何学的構造保存型数値解法に対する力学理論的アプローチ
    YAGUCHI Takaharu
    第3回岐阜数理科学研究会, 2014, Japanese, 岐阜, Domestic conference
    [Invited]
    Invited oral presentation

  • 異なる内積により得られる Webster 方程式の2つのハミルトン構造
    ISHIKAWA Ai, YAGUCHI Takaharu
    第43回数値解析シンポジウム, 2014, Japanese, 沖縄, Domestic conference
    Oral presentation

  • 異なるRiemann構造をもつWebster方程式に対する離散変分導関数法の不変性
    ISHIKAWA Ai, YAGUCHI Takaharu
    日本応用数理学会2014年度年会, 2014, Japanese, 東京, Domestic conference
    Oral presentation

  • ハミルトン偏微分方程式に対する構造保存型数値解法
    YAGUCHI Takaharu
    日本学術会議第4回計算力学シンポジウム, 2014, Japanese, 東京, Domestic conference
    [Invited]
    Invited oral presentation

  • シンプレクティック法による摂動を用いた太陽系の安定性検証
    IRIE Rin, YAGUCHI Takaharu
    第43回数値解析シンポジウム, 2014, Japanese, 沖縄, Domestic conference
    Oral presentation

  • シンプレクティック空間上の離散勾配法
    ISHIKAWA Ai, YAGUCHI Takaharu
    応用数学合同研究集会, 2014, Japanese, 滋賀, Domestic conference
    Oral presentation

  • グラフに対するOllivier-Ricci曲率の数値計算
    YAGUCHI Takaharu
    日本応用数理学会2014年度年会, 2014, Japanese, 東京, Domestic conference
    Oral presentation

  • Simulation of Wind Instruments and a Geometric Invariance of the Discrete Gradient Method
    ISHIKAWA Ai, YAGUCHI Takaharu
    Foundations of Computational Mathematics Conference 2014, 2014, English, ウルグアイ, International conference
    [Invited]
    Invited oral presentation

  • On the well-posedness of the weak form of the finite element exterior calculus on manifolds
    YAGUCHI Takaharu
    流体方程式の構造と特異性に迫る数値解析・数値計算, 2014, English, 愛知, International conference
    [Invited]
    Invited oral presentation

  • Application of Structure-Preserving Numerical Methods to Simulation of Musical Instruments
    ISHIKAWA Ai, UEDA Reina, YAGUCHI Takaharu
    2nd International Workshop on Numerical Linear Algebra and Its Applications, 2014, English, 中国, International conference
    [Invited]
    Invited oral presentation

  • 有限要素外積解析に基づく波動型方程式に対するエネルギー保存型数値解法
    YAGUCHI TAKAHARU
    日本数学会 秋季総合分科会, Sep. 2013, Japanese, 愛媛, Domestic conference
    [Invited]
    Invited oral presentation

  • ホロノーム拘束をもつハミルトン系に対する離散勾配法
    北祐樹, YAGUCHI TAKAHARU
    日本応用数理学会 2013 年度年会, Sep. 2013, Japanese, 福岡, Domestic conference
    Oral presentation

  • シンプレクティック数値積分法における修正ハミルトニアンの存在定理について
    YAGUCHI TAKAHARU
    日本応用数理学会 2013 年度年会, Sep. 2013, Japanese, 福岡, Domestic conference
    Oral presentation

  • Lagrangian approach of the discrete gradient method based on finite element methods
    YAGUCHI TAKAHARU
    the International Conference on Scientific Computation And Differential Equations 2013 (SciCADE 2013), Sep. 2013, English, Valladolid, Spain, International conference
    Oral presentation

  • シンプレクティックフローとしてのシンプレクティック数値積分法
    YAGUCHI TAKAHARU
    ワークショップ「有限体積法の数学的基盤理論の確立III」, Aug. 2013, Japanese, 愛媛, Domestic conference
    Oral presentation

  • On the finite element exterior calculus for parabolic equations
    Takaharu Yaguchi
    2013 Tokyo Workshop on Structure-Preserving Methods, Jan. 2013, English, Tokyo, International conference
    Oral presentation

  • 放物型方程式に対する有限要素外積解析の誤差評価について
    YAGUCHI Takaharu
    応用数学合同研究集会, Dec. 2012, Japanese, 滋賀, Domestic conference
    Oral presentation

  • Application of the Lagrangian Approach of the Discrete Gradient Method to Scleronomic Holonomic Systems
    Takaharu Yaguchi
    10th International Conference of Numerical Analysis and Applied Mathematics, Sep. 2012, English, Greece, International conference
    Oral presentation

  • ホロノミック系に対するラグランジュ力学的離散勾配法
    Takaharu Yaguchi
    日本応用数理学会 2012年度年会, Aug. 2012, Japanese, 北海道, Domestic conference
    Oral presentation

  • A Lagrangian Approach to Deriving Local-Energy-Preserving Numerical Schemes for the Euler-Lagrange Partial Differential Equations
    Takaharu Yaguchi
    15th International Congress on Computational and Applied Mathematics, Jul. 2012, English, Gent, Belgium, International conference
    Oral presentation

  • ラグランジュ力学に基づく保存型数値解法導出法とその応用
    谷口 隆晴
    有限体積法の数学的基盤理論の確立II, Mar. 2012, Japanese, 福岡, Domestic conference
    Oral presentation

  • Newton法の Parareal Algorithm による並列化
    若林 岳人, 谷口 隆晴, 山本 有作
    常微分方程式の数値解法とその周辺 2012, Mar. 2012, Japanese, 静岡, Domestic conference
    Oral presentation

  • Euler-Lagrange 偏微分方程式に対する局所エネルギー保存スキーム導出法
    谷口 隆晴
    日本応用数理学会研究部会連合発表会, Mar. 2012, Japanese, 福岡, Domestic conference
    Oral presentation

  • Backward Error Analysis of the Scheme for the KdV Equation by the Discrete Variational Derivative Method
    Christopher Budd, Takaharu Yaguchi, Daisuke Furihata
    2012 Tokyo Workshop on Structure-Preserving Methods, Jan. 2012, English, Tokyo, International conference
    Oral presentation

  • KdV 方程式に対するある半離散スキームの後退誤差解析
    Christopher Budd, 谷口 隆晴, 降籏 大介
    応用数学合同研究集会, Dec. 2011, Japanese, 瀬田, Domestic conference
    Oral presentation

  • 時間依存固有値問題の数値解法に関する基礎検討
    Sindoh Yoshitaka, Yaguchi Takaharu, Yamamoto Yuusaku
    日本応用数理学会「行列・固有値問題の解法とその応用」研究部会第12回研究会, Nov. 2011, Japanese, 日本応用数理学会, 東京, Domestic conference
    Oral presentation

  • ある半離散スキームによるソリトンのシミュレーションについて
    Christopher Budd, 谷口 隆晴, 降籏 大介
    RIMS研究集会「科学技術計算における理論と応用の新展開」, Oct. 2011, Japanese, 京都, Domestic conference
    Others

  • 変分構造をもつ楕円型方程式に対する離散勾配法の応用
    谷口 隆晴
    日本応用数理学会 2011年度年会, Sep. 2011, Japanese, 京都, Domestic conference
    Oral presentation

  • The Discrete Variational Derivative Method Based on Discrete Differential Forms
    Takaharu Yaguchi, Takayasu Matsuo, Masaaki Sugihara
    International Workshop on Numerical Linear Algebra and Its Applications, Jul. 2011, English, China, International conference
    Invited oral presentation

  • A Lagrangian Approach to Deriving Energy-Preserving Numerical Schemes for the Euler-Lagrange Partial Differential Equations and Its Applications
    Takaharu Yaguchi
    the International Conference on Scientific Computation And Differential Equations 2011 (SciCADE 2011), Jul. 2011, English, Canada, International conference
    [Invited]
    Invited oral presentation

■ Affiliated Academic Society
  • Institute of Electrical and Electronics Engineers
    May 2020 - Present

  • 情報処理学会
    Feb. 2020 - Present

  • Society for Industrial and Applied Mathematics
    Jan. 2017 - Present

  • American Institute of Aeronautics and Astronautics

  • 日本流体力学会

  • Mathematical Association of America

  • 日本数学会

  • 日本応用数理学会

■ Research Themes
  • Deep Scientific Computing: integration of physical structure and deep learning through mathematical science
    Takaharu Yaguchi, Takashi Matsubara, Masaaki Imaizumi, Yusuke Tanaka
    Japan Science and Technology Agency, Adopting Sustainable Partnerships for Innovative Research Ecosystem (ASPIRE), ASPIRE for Rising Scientists, Kobe University, Jan. 2024 - Mar. 2027

  • A longitudinal study of age-related changes in emotion regulation and trust and their relationship to social connectedness
    増本 康平, 谷口 隆晴, 佐藤 幸治, 原田 和弘
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Scientific Research (B), Kobe University, 01 Apr. 2022 - 31 Mar. 2025

  • Structure ​Preserving​ System Modeling and Simulation Basis Based on Geometric Discrete Mechanics
    Japan Science and Technology Agency, Strategic Basic Research Programs (CREST), Oct. 2019 - Mar. 2025, Principal investigator

  • ブラックボックス微分方程式モデルに対する保存則抽出手法とネットワーク解析への応用
    谷口 隆晴
    日本学術振興会, 科学研究費助成事業 基盤研究(C), 基盤研究(C), 神戸大学, 01 Apr. 2020 - 31 Mar. 2024
    2021年度は,主に,与えられた時系列データの背後に潜むシンプレクティック構造を抽出する手法の開発に取り組んだ.実際の問題に現れる,保存量をもつ微分方程式の多くはハミルトン方程式であるが,ハミルトン方程式はシンプレクティック多様体上で,エネルギー関数が定めるフローとして定義される.シンプレクティック多様体は,シンプレクティック形式と呼ばれる微分2形式をもつ多様体であるが,これは,一般には,状態変数に依存してよい量であり,データから学習することが必要である. 一般に,微分2形式は歪対称行列に対応するため,素朴な手法としては,データから歪対称行列を学習する手法が考えられる.しかし,実際には,シンプレクティック形式は閉形式である必要もあり,単に歪対称行列を学習するだけでは,シンプレクティック形式に対応するとは限らない. 本研究では,de Rhamコホモロジーを考慮すると,多くのシンプレクティック多様体上で,シンプレクティック形式が微分1形式の外微分によって導かれることに着目した.具体的には,微分2形式を直接学習するのではなく,それを導く微分1形式をデータから学習することで,シンプレクティック形式以外に対応しない歪対称行列が学習されることを防ぐ手法を構築した. この手法を用いれば,与えられたデータに隠されたシンプレクティック構造を抽出することが可能となり,隠された運動方程式を発見することが出来るようになる.また,提案手法は,ハミルトン方程式の幾何学的な性質,特に座標変換不変性を利用しており,データがどのように表現されていたとしても,方程式を学習することが可能である.そのため,データの前処理とも相性が良く,この性質は,今後,様々な形で応用できる可能性がある.

  • 岡田 修一
    科学研究費補助金/挑戦的研究(開拓), Jun. 2018 - Mar. 2021
    Competitive research funding

  • 情報幾何学と離散力学の融合と社会ネットワーク解析への応用
    谷口 隆晴
    国立研究開発法人科学技術振興機構, 戦略的創造研究推進事業(さきがけ), Oct. 2016 - Mar. 2020, Principal investigator
    Competitive research funding

  • 谷口 隆晴
    学術研究助成基金助成金/基盤研究(C), Apr. 2014 - Mar. 2019, Principal investigator
    Competitive research funding

  • 増本 康平
    科学研究費補助金/基盤研究(B), Apr. 2015 - Mar. 2018
    Competitive research funding

  • SAITO Norikazu, TSUCHIYA Takuya, YAGUCHI Masaharu, FURIHATA Daisuke, MURAKAWA Hideki, KIKUCHI Fumio, KAWARADA Hideo, USHIJIMA Teruo, MIYASHITA Masaru
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Scientific Research (B), The University of Tokyo, 01 Apr. 2011 - 31 Mar. 2015
    This research project was aimed at development and application of the mathematical theory for the finite volume method that is a popular structure-preserving discretization method. From the mathematical stand-point, the discrete Sobolev inequality, interpolation error constants, discrete Rellich's theorem, discrete maximum principle, and discrete differential form were studied and many useful results were obtained. As an important application, results were applied to analysis of the finite volume method for the mathematical model describes the aggregation of slime molds resulting from their chemotactic features. In particular, the proof of the existence of a discrete free energy was succeeded. Another important application was an extension of energy-preserving numerical method based on Lagrange mechanics to the finite volume method by using the theory of the discrete differential form.

  • 谷口 隆晴
    科学研究費補助金/若手研究(B), 2011, Principal investigator
    Competitive research funding

  • YAGUCHI Takaharu
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B), Grant-in-Aid for Young Scientists (B), The University of Tokyo, 2007 - 2009
    Nonreflecting boundary conditions are of importance in numerical simulations of compressive fluid. In this research I developed a new nonreflecting boundary condition based on the Riemann invariant manifold. An improvement of this boundary condition was found to be same as Thompson's boundary condition, and this provided a new derivation of Thompson's boundary condition and a stability analysis. Researches on the discrete variational method are also performed in order to stabilize this boundary condition. As a result, some extensions of the discrete variational method are achieved.

■ Media Coverage
  • 研究開発DX始動(下) AI操る「ロボ科学者」
    日本経済新聞, 08 Feb. 2021
    Paper

  • 深層学習研究の最高位を勝ち取った日本チーム、決め手は異分野研究者のタッグ
    23 Dec. 2020, 日経クロステック
    Internet

TOP