SEARCH
Search Details
MORIMOTO KazukiGraduate School of Science / Division of MathematicsAssociate Professor
Research activity information
■ Award- Jul. 2022 神戸大学, 前之園記念若手優秀論文賞
- Sep. 2015 The Mathematical Society of Japan, Takebe Katahiro Prize for Encouragement of Young Researchers
- Mar. 2015 Inoue Foundation for Science, Inoue Research Award for Young Scientists
- Elsevier BV, Apr. 2025, Journal of Number Theory, 269, 203 - 246Scientific journal
- Springer Science and Business Media LLC, Mar. 2025, Mathematische Annalen, 391(3) (3), 3799 - 3862, English[Refereed]Scientific journal
- We investigate the Gross–Prasad conjecture and its refinement for the Bessel periods in the case of $(\mathrm {SO}(5), \mathrm {SO}(2))$ . In particular, by combining several theta correspondences, we prove the Ichino–Ikeda-type formula for any tempered irreducible cuspidal automorphic representation. As a corollary of our formula, we prove an explicit formula relating certain weighted averages of Fourier coefficients of holomorphic Siegel cusp forms of degree two, which are Hecke eigenforms, to central special values of $L$ -functions. The formula is regarded as a natural generalization of the Böcherer conjecture to the non-trivial toroidal character case.Wiley, Sep. 2024, Compositio Mathematica, 160(9) (9), 2115 - 2202Scientific journal
- Abstract Lapid and Mao formulated a conjecture on an explicit formula of Whittaker–Fourier coefficients of automorphic forms on quasi-split reductive groups and metaplectic groups as an analogue of the Ichino–Ikeda conjecture. They also showed that this conjecture is reduced to a certain local identity in the case of unitary groups. In this article, we study the even unitary-group case. Indeed, we prove this local identity over p-adic fields. Further, we prove an equivalence between this local identity and a refined formal degree conjecture over any local field of characteristic zero. As a consequence, we prove a refined formal degree conjecture over p-adic fields and get an explicit formula of Whittaker–Fourier coefficients under certain assumptions.Cambridge University Press (CUP), Jul. 2022, Journal of the Institute of Mathematics of Jussieu, 21(4) (4), 1107 - 1161Scientific journal
- Springer Science and Business Media LLC, Dec. 2021, Mathematische Zeitschrift, 299(3-4) (3-4), 1331 - 1350, English[Refereed]Scientific journal
- European Mathematical Society - EMS - Publishing House GmbH, 2021, J. Eur. Math. Soc., 23(4) (4), 1295 - 1331[Refereed]Scientific journal
- Nov. 2020, J. Number Theory, 216(2020) (2020), 83 - 141, EnglishOn L-functions for U_{2n+1} × Res_{E/F} GL_m (m > n)[Refereed]
- Feb. 2020, International Mathematics Research Notices, vol.2020(No.4) (No.4), 1112 - 1203Model Transition for Representations of Unitary Type[Refereed]
- American Mathematical Society, 2018, Transactions of the American Mathematical Society, 370(9) (9), 6245 - 6295, English[Refereed]Scientific journal
- 2018, Adv. Math, 337, 317 - 362, EnglishOn tensor product L-functions for quaternion unitary groups and GL(2) over totally real number fields: mixed weight cases[Refereed]Scientific journal
- Jun. 2017, MATHEMATISCHE ANNALEN, 368(1-2) (1-2), 561 - 586, English[Refereed]Scientific journal
- Aug. 2016, AMERICAN JOURNAL OF MATHEMATICS, 138(4) (4), 1117 - 1166, English[Refereed]Scientific journal
- Oxford University Press, 2014, International Mathematics Research Notices, 2014(7) (7), 1729 - 1832, English[Refereed]Scientific journal
- 2014, Represent. Theory, 18(2014) (2014), 28 - 87On the theta correspondence for (GSp(4),GSO(4,2)) and Shalika periods.[Refereed]
- 2014, Amer. J. Math., 136(2014) (2014), 1385 - 1407On special values of certain L-functions.[Refereed]
- Dec. 2013, PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 141(12) (12), 4125 - 4137, EnglishShalika periods on GU(2,2)[Refereed]Scientific journal
- Kyoto University, Dec. 2013, RIMS Kokyuroku, 1871, 203 - 206, EnglishON THETA CORRESPONDENCES FOR (GSp$_4$, GSO$_{4,2}$) (Automorphic Representations and Related Topics)
- Kyoto University, Mar. 2013, RIMS Kokyuroku, 1826, 1 - 6, EnglishON SPECIAL VALUES OF TENSOR PRODUCT L-FUNCTIONS OF AN INNER FORM OF GSP(4) AND GL(2) (Automorphic forms and automorphic L-functions)
- Number Theory Seminar, National Center for Theoretical Sciences, Taiwan, Sep. 2024On Ichino-Ikeda Type Formula of Whittaker Periods for Unitary Groups[Invited]
- Automorphic Forms and L-functions of higher rank, Queen Mary University of London, Sep. 2023On Ichino-Ikeda type formula of Whittaker periods for unitary groups[Invited]Invited oral presentation
- RIMS conference "Analytic and arithmetic aspects of automorphic representations", Jan. 2023On Ichino-Ikeda type formula of Bessel periods for (U(2n), U(1)) and (GL(2n), GL(1))[Invited]Oral presentation
- 第9回京都保型形式研究集会, Jun. 2022On Ichino-Ikeda type formula of Whittaker periods for even unitary groups[Invited]
- National University of Singapore, Representation Theory and Number Theory, Sep. 2021, EnglishOn Ichino-Ikeda type formula of Whittaker periods for even unitary groups[Invited]
- 早稲田大学整数論セミナー, Jun. 2021(SO(5), SO(2))のBessel周期の市野-池田型の公式と一般化されたBoecherer予想[Invited]
- RIMS conference“Automorphic forms, Automorphic representations, Galois representations, and its related topics”, Jan. 2021On Ichino-Ikeda type formula of Bessel period for (SO(5),SO(2)).Oral presentation
- RIMS研究集会「保型形式と$L$関数の解析的, 幾何的, $p$進的研究」, Jan. 2020, English, 京都大学数理解析研究所On Gan-Gross-Prasad conjecture for (U(2n), U(1)) and (SO(5), SO(2))[Invited]Oral presentation
- 南大阪保型表現セミナー, Nov. 2019, English, 大阪市立大学On Gan-Gross-Prasad conjecture for (U(2n), U(1)) and (SO(5),SO(2))[Invited]Oral presentation
- KIAS seminar, Sep. 2019, English, Korean Institute for Advanced StudyOn Gross-Prasad conjecture for (SO(2n+1), SO(2))[Invited]Oral presentation
- Representation Theory Workshop 2019, Aug. 2019, English, National University of Singapore, International conferenceOn Gan-Gross-Prasad conjecture for (U(2n), U(1))[Invited]Oral presentation
- 談話会, Nov. 2018, Japanese, 京都大学, Domestic conference対称積L 関数の特殊値とRamakrishnan-Shahidi lift の周期関係式について[Invited]Invited oral presentation
- 九州代数的整数論2018, Mar. 2018, Japanese, 九州大学, Domestic conferenceU(2n) のWhittaker 周期の明示公式について[Invited]Invited oral presentation
- Special values of automorphic L-functions, periods of automorphic forms and related topics, Sep. 2017, English, 大阪市立大学, International conferenceOn a certain local identity for an explicit formula of Whittaker periods on the even unitary groupOral presentation
- 東京電機大学数学講演会, Jun. 2017, Japanese, 東京電機大学, Domestic conference次数2 のSiegel モジュラー形式のL 函数の中心値の明示公式について[Invited]Invited oral presentation
- 神戸整数論集会2017, Jun. 2017, English, 神戸大学, International conferenceOn a certain local identity for Lapid-Mao's conjecture in the even unitary group case[Invited]Invited oral presentation
- Workshop on Shimura varieties, representation theory and related topics, Nov. 2016, English, Kyoto University, Kyoto University, Domestic conferenceRefined Gross-Prasad conjecture on special Bessel periodsfor $\mathrm{SO}(2n+1) \times \mathrm{SO}(2)$[Invited]Invited oral presentation
- 代数セミナー, May 2016, Japanese, Touhoku University, Touhoku University, Domestic conference($\mathrm{SO}(2n+1), \mathrm{SO}(2))$ の場合のGross-Prasad予想とSpecial Bessel 周期について[Invited]Invited oral presentation
- 早稲田大学整数論セミナー, Apr. 2016, Japanese, Weseda University, Weseda University, Domestic conference次数2 のSiegel モジュラー形式のSpecial Bessel 周期とL 函数の中心値について[Invited]Invited oral presentation
■ Research Themes
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Grant-in-Aid for Scientific Research (C), Kobe University, Apr. 2021 - Mar. 2026L函数の特殊値の明示公式LapidとMaoにより予想されたU(2n)のWhittaker周期の明示公式は、ある局所等式の証明へと還元されていた。これまでの研究で非分裂非アルキメデス素点ではその局所等式は証明できていた。今年度の成果として、分裂非アルキメデス素点において、非分裂の場合と同様に適当なモデルの変換公式を証明することで、この局所等式を証明した。さらに、分裂アルキメデス素点で、Beuzart-PlessisによるGL(n)のtempered表現の大域化についての結果を用いることで、局所等式をGL(2n)の場合のWhittaker周期の明示公式へと帰着できることがわかった。この場合の明示公式はLapidとMaoにより証明されており、結果として分裂アルキメデス素点において局所等式を証明することができた。これらの結果から、非分裂実素点においてdiscrete seriesという仮定の下で、Whittaker周期の明示公式を証明することができた。特に、基礎体がtotally imginaryの場合には、任意のカスピダル保型表現について明示公式が証明できたことになる。さらに、この結果と古澤昌秋(大阪公立大)との共同研究で得た結果を組み合わせることにより、同様の仮定の下でtemperedなカスピダル保型表現に関して、(U(2n), U(1))の場合の精密化Gan-Gross-Prasad予想を証明することができた。また、U(2n+1)の場合のWhittaker周期の明示公式を証明するために、U(2n)との間のテータ対応を考察し、U(2n)のWhittaker周期がU(2n+1)のWhittaker周期へと移ることがわかった。
- 学術研究助成基金助成金/若手研究(B), Apr. 2017 - Mar. 2021, Principal investigatorCompetitive research funding
- 学術研究助成基金助成金/若手研究(B), Apr. 2014 - Mar. 2018, Principal investigatorCompetitive research funding