SEARCH
検索詳細
北河 享大学院科学技術イノベーション研究科 科学技術イノベーション専攻教授
プロフィール
2022年4月1号起我在神户大学上班。我以前在东洋纺(上海)投资有限公司工作了,所以工作环境比以前有很大的变化。感觉很紧张。好好学习慢慢习惯应该有法子是我的座右铭。
研究活動情報
■ 受賞■ 論文
- Elsevier BV, 2025年01月, Journal of Membrane Science, 713, 123309 - 123309研究論文(学術雑誌)
- Elsevier BV, 2024年10月, Journal of Membrane Science, 710, 123115 - 123115研究論文(学術雑誌)
- Elsevier BV, 2024年06月, Separation and Purification Technology, 337, 126249 - 126249研究論文(学術雑誌)
- American Chemical Society (ACS), 2024年02月, Industrial & Engineering Chemistry Research研究論文(学術雑誌)
- Elsevier BV, 2024年02月, Bioresource Technology, 393, 130144 - 130144研究論文(学術雑誌)
- Elsevier BV, 2023年11月, Desalination, 566, 116936 - 116936研究論文(学術雑誌)
- Elsevier BV, 2023年10月, Separation and Purification Technology, 322, 124091 - 124091, 英語[査読有り]研究論文(学術雑誌)
- Elsevier BV, 2023年09月, Separation and Purification Technology, 320, 124150 - 124150, 英語[査読有り]研究論文(学術雑誌)
- Elsevier BV, 2023年06月, Separation and Purification Technology, 315, 123576 - 123576研究論文(学術雑誌)
- Wiley, 2023年03月, Journal of Applied Polymer Science, 140(22) (22), e53900, 英語[査読有り]研究論文(学術雑誌)
- 2022年12月, MEMBRANES, 12(12) (12), 英語[査読有り]研究論文(学術雑誌)
- Informa UK Limited, 2018年09月, Journal of Macromolecular Science, Part B, 57(9) (9), 595 - 607[査読有り]研究論文(学術雑誌)
- Society of Fiber Science and Technology Japan, 2018年, Journal of Fiber Science and Technology, 74(1) (1), 1 - 9[査読有り]研究論文(学術雑誌)
- Springer Science and Business Media LLC, 2017年04月, Journal of Materials Science, 52(7) (7), 4142 - 4154[査読有り]研究論文(学術雑誌)
- Informa UK Limited, 2017年03月, Journal of Macromolecular Science, Part B, 56(3) (3), 178 - 193[査読有り]研究論文(学術雑誌)
- Elsevier BV, 2017年03月, European Polymer Journal, 88, 9 - 20[査読有り]研究論文(学術雑誌)
- Informa UK Limited, 2016年11月, Journal of Macromolecular Science, Part A, 53(11) (11), 699 - 708[査読有り]研究論文(学術雑誌)
- Informa UK Limited, 2016年08月, Journal of Macromolecular Science, Part B, 55(8) (8), 774 - 792[査読有り]研究論文(学術雑誌)
- Lifescience Global, 2016年07月, Journal of Membrane and Separation Technology, 5(2) (2), 57 - 61[査読有り]研究論文(学術雑誌)
- Elsevier BV, 2016年02月, Journal of Membrane Science, 500, 180 - 189[査読有り]研究論文(学術雑誌)
- 2016年, Procedia Structural Integrity, 2, 293 - 300, 英語[査読有り]研究論文(学術雑誌)
- Elsevier BV, 2016年01月, Polymer, 82, 246 - 254[査読有り]研究論文(学術雑誌)
- Elsevier BV, 2015年12月, Journal of Water Process Engineering, 8, 160 - 170[査読有り]研究論文(学術雑誌)
- Informa UK Limited, 2015年11月, Journal of Macromolecular Science, Part B, 54(11) (11), 1323 - 1340[査読有り]研究論文(学術雑誌)
- Informa UK Limited, 2015年11月, Journal of Macromolecular Science, Part B, 54(11) (11), 1341 - 1362[査読有り]研究論文(学術雑誌)
- Lifescience Global, 2015年06月, Journal of Membrane and Separation Technology, 4(2) (2), 74 - 88[査読有り]研究論文(学術雑誌)
- This article concerns PBO fiber structure, especially a preferential orientation of the a‐axis of the PBO crystal in the fiber. It has been reported that the a‐axis of the PBO crystal aligns parallel to the radial direction on the round cross section for PBO AS and HM fibers. This observation was proved by selected‐area electron diffraction and micro‐focus X‐ray diffraction. An application of water vapor coagulation is carried out in this study. It is proved that the fiber so made shows a random orientation of the PBO crystal a‐axis on the cross section. This fact has never been reported on any scientific or engineering journals before as far as the authors have concerned and it becomes state‐of‐the‐art in this study. A mechanism to explain the presence and/or absence of such preference is proposed. The authors believe that the presence of this radial preferential orientation comes from a combination or a balance of polymer‐solvent interaction and the direction of diffusion for solvent from the center to the outside of the fiber.The Society of Fiber Science and Technology, Japan, 2015年, 繊維学会誌, 71(7) (7), 224 - 231, 英語[査読有り]研究論文(学術雑誌)
- This article concerns surface roughness of PBO fibers. Atomic force microscopy is applied to measuring the surface roughness of the PBO AS, HM and HM+ fibers. Also linear thermal expansion was measured. The reason that the surface roughness is decreased as fiber modulus increases is discussed from the viewpoint of microscopic fiber surface structure. There is a discussion in that the smoothness of fiber surface has relation with fiber modulus, molecular orientation and crystallinity of the fibers. The coefficient of thermal expansion is also measured. The PBO HM+ fiber shows a lower value (-8.7 × 10-6 K-1) of coefficient of thermal expansion than that of the PBO HM.The Society of Fiber Science and Technology, Japan, 2015年, 繊維学会誌, 71(2) (2), 105 - 111, 日本語[査読有り]研究論文(学術雑誌)
- Springer Science and Business Media LLC, 2014年09月, Journal of Materials Science, 49(18) (18), 6467 - 6474[査読有り]研究論文(学術雑誌)
- 2012年, Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 78(788) (788), 411 - 420, 日本語研究論文(国際会議プロシーディングス)
- In this paper, a newly developed process to fabricate micro-sized specimen for axial compressive strength evaluation of single fiber using ultraviolet (UV) lithography was proposed. Technique of UV lithography, which was used in semiconductor production, was adopted to fabricate a test specimen that fiber was partially embedded in a photo-polymer. The photo-polymer SU-8 was used as a resist for high aspect ratio test specimen. A PBO fiber, which has excellent characteristics in tensile strength, tensile modulus and chemical resistance, was used as a test fiber material. Direct axial compression test was performed using the micro-compression testing machine with a flat indenter of 50 μm in diameter and two camera units. Finite element analysis was carried out to compute the internal stress distribution in the fiber under compression and to determine the optimum fiber length. The results showed that the proposed specimen fabrication method using UV lithography was demonstrated to be effective for direct measurement of the compressive strengths of PBO fibers. Finite element analysis revealed that the PBO fiber length in the compression test should be at least 20 μm to avoid the influence of fiber rooting in the resin. The experimental values obtained for the compressive strengths of PBO fibers exhibited Weibull distribution with a mean of 217 MPa, which is lower than the values generally obtained by other test methods such as the loop test or resin embedment test.The Japan Society of Mechanical Engineers, 2012年, 日本機械学会論文集 A編, 78(793) (793), 1358 - 1365, 日本語[査読有り]研究論文(学術雑誌)
- The effects of low-intensity UV light irradiation on tensile strength of high-modulus (HM) type poly-p-phenylene benzobisoxazole (PBO) fiber improved tensile modulus by heat-treatment were investigated in a monofilament tensile test. Irradiation time was set to 0 h, 1 h, 10 h, 100 h and 1,000 h, while radiance were arranged to become 2, 4 and 8 W/m2. Standard modulus (As spun: AS) type PBO fiber that authors reported its properties before was employed as standard specimen. It was found that the tensile strength distribution of UV irradiated HM type fiber could be approximated to a normal distribution. The relation between tensile strength and radiation time depend on the degree of radiance. However, the relation between tensile strength and radiation dosage was independent of the degree of radiance, and the radiation dosage was most suitable parameter to describe the tensile strength at the different radiance. The tensile strength of HM type fiber was higher than that of AS type fiber over all radiation dosage. It was found by AFM observation that amount of the surface roughness on the UV irradiated HM type fiber with increasing the radiation dosage was smaller than that of the UV irradiated AS fiber. The reason for that poor crystallite orientation region in HM fiber was less than that in AS fiber and an increase in roughness causes autoxidation occur predominantly in the poor crystallite orientation region. Thus the decrease in tensile strength of fibers under UV light irradiation was attributable to not only cutting an internal molecule by the exposure to UV radiation but also the roughness on the surface of the fiber. Effect of roughness on the tensile strength of the UV irradiated HM type fiber was smaller than that of AS type fiber. However, the effect of roughness on the tensile strength of both fibers was not very large.The Japan Society of Mechanical Engineers, 2012年, 日本機械学会論文集 A編, 78(790) (790), 865 - 878, 日本語[査読有り]研究論文(学術雑誌)
- In this paper, effect of strain rate on the tensile strength of high-modulus type poly-p-phenylene benzobisoxazole (PBO) fiber was investigated in monofilament tests. Tensile tests were carried out at a gauge length of 12.5 mm. The strain rate ranged from 6.7×10-4 to 3.2×10-1 s-1. It was found that the tensile strength removed size effect in diameter direction of PBO fiber was represented by a two parameter Weibull distribution under all strain rate conditions. The mean tensile strength at high strain rate range from 4.0×10-2 to 3.2×10-1 s-1 was about 8 % higher than that at low strain rate range from 6.7×10-4 to 1.3×10-2 s-1. In addition, it was found by SEM observation that there were distinct differences between fracture surface image of specimen at high strain rate range and at low strain rate range, i.e., the crack length in fiber direction at high strain rate range was much shorter than that at low strain rate range. However the crack grew along boundaries of microfibrils at the low strain rate range, the crack grew not only along the boundaries but also in the microfibrils at the high strain rate range. Therefore, the increase in tensile strength at the high strain rate range was caused by the difference in the path of crack propagation.The Japan Society of Mechanical Engineers, 2012年, 日本機械学会論文集 A編, 78(788) (788), 421 - 431, 日本語[査読有り]研究論文(学術雑誌)
- ロール延伸法で作製されたポリエチレンテレフタレート(PET)とポリブチレンテレフタレート(PBT)の一軸延伸フィルムについて,広角 X 線回折,赤外分光分析により,二重配向と PBT の結晶変態の関係について構造解析を行った.各フィルムについて,through, edge, end の 3 方向から広角 X 線回折写真を撮影し,二重配向性を評価した.また,PBT については,赤外分光分析により二つの結晶変態である α 型結晶と β 型結晶の存在比を求めた.それらの結果より,PET と PBT は延伸倍率の増加につれて,二重配向性が増加しているおり,PBT では β 型結晶の存在比が増加していることが確認された.PET の結晶および PBT の β 型結晶はベンゼン環を含む面にメチレン基が平面ジグザグに並ぶ,極めて平面的な構造をとっている.以上の結果より,PET や PBT の二重配向には,平面的な結晶構造が寄与していることが示唆される.Society of Polymer Science, Japan, 2009年, KOBUNSHI RONBUNSHU, 66(12) (12), 598 - 604, 日本語[査読有り]研究論文(学術雑誌)
- Effect of post heat treatment on tensile strength distribution and its size effect of poly-p-phenylene benzobisoxazole (PBO) fiber were investigated in monofilament tests. Two-parameter Weibull distribution adapted for dependence of fiber strength for both length and diameter direction. It was found that the tensile strength of PBO fibers showed size effect regardless of post heat treatment for both length and diameter direction. The size effect of tensile strength in diameter direction was larger than that in longitudinal direction. For relatively long gauge lengths (12.5mm and over), the tensile strength distribution separated size effect in diameter direction well fitted the Weibull distribution function with 2 parameters. For relatively short gauge lengths (under 12.5mm), it did not fit because distribution of fiber strength was lower than that of strength related to end fracture. The size effect of fiber strength for both length and diameter direction was increased by post heat treatment because crystalline regions increased by heat-treatment and fiber became brittleness.一般社団法人 日本機械学会, 2009年, 日本機械学会論文集 A編, 75(751) (751), 373 - 380, 日本語[査読有り]研究論文(学術雑誌)
- In this paper, tensile strength and behavior of low-intensity UV light irradiated poly-p-phenylene benzobisoxazole (PBO) fiber were investigated in monofilament tests. The tensile tests of a monofilament were carried out at a gauge length of 12.5 mm and deformation rate of 0.5 mm/min. Irradiation time was set to 0h, 1h, 10h, 100h and 1,000h, while radiance was arranged to become 2, 4 and 8 W/m2. It was found that the tensile strength distribution of UV irradiated PBO fibers can be approximated to a normal distribution. Regardless of the degree of radiance, the tensile strength tends to decrease gradually with an increase in irradiation time. As radiance intensifies, however, corresponding curved lines move to lower positions, an indication of the dependency of the tensile strength on radiance. The relationship between radiation dosage and tensile strength converges on this one curved line irrespective of the degree of radiance. Therefore radiation dosage should be a valid parameter to measure the degradation of the strength of the PBO fibers exposed to UV light irradiation. In addition, it is found by SEM observation that there are distinct differences between the fracture surface image of UV non-irradiated fiber and that of irradiated fiber. Regardless of UV-irradiation, PBO fibers have split in the direction in which it is set. But the split part in UV-irradiated fiber is shorter than in the UV-non-irradiated fiber because UV-irradiated fiber has split vertically in portions.The Japan Society of Mechanical Engineers, 2009年, Journal of Solid Mechanics and Materials Engineering, 3(1) (1), 1 - 9, 英語[査読有り]研究論文(学術雑誌)
- 2008年, 17th European Conference on Fracture 2008: Multilevel Approach to Fracture of Materials, Components and Structures, 2, 1546 - 1553, 英語Tensile and fatigue behavior of poly-p-phenylene benzobisoxazole(PBO) fibers研究論文(国際会議プロシーディングス)
- In this paper, tensile and fatigue strength of high-modulus (HM) type (258GPa modulus) poly-p-phenylene benzobisoxazole (PBO) fiber improved tensile modulus by heat-treatment have been investigated. The tensile tests of a monofilament were carried out at a gauge length of 12.5mm and deformation rate of 0.5mm/min. The fatigue tests of a monofilament were carried out to determine the S-N property at a frequency of 10Hz with three stress ratios of 0.1, 0.5 and 0.7. Standard modulus (As spun : AS) type (187GPa modulus) PBO fiber that authors reported its properties before was employed as standard specimen. It was found that the tensile strength of HM type PBO fiber was well represented by a two-parameter Weibull distribution, and indicated a size effect in diameter direction. The tensile strength of HM type PBO fiber on the basis of the concept of effective volume was higher than that of AS type fiber. The fatigue strength of HM type PBO fiber was higher than that of AS type fiber over all fatigue lives. The relation between the stress amplitude and fatigue life depended on the stress ratio. However, the relation between the maximum stress ratio and fatigue life was independent of the stress ratio. Therefore, it was found that the maximum stress was useful to describe the fatigue lives at the different stress ratios. Additionally, the factor governing fatigue fracture tended to vary from the mean stress to stress amplitude at the low stress ratio because crystalline regions increased by heat-treatment and fiber became brittleness.The Society of Materials Science, Japan, 2008年, 材料, 57(7) (7), 732 - 738, 日本語[査読有り]研究論文(学術雑誌)
- Wiley, 2006年10月, Journal of Applied Polymer Science, 102(1) (1), 204 - 209[査読有り]研究論文(学術雑誌)
- Wiley, 2006年08月, Journal of Applied Polymer Science, 101(4) (4), 2619 - 2626[査読有り]研究論文(学術雑誌)
- Wiley, 2006年06月, Journal of Applied Polymer Science, 100(6) (6), 5007 - 5018[査読有り]研究論文(学術雑誌)
- Wiley, 2006年05月, Journal of Applied Polymer Science, 100(3) (3), 2196 - 2202[査読有り]研究論文(学術雑誌)
- Wiley, 2005年10月, Journal of Polymer Science Part B: Polymer Physics, 43(19) (19), 2754 - 2766[査読有り]研究論文(学術雑誌)
- Wiley, 2005年06月, Journal of Polymer Science Part B: Polymer Physics, 43(12) (12), 1495 - 1503[査読有り]研究論文(学術雑誌)
- Wiley, 2004年09月, Journal of Applied Polymer Science, 93(6) (6), 2918 - 2925[査読有り]研究論文(学術雑誌)
- Wiley, 2002年07月, Journal of Polymer Science Part B: Polymer Physics, 40(13) (13), 1281 - 1287[査読有り]研究論文(学術雑誌)
- Wiley, 2002年07月, Journal of Polymer Science Part B: Polymer Physics, 40(13) (13), 1269 - 1280[査読有り]研究論文(学術雑誌)
- Informa UK Limited, 2002年03月, Journal of Macromolecular Science, Part B, 41(1) (1), 61 - 76[査読有り]研究論文(学術雑誌)
- Wiley, 2001年06月, Journal of Polymer Science Part B: Polymer Physics, 39(12) (12), 1296 - 1311[査読有り]研究論文(学術雑誌)
- Wiley, 2001年05月, Journal of Applied Polymer Science, 80(7) (7), 1030 - 1036[査読有り]研究論文(学術雑誌)
- Elsevier BV, 2001年03月, Polymer, 42(5) (5), 2101 - 2112[査読有り]研究論文(学術雑誌)
- 2000年12月, Journal of Materials Science and Technology(Bulgaria)(Bulgaria), 8(3) (3), 119 - 142Characterization of structure and properties of polyacrylonitrile-based acrylic fibers[査読有り]
- Wiley, 2000年11月, Journal of Polymer Science : Part B : Polymer Physics, 38(22) (22), 2937 - 2942[査読有り]研究論文(学術雑誌)
- 2000年10月, Journal of Polymer Science : Part B : Polymer Physics, 38(22) (22), 2901 - 2911An Investigation into the Relationship Between Internal Stress Distribution and a Change of Poly-p-Phenylenebenzobisoxazole (PBO) fiber structure[査読有り]
- Wiley, 2000年06月, Journal of Polymer Science : Part B : Polymer Physics, 38(12) (12), 1605 - 1611[査読有り]研究論文(学術雑誌)
- American Chemical Society (ACS), 1998年08月, Macromolecules, 31(16) (16), 5430 - 5440[査読有り]研究論文(学術雑誌)
- Wiley, 1998年01月, Journal of Polymer Science Part B: Polymer Physics, 36(1) (1), 39 - 48[査読有り]研究論文(学術雑誌)
- The Crystallographic Society of Japan, 1997年, 日本結晶学会誌, 39, 44 - 44, 日本語
- 1990年12月, Macromolecules, 23, 602 - 607Chain Stiffness and Excluded-Volume Effects in Dilute Polymer Solutions. Poly(isophthaloyl-£rans-2,5-dimethylpiperazine)[査読有り]
- 1989年12月, Macromolecules, 22, 450 - 457Phase Equilibrium in Polymer 4- Polymer + Solvent Ternary Systems. 4. Polystyrene 4- Polyisobutylene in Cyclohexane and in Benzene[査読有り]
- 産業用水調査会, 2015年11月01日, 用水と廃水, 57(11) (11), 822 - 828, 日本語MBRの処理効率を向上させる新規CPVC平膜の開発 : 実下水処理場における実証結果 (特集 省エネルギー型排水処理技術の開発)[査読有り]
- 日本材料強度学会, 2007年10月29日, 日本材料強度学会誌, 41(3) (3), 57 - 65, 日本語PBO繊維の引張強度とその寸法効果
- The Society of Fiber Science and Technology, Japan, 2007年, 繊維学会誌, 63(8) (8), P.208 - P.208, 日本語
- 2005年03月01日, 福井大学工学部研究報告, 53(1) (1), 111 - 116A Relationship between Structure and Property of PBO Fibers
- The Society of Fiber Science and Technology, Japan, 2005年, 繊維学会誌, 61(7) (7), P.178 - P.181, 日本語
- 2004年12月, Polymer Surface Modification: Relevance to Adhesion, 3, 83 - 94Functionalised plasma polymer coatings for promoting the adhesion of high-performance polymer fibres
- 高分子刊行会, 2003年12月, 高分子加工, 52(12) (12), 565 - 569, 日本語PBO繊維の構造と物性の関係について
- 2003年07月, Recent Res. Devel. Polym. Sci., 7(2003) (2003), 197 - 221Structural analysis and deformation process of poly-p-phenylenebenzobisoxazole (PBO) fibers[招待有り]
- The Crystallographic Society of Japan, 1998年11月, 日本結晶学会年会講演要旨集, 1998, 190 - 190, 日本語
- 分担執筆, 第1章 第3節 水が絡んでできる剛直高分子繊維の結晶配向制御, 技術情報協会, 2021年05月水とポリマー
- 分担執筆, 第6章 芳香複素環高分子材料の構造・分子設計, 株式会社エヌ・ティー・エス刊, 2010年12月新訂 最新ポリイミド 基礎と応用
- 分担執筆, The Structure of High-modulus, High-tenacity Poly-p-phenylenebenzobisoxazole) Fibres, Woodhead Publishing, 2009年11月, 英語, ISBN: 9781845693800Handbook of Textile Fibre Structure: Volume 1: Fundamentals and Manufactured Polymer Fibres (Woodhead Publishing Series in Textiles)
- 分担執筆, 4.2.4 PBO繊維, 丸善, 2006年01月, 日本語, ISBN: 4621076787レオロジーデータハンドブック
- 分担執筆, p. 7276-7280 Polymer Fiber Processing: High-performance Fibers, Elsevier, 2001年, 英語, ISBN: 0080431526Encyclopedia of materials : science and technology
- International Congress on Advanced Materials Sciences and Engineering 2019, 2019年07月Preferential Orientations of Molecular Planes of Rigid-Rod Polymers along the Radial Direction Normal to the Fiber Axis[招待有り]
- 第13回中日先端芳香族高分子研討会, 2018年11月Preferential Orientations of Molecular Planes of Rigid-Rod Polymers along the Radial Direction Normal to the Fiber Axis
- CCMR 2018, 2018年08月Preferential Orientations of Molecular Planes of Rigid-Rod Polymers along the Radial Direction Normal to the Fiber Axis[招待有り]
- フロンティアソフトマター開発専用ビームライン産学連合体 第6回 研究発表会, 2017年01月水が絡んでできる繊維中での剛直高分子の結晶軸配向決定
- 第21回 日本ポリイミド・芳香族系高分子会議, 2013年12月剛直性高分子が形作る微細構造の形態について ‐PBO 繊維の例‐[招待有り]
- Polymer Fibres 2010, 2010年07月Structure and Properties of PBO Fibre[招待有り]
- 第59回高分子学会年次大会, 2010年05月PBO繊維の構造と物性 ー途中の構造の解析ー[招待有り]
- 第29回関西繊維科学講座, 2004年12月ナノ構造制御によるスーパー繊維の高性能化[招待有り]
- The 33rd Textile Research Symposium at Mt. Fuji (2004), 2004年08月A relationship between structure and property of PBO fiber[招待有り]
- Polymer Fibres 2004, 2004年07月Structural analysis of PBO fibers using Raman spectroscopic methods[招待有り]
- The Fiber Society, Annual Conference, Fall 2003, 2003年10月Stress distribution in PBO fiber as viewed from vibrational spectroscopic measurement under tension[招待有り]
- 第52回高分子学会年次大会, 2003年05月PBO繊維の構造と物性について[招待有り]
- Polymer Fibres 2002, 2002年07月Stress distribution in PBO fibrers as viwed from vibrational spectroscopic measuremant under tension[招待有り]
- 第38回 化学関連支部合同九州大会, 2001年07月ポリ-p-フェニレンベンゾビスオキサゾール(PBO)繊維の構造と力学変形機構について[招待有り]
■ Works_作品等
■ 産業財産権
- ポリベンザゾール繊維の乾燥方法特願平5-304111, 特許03065467特許権
- ポリベンザゾール繊維の製造方法特願平7-235208, 特許03661802特許権
- 高弾性率ポリベンザゾール繊維及びその製造法特願平9-161554, 特許03801734特許権
- 高弾性率ポリベンザゾール繊維及びその製造法特願平9-280789, 特許04009885特許権
- 高強度ポリエチレン繊維特願2000-387652, 特許04478853特許権
- ポリベンザゾール繊維特願2001-587, 特許03770375特許権
- ポリベンザゾール繊維特願2001-588, 特許03815596特許権
- プリプレグ、複合材料及び積層体特願2001-248268, 特許04243923特許権
- 織物特願2001-250688, 特許04164731特許権
- 高強度ポリエチレン繊維特願2001-253449, 特許03832631特許権
- ポリベンザゾール繊維特願2001-315784, 特許03852681特許権
- ポリベンザゾール繊維及びその製造方法特願2001-376006, 特許03918989特許権
- ポリベンザゾール繊維およびその製造方法特願2002-18787, 特許03912586特許権
- 産業資材用制電ポリベンザゾール組成物特願2002-32738, 特許04524060特許権
- 細径電線コード特願2002-106893, 特許03978653特許権
- ポリベンザゾ-ルポリマー成形体特願2002-227733, 特許04403485特許権
- ポリフェニレンサルファイド繊維及び高ろ過性バグフィルタ-用ろ布特願2003-412680, 特許04359830特許権
- ポリエステルフィルム特願2004-240643, 特許04543313特許権
- 高強度ポリエチレンマルチフィラメント特願2004-310746, 特許04565324特許権
- 高強度ポリエチレンマルチフィラメント特願2004-310747, 特許04565325特許権
- 共重合ポリベンザゾール繊維特願2004-370680, 特許04433299特許権
- ポリベンザゾール系ポリマー及びそれを用いた繊維特願2004-371279, 特許04381295特許権
- 高強度ポリエチレン繊維の製造方法特願2005-155801, 特許04524644特許権
- ポリイミドフィルム特願2006-201638, 特許05040205特許権
- ポリイミドフィルム特願2006-201639, 特許04967495特許権
- ポリイミドフィルム特願2006-201640, 特許04967496特許権
- ポリベンザゾール繊維特願2006-226430, 特許04929921特許権
- ポリベンザゾール繊維の製造方法及びポリベンザゾール繊維特願2006-226431, 特許04929922特許権
- 表面改質繊維を用いたプリプレグ特願2009-110409, 特許05332879特許権
- 表面改質繊維及びその製造方法特願2009-554821, 特許05671798特許権
- ポリイミドフィルム特願2012-105760, 特許05477418特許権
- かん水淡水化用の逆浸透膜特願2012-137711, 特許05896294特許権
- ナノろ過用の分離膜特願2012-139549, 特許05896295特許権
- 高分子多孔質平膜シート特願2013-10823, 特許05424145特許権
- 廃水処理用平膜カートリッジ特願2013-224827, 特許05742041特許権
- 排水処理用の逆浸透膜特願2013-506393, 特許05252333特許権
- MBR用高分子多孔質平膜シート特願2014-8352, 特許05569832特許権
- ポリフッ化ビニリデン製高分子多孔質平膜シート特願2014-30303, 特許05655963特許権
- 限外ろ過用中空糸膜特願2014-164167, 特許06303910特許権
- 複合分離膜特願2014-552062, 特許06256705特許権
- 分離膜および分離膜エレメントおよび分離膜モジュール特願2016-553115, 特許06620754特許権
- 浸漬型中空糸膜モジュール、および、それを用いる正浸透水処理方法特願2017-520638, 特許06477872特許権
- 膜カートリッジの再生方法特願2017-529944, 特許06791142特許権
- ポリエステル系繊維の製造法特願平3-217840, 特許03024657特許権
- ポリエステル系繊維の製造方法特願平2-103715, 特許03038779特許権