SEARCH
検索詳細
京極 博久大学院農学研究科 資源生命科学専攻准教授
研究活動情報
■ 論文- 2025年04月, JOURNAL OF MAMMALIAN OVA RESERCH初期胚の染色体異常
- BACKGROUND: Mitosis maintains a genome's genetic information in daughter cells by accurately segregating chromosomes. However, chromosome aberrations are common during early mammalian embryogenesis. Chromosomal abnormalities during the early stages of embryogenesis result in the formation of mosaic embryos, wherein cells with normal genomes coexist with cells exhibiting abnormal genomes. The precise frequency and etiology of such abnormalities remain unclear. It is postulated that these aberrations contribute to the etiology of a number of conditions, including infertility and congenital diseases such as Down's syndrome. METHODS: This review synthesizes current literature and data to elucidate the causes and implications of chromosome aberrations in early mammalian embryos. It places particular emphasis on identifying patterns of mosaicism and investigating the underlying mechanisms responsible for these abnormalities. MAIN FINDINGS: The underlying causes of chromosome abnormalities in early embryos were examined in the context of DNA replication and embryonic development. CONCLUSION: A deeper understanding of chromosome abnormalities in early embryos could help develop new infertility treatments and advance research on cancers caused by these abnormalities. This article reviews current knowledge and gaps in understanding chromosome segregation abnormalities during embryogenesis and future directions in this field.2025年, Reproductive medicine and biology, 24(1) (1), e12631
- Granulosa cells (GCs) in secondary follicles differentiate into cumulus cells (CCs) and mural granulosa cells (MGCs) in the antral follicle. Only CCs maintain direct connections with oocytes through transzonal projections (TZPs) and support oocyte growth. Here, we examined whether granulosa cells (GCs) from secondary follicles and MGCs from early and late antral follicles were able to reconstruct complexes with TZP-free denuded oocytes (DOs) and regenerate TZPs. Furthermore, to confirm that the regenerated TZPs were functional, the development of the reconstructed complexes and oocyte growth in the complexes were evaluated. After coculture, GCs and MGCs from early antral follicles reconstructed the complexes with DOs and regenerated TZPs. Furthermore, the oocytes in the integrally reconstructed complexes grew fully and acquired meiotic competence, suggesting that the regenerated TZPs were functional. In contrast, MGCs from the late antral follicles lost their ability to elongate TZPs. As the ability to regenerate TZPs differed among cells, we analyzed the transcriptomes of GCs, CCs, and MGCs collected from follicles of different sizes. The characteristics of TZP generation coincided with the transcriptome changes in two directions: from GCs to CCs and MGCs. In conclusion, until the early antral follicle stage, bovine GCs, CCs, and MGCs have common characteristics to elongate TZPs and form antrum-like structures that support oocyte growth in vitro. Furthermore, as the follicle develops, MGCs lose the ability to elongate TZPs.2024年10月, The Journal of reproduction and development
- Faithful DNA replication is essential for genome integrity1-4. Under-replicated DNA leads to defects in chromosome segregation, which are common during embryogenesis5-8. However, the regulation of DNA replication remains poorly understood in early mammalian embryos. Here we constructed a single-cell genome-wide DNA replication atlas of pre-implantation mouse embryos and identified an abrupt replication program switch accompanied by a transient period of genomic instability. In 1- and 2-cell embryos, we observed the complete absence of a replication timing program, and the entire genome replicated gradually and uniformly using extremely slow-moving replication forks. In 4-cell embryos, a somatic-cell-like replication timing program commenced abruptly. However, the fork speed was still slow, S phase was extended, and markers of replication stress, DNA damage and repair increased. This was followed by an increase in break-type chromosome segregation errors specifically during the 4-to-8-cell division with breakpoints enriched in late-replicating regions. These errors were rescued by nucleoside supplementation, which accelerated fork speed and reduced the replication stress. By the 8-cell stage, forks gained speed, S phase was no longer extended and chromosome aberrations decreased. Thus, a transient period of genomic instability exists during normal mouse development, preceded by an S phase lacking coordination between replisome-level regulation and megabase-scale replication timing regulation, implicating a link between their coordination and genome stability.2024年08月, Nature
- The study of the size of cells and organelles has a long history, dating back to the 1600s when cells were defined. In particular, various methods have elucidated the size of the nucleus and the mitotic spindle in several species. However, little research has been conducted on oocyte size and organelles in mammals, and many questions remain to be answered. The appropriate size is essential to cell function properly. Oocytes have a very large cytoplasm, which is more than 100 times larger than that of general somatic cells in mammals. In this review, we discuss how oocytes acquire an enormous cytoplasmic size and the adverse effects of a large cytoplasmic size on cellular functions.2022年11月, The Journal of reproduction and development
- Microinjection of spermatozoa or spermatids into oocytes is a major choice for infertility treatment. However, the use of premeiotic spermatocytes has never been considered because of its technical problems. Here, we show that the efficiency of spermatocyte injection in mice can be improved greatly by reducing the size of the recipient oocytes. Live imaging showed that the underlying mechanism involves reduced premature separation of the spermatocyte's meiotic chromosomes, which produced much greater (19% vs. 1%) birth rates in smaller oocytes. Application of this technique to spermatocyte arrest caused by STX2 deficiency, an azoospermia factor also found in humans, resulted in the production of live offspring. Thus, the microinjection of primary spermatocytes into oocytes may be a potential treatment for overcoming a form of nonobstructive azoospermia caused by meiotic failure.2022年05月, EMBO reports, e54992
- Oocytes communicate with the surrounding somatic cells during follicular development. We examined the effects of two oocyte-derived growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on the development of porcine oocyte-cumulus cell complexes (OCCs) in vitro. We collected OCCs from early antral follicles (1.2-1.5 mm) and prepared oocytectomized cumulus cell complexes (OXCs), which were then cultured in a growth medium supplemented with 0-100 ng/ml GDF9 and/or BMP15 for 7 days. In the medium without GDF9 or BMP15, OCCs developed during culture, and approximately 30% of them formed antrum-like structures. GDF9 promoted OCC development and structure formation in a dose-dependent manner. However, OXCs did not form antrum-like structures without growth factors. GDF9 promoted the development of OXCs, and 50 and 100 ng/ml GDF9 promoted the formation of the structures by 8% and 26%, respectively; however, BMP15 did not promote the formation of these structures. OXCs were then cultured with 100 ng/ml GDF9 and various concentrations of BMP15 to investigate their cooperative effects on the formation of antrum-like structures. BMP15 promoted the formation of antrum-like structures in a dose-dependent manner. In conclusion, GDF9 derived from oocytes is probably important for the formation of antrum-like structures in porcine OXCs, and BMP15 cooperates with GDF9 to form these structures.2022年05月, The Journal of reproduction and development
- 2020年12月, Nature Communications, 11(1) (1), 2652 - 2652
- (公社)日本繁殖生物学会, 2020年09月, The Journal of Reproduction and Development, 66(Suppl.) (Suppl.), j86 - j86マウス一次精母細胞からの産子作出法の改善
- 2020年, Nature, 589(7841) (7841), 264 - 269
- 2018年08月, PLoS ONE, 13(8) (8), e0202663
- 2018年01月, Methods in Cell Biology, 144, 459 - 474
- 2017年12月, Zygote, 25(6) (6), 675 - 685
- 2017年05月, Developmental Cell, 41(3) (3), 287 - 298.e4
- 2015年11月, Trends in Molecular Medicine, 21(11) (11), 663 - 672
- 2014年06月, Development (Cambridge), 141(11) (11), 2255 - 2259
- 2014年01月, Nucleus, 5(6) (6), 493 - 498
- Hematoxylin staining reveals a decrease in nucleolar diameter of pig oocytes before germinal vesicle breakdown.During oocyte growth, the morphology of the nucleolus changes into a compact and homogenous structure. The compact nucleoli in full-grown oocytes are not stained by aceto-orcein staining or immunofluorescence staining. In this study, we developed a hematoxylin staining method for pig oocytes in whole-mount preparations to visualize the nucleoli. Nucleoli of growing and full-grown oocytes were stained blue with hematoxylin. Using this staining method, the changes in the oocyte nucleolus during maturation were examined. The nucleolar diameter gradually decreased in maturing oocytes (10.7 ± 0.1 μm to 9.0 ± 0.7 μm, P<0.05) before germinal vesicle breakdown (GVBD). The results suggest that the nucleolar volume of oocytes decreases before GVBD.2013年10月, The Journal of reproduction and development, 59(5) (5), 500 - 5
- 2012年11月, Biology of Reproduction, 87(5) (5), 113 - 113
- 2012年, Journal of Reproduction and Development, 58(1) (1), 162 - 166
- 2012年, Journal of Reproduction and Development, 58(3) (3), 371 - 376
- 2011年06月, Molecular Reproduction and Development, 78(6) (6), 426 - 435
- 2010年02月, Molecular Reproduction and Development, 77(2) (2), 167 - 173
- (一社)日本臨床エンブリオロジスト学会, 2023年12月, Journal of Clinical Embryologist, 25, 219 - 219受精卵における雌雄前核間の細胞質競合による発生制御 1PN胚はなぜ発生能が低いのか?
- (公社)日本生化学会, 2023年10月, 日本生化学会大会プログラム・講演要旨集, 96回, [3S04m - 03]核と細胞質を繋ぐ核膜孔と様々な生命現象 受精卵における核膜孔を介した雌雄前核間の細胞質競合
- 2023年, 日本分子生物学会年会プログラム・要旨集(Web), 46th受精卵における雌雄前核間の細胞質競合
- 2023年, 日本アンドロロジー学会総会記事, 42ndブタ射出精子での体外受精能力発現に及ぼすcAMPシグナリング活性化処理の影響
- 2023年, 日本分子生物学会年会プログラム・要旨集(Web), 46thウシ顆粒膜細胞の分化と卵母細胞発育支持能力の変化
- 2023年, 日本遺伝学会大会プログラム・予稿集, 95th (CD-ROM)マウスの胎生期型から体細胞型へのDNA複製プログラムの切り替えは特殊な移行型S期を経由する
- (株)ニュー・サイエンス社, 2022年10月, 細胞, 54(11) (11), 657 - 659初期胚の染色体分配異常
- (公社)日本畜産学会, 2022年09月, 日本畜産学会大会講演要旨集, 130回, 112 - 112卵胞発達に伴うウシ壁顆粒膜細胞の卵母細胞発育支持能力の変化
- (一社)日本生殖医学会, 2022年07月, 日本生殖医学会雑誌, 67(3) (3), 134 - 134卵胞発達に伴うウシ顆粒膜細胞のTranszonal Projection形成能の変化
- 2022年, 日本分子生物学会年会プログラム・要旨集(Web), 45thなぜ受精卵は2つの異なるサイズの核を持つのか?
- 2022年, Journal of Mammalian Ova Research, 39(1) (1)一次精母細胞からのマウス産子作出法の改善と不妊雄マウスへの応用
- 2021年, 日本繁殖生物学会講演要旨集(Web), 114thウシ裸化卵母細胞と異なる大きさの卵胞から採取した顆粒膜細胞の共培養によるTranszonal Projectionの形成
- 2021年, 日本繁殖生物学会講演要旨集(Web), 114th受精卵における雌雄前核のサイズ差が適切なヒストンメチル化修飾を制御している
- 2021年, 日本実験動物学会総会講演要旨集(Web), 68th顕微授精による一次精母細胞からの産子作出法の改善
- 2021年, 日本物理学会講演概要集(CD-ROM), 76(2) (2)初期受精卵における競合する前核のサイズによるヒストンメチル化制御
- 2021年, 日本分子生物学会年会プログラム・要旨集(Web), 44th哺乳類受精卵における前核サイズの制御とその意味
- (一社)日本生殖医学会, 2020年11月, 日本生殖医学会雑誌, 65(4) (4), 249 - 249PGT-A時代の胚評価法 受精卵における二つの前核形成の意義
- (公社)日本繁殖生物学会, 2020年09月, The Journal of Reproduction and Development, 66(Suppl.) (Suppl.), j72 - j72受精卵の核サイズによるヒストンメチル化修飾制御
- (公社)日本繁殖生物学会, 2020年09月, The Journal of Reproduction and Development, 66(Suppl.) (Suppl.), j86 - j86マウス一次精母細胞からの産子作出法の改善
- 2020年, 日本人類遺伝学会大会プログラム・抄録集, 65th (CD-ROM)受精卵の核サイズとエピゲノム制御
- (公社)日本繁殖生物学会, 2019年09月, The Journal of Reproduction and Development, 65(Suppl.) (Suppl.), j118 - j118卵母細胞の大きな細胞質が発生に及ぼす影響
- 日本電気泳動学会, 2019年07月, 電気泳動, 63(Suppl.) (Suppl.), 253 - 253マウス卵母細胞を用いた微量サンプル解析のためのLC-MS/MS定量解析法の検討
- 2019年, 日本プロテオーム学会大会プログラム・抄録集, 2019マウス卵母細胞を用いた微量サンプル解析のためのLC-MS/MS定量解析法の検討
- (公社)日本繁殖生物学会, 2018年09月, The Journal of Reproduction and Development, 64(Suppl.) (Suppl.), j60 - j60なぜ卵母細胞の紡錘体は不安定なのか?
- 生命科学系学会合同年次大会運営事務局, 2017年12月, 生命科学系学会合同年次大会, 2017年度, [3PW10 - 0368)]「サイズ」で斬る分子細胞生物学 卵母細胞の大きな細胞質の意義
- (公社)日本繁殖生物学会, 2016年09月, The Journal of Reproduction and Development, 62(Suppl.) (Suppl.), j87 - j87卵母細胞は大きな細胞質のために染色体分配異常を起こしやすい
- (公社)日本生化学会, 2015年12月, 日本生化学会大会・日本分子生物学会年会合同大会講演要旨集, 88回・38回, [4T20L - 01(3P0916)]卵母細胞では細胞質の体積が紡錘体チェックポイントの強さに影響する
- (公社)日本繁殖生物学会, 2015年09月, The Journal of Reproduction and Development, 61(Suppl.) (Suppl.), j74 - j74卵母細胞の紡錘体形成チェックポイントは、なぜ弱いのか?
- (公社)日本繁殖生物学会, 2014年08月, The Journal of Reproduction and Development, 60(Suppl.) (Suppl.), j129 - j129顕微注入した核小体がマウス顕微授精胚および体細胞核移植胚に及ぼす影響
- (公社)日本繁殖生物学会, 2013年08月, The Journal of Reproduction and Development, 59(Suppl.) (Suppl.), j66 - j66脱核小体した前核期胚の発生能力
- (公社)日本繁殖生物学会, 2013年08月, The Journal of Reproduction and Development, 59(Suppl.) (Suppl.), j112 - j112脂肪小滴を除去したブタ単為発生2倍体胚のライブセルイメージング
- 2013年02月01日, The Journal of reproduction and development, 59(1) (1), A9Development of Enucleolated Pig Oocytes after Injection of Nucleoli from 2-cell Embryos
- (公社)日本繁殖生物学会, 2012年08月, The Journal of Reproduction and Development, 58(Suppl.) (Suppl.), j138 - j138ブタ卵母細胞の成熟過程における核小体の直径の変化
- (公社)日本繁殖生物学会, 2012年08月, The Journal of Reproduction and Development, 58(Suppl.) (Suppl.), j139 - j1392細胞期胚の核小体に置換したブタ卵母細胞の発生
- (公社)日本繁殖生物学会, 2011年08月, The Journal of Reproduction and Development, 57(Suppl.) (Suppl.), j146 - j146複数個の核小体がブタ卵母細胞の成熟および発生に及ぼす影響
- (一社)日本卵子学会, 2011年04月, Journal of Mammalian Ova Research, 28(2) (2), S105 - S105
- (公社)日本畜産学会, 2009年03月, 日本畜産学会大会講演要旨集, 110回, 8 - 8発育途上の卵母細胞の核小体に置換したブタ卵母細胞の発生
- EMBO Workshop on Molecular mechanisms of developmental and regenerative biology, 2024年11月The source of chromosome abnormalities in early embryos口頭発表(一般)
- CREST「ゲノム合成」2024年度 領域会議, 2024年10月顕微操作技術による初期胚の不安定なゲノムの分配システムの解明口頭発表(一般)
- さきがけ「ゲノム合成」終了領域研究会, 2024年09月顕微操作技術による 初期胚の不安定なゲノム分配システムの解明口頭発表(一般)
- 第65回日本卵子学会学術集会, 2024年05月初期胚の染色体分配異常発生メカニズム[招待有り]シンポジウム・ワークショップパネル(指名)
- 第29回日本臨床エンブリオロジスト学会 学術大会, 2024年01月受精卵における雌雄前核間の細胞質競合による発生制御 ~1PN胚はなぜ発生能が低いのか?~[招待有り]公開講演,セミナー,チュートリアル,講習,講義等
- 全能性プログラム:デコーディングからデザインへ 第5回公開シンポジウム, 2023年12月受精卵における 雌雄前核間の細胞質競合による発生制御シンポジウム・ワークショップパネル(指名)
- 第46回日本分子生物学会年会, 2023年12月受精卵における雌雄前核間の細胞質競合シンポジウム・ワークショップパネル(公募)
- 第96回日本生化学会大会, 2023年11月, 英語受精卵における核膜孔を介した雌雄前核間の細胞質競合シンポジウム・ワークショップパネル(公募)
- さきがけCREST「ゲノム合成」2023年度 合同領域会議, 2023年10月顕微操作技術による初期胚の不安定なゲノムの分配システムの解明
- 第116回 日本繁殖生物学会大会, 2023年09月初期胚の染色体分配はなぜ不安定なのか?シンポジウム・ワークショップパネル(公募)
- さきがけ「ゲノムスケールのDNA設計・合成による細胞制御技術の創出」 第3回単独領域会議, 2023年05月顕微操作技術による初期胚の不安定なゲノムの分配システムの解明
- RIKEN BDR Symposium 2023, 2023年03月The source of chromosome abnormalities in early embryos
- さきがけCREST「ゲノム合成」2022年度 合同領域会議, 2022年12月顕微操作技術による初期胚の不安定なゲノムの分配システムの解明
- 第45回 日本分子生物学会年会, 2022年11月なぜ受精卵は2つの異なるサイズの核を持つのか?シンポジウム・ワークショップパネル(公募)
- 第三回「全能性プログラム」若手勉強会, 2022年07月受精卵が全能性を維持するために染色体分配異常から回復するメカニズムの解明
- 第15回日本エピジェネティクス研究会年会, 2022年06月受精卵が2つの異なるサイズの核を持つ意味[招待有り]
- さきがけ「ゲノムスケールのDNA 設計・合成による細胞制御技術の創出」 第2回単独領域会議, 2022年04月顕微操作技術による初期胚の不安定なゲノムの分配システムの解明
- RIKEN BDR Symposium 2021「Structuring biosystems: Functions emerging from molecules」, 2021年03月Competition-based scaling of two pronuclei enables epigenetic maintenance in zygotesポスター発表
- 第3回CRESTさきがけ「ゲノム合成」合同領域会議, 2021年01月顕微操作技術による初期胚の不安定なゲノムの分配システムの解明
- 新学術領域研究 『配偶子インテグリティの構築』『全能性プログラム』 合同公開シンポジウム2020, 2020年12月受精卵の核サイズによるヒストンメチル化修飾制御機構の解明[招待有り]シンポジウム・ワークショップパネル(指名)
- 第65回日本生殖医学会 学術講演会・総会, 2020年12月受精卵における二つの前核形成の意義[招待有り]
- さきがけ キックオフ会議, 2020年11月顕微操作技術による 初期胚の不安定なゲノム分配システムの解明
- 第113回 日本繁殖生物学会大会, 2020年09月受精卵の核サイズによるヒストンメチル化修飾制御ポスター発表
- 日本遺伝学会第92回大会, 2020年09月受精卵における核サイズによるヒストンメチル化修飾の制御[招待有り]シンポジウム・ワークショップパネル(公募)
- 科学技術振興機構, 戦略的な研究開発の推進 創発的研究支援事業, 神戸大学, 2025年 - 2031年, 研究代表者マウス1、2細胞期胚は、体細胞とは異なる特殊な複製様式を持ちます。この複製様式は、染色体異常を引き起こしやすく、その結果、初期胚は高いモザイク胚形成率を示すなどリスクを伴っているが、その意義については分かっていません。本研究では、リスクを負って1、2細胞期胚が特有の複製様式をとる生理的な意義とメカニズムを解明し、DNA複製様式と胚発生におけるイベントとの新たな関係を示すことで、発生生物学分野に一石を投じる新しい研究シーズの創出が期待されます。
- 日本学術振興会, 科学研究費助成事業, 学術変革領域研究(B), 神戸大学, 2025年04月01日 - 2028年03月31日初期胚の発生戦略の理解:発生におけるリスクマネジメント
- 日本学術振興会, 科学研究費助成事業, 学術変革領域研究(B), 神戸大学, 2025年04月01日 - 2028年03月31日初期胚が持つ染色体分配異常へのリスクマネジメント
- 科学技術振興機構, 戦略的創造研究推進事業 CREST, 2024年04月 - 2026年03月競争的資金
- 日本学術振興会, 科学研究費助成事業 新学術領域研究(研究領域提案型), 新学術領域研究(研究領域提案型), 神戸大学, 2022年04月01日 - 2024年03月31日受精卵が全能性を維持するため に染色体分配異常から回復する メカニズムの解明
- 国立研究開発法人科学技術振興機構, 戦略的創造研究推進事業, 戦略的創造研究推進事業(さきがけ)「ゲノムスケールのDNA設計・合成による細胞制御技術の創出」領域, 神戸大学, 2020年10月 - 2024年03月, 研究代表者哺乳類の初期胚発生過程において、染色体分配異常の頻度が非常に高いことが知られていますが、その詳細な実態は明らかとなっていません。本研究では、顕微操作技術を用いて、胚を人工的に操作し、特性の異なる胚を作り出すことや特殊なサンプリングをすることで、新たな解析技術を構築し、胚の染色体分配異常の解明を行い、安定なゲノム分配システムの理解を目指します。
- 日本学術振興会, 科学研究費助成事業 新学術領域研究(研究領域提案型), 新学術領域研究(研究領域提案型), 国立研究開発法人理化学研究所, 2020年04月01日 - 2022年03月31日核サイズに制御された全能性獲得メカニズムの解明受精卵は精子から形成される雄性前核と卵子から形成される雌性前核と呼ばれる2つの大きな核を形成します。多くの哺乳類で,雄性前核の方が雌性前核よりも大きく異なったヒストンメチル化修飾状態を持つことが知られている。しかしながら,雌雄前核のサイズの違いを生み出す要因や,その生物学的意味はほとんど分かっていない。そこで,本研究では,受精卵の核サイズの違いが,異なったヒストンメチル化修飾の状態を同一細胞内で適切な状態に保つのに必要ではないかと仮説を立て研究を行った。これまでの研究成果から,雄性前核が核質材料を奪うことで,雌性前核の核サイズを小さく保ち,ヒストンメチル化レベルが必要以上に低下するのを防いでいることが明らかとなりました。次に,受精卵が異なるサイズの2つの核を形成することの生物学的な意味を明らかにするため、卵子の紡錘体近くへ顕微授精することによって、雌雄の前核が融合した1前核胚(1PN胚)を人工的に作り出し,胚盤胞および産仔への発生率を調べた。その結果,1PN胚の胚盤胞および産仔への発生率は通常の2前核胚(2PN胚)に比べて優位に低下していた。また,前核が融合し核サイズが大きくなったことによりヒストンメチル化レベルも優位に低下していた。さらに、余剰な核を形成させることでサイズを小さくした1前核を形成させた胚や阻害剤により1PN胚のメチル化レベルを回復させた1PN胚は発生能が回復することが明らかとなった。これにより、受精卵においてサイズの異なる2前核を形成することにより、細胞内競争を通して雄性前核が雌性前核からヒストンメチル化を下げる分子を奪うことによって、雌性前核が高いヒストンメチル化状態を維持し効率よく全能性を獲得することができるという説を提唱することができる。
- 日本学術振興会, 科学研究費助成事業 若手研究, 若手研究, 国立研究開発法人理化学研究所, 2019年04月01日 - 2021年03月31日初期の胚発生過程において染色体分配異常の頻度が変化する原因の解明細胞は染色体分配を行う際,主に微小管によって構成された,紡錘体とよばれる細胞内構造体により行われる。本研究では,細胞質サイズと紡錘体を主に構成する微小管に着目して,紡錘体の安定性を変化させる原因を,ライブイメージングと顕微操作技術を組み合わせて解析した。その結果,卵母細胞と初期胚の両方において,核/細胞質比が微小管の安定性を変化させることを明らかにした。また,微小管安定化候補因子の同定にも成功した。
- 日本学術振興会, 科学研究費助成事業 若手研究(B), 若手研究(B), 国立研究開発法人理化学研究所, 2015年04月01日 - 2017年03月31日卵母細胞では,紡錘体形成チェックポイント効率が体細胞に比べて低いことが知られている。本研究では,ライブイメージングと顕微操作を組み合せた解析により,紡錘体形成チェックポイント効率は細胞質量依存的に変化すること,また,これは核膜崩壊前の細胞質と核の比によって変化することを明らかにした。これにより,これまで直接的に示せなかった卵母細胞の紡錘体形成チェックポイント効率の低さの原因が,卵母細胞特有の大きな細胞質にあることを示した。
- 日本学術振興会, 科学研究費助成事業 特別研究員奨励費, 特別研究員奨励費, 国立研究開発法人理化学研究所, 2014年04月25日 - 2017年03月31日高解像度ライブイメージングによる卵母細胞由来核小体の胚発生支持機能の解析これまでの研究により,核小体を除去(脱核小体)した卵核胞期のマウス卵母細胞は,正常に成熟するが,受精後の前核期の核中に核小体は形成されず,胚は2細胞期で発生を停止するが,前核期で脱核小体した胚は正常に胚盤胞へ発生し,胚移植により正常な産仔を得られることを報告した。また,脱核小体胚と卵母細胞型の核小体が形成されないNpm2 KOマウス胚を用いた実験により,これらの胚は,発生過程で卵母細胞型の核小体を再形成することはなかったが、体細胞型の核小体を新たに形成することを報告した。これにより,卵母細胞型の核小体は前核期以降の胚発生に必須ではないこと,卵母細胞型の核小体がなくとも胚は体細胞型の核小体を新たに形成することが明らかとなった。 また,これまでの結果より卵母細胞型の核小体が必須な時期は受精後から前核期後半までの間であると明らかになっている。この時期の卵母細胞型の核小体の個数やサイズが、その後の発生に重要であることも示唆されており,この卵母細胞型の核小体の形態,個数,体積がどのように制御されているかに着目し実験を開始した。まず,卵母細胞型の核小体の個数が何によって変化するのかを調べた結果,前核中の卵母細胞型核小体の数は,核と核小体の比によって変化することが明らかになった。さらに,体細胞核移植胚では,偽前核中の卵母細胞型核小体の個数が多いことが異常の一つとして以前から報告されていることに着目し,余剰な卵母細胞型核小体を体細胞核移植胚に顕微注入することで,偽前核中の核小体の個数の異常を改善できないか試みた。余剰な核小体を顕微注入したところ,偽前核中の核小体数が受精卵へと近づき,2細胞期への進行を促進させることを明らかにした。これにより,卵母細胞型の核小体は,正しい前核形成を行い2細胞期胚へ発生するめの何らかの機能(ゲノムリプログラミング,核の脱濃縮等)を持っていると考えられる。
- 日本学術振興会, 科学研究費助成事業 挑戦的萌芽研究, 挑戦的萌芽研究, 国立研究開発法人理化学研究所, 2014年04月01日 - 2017年03月31日本研究では、卵母細胞における紡錘体スケーリングの機構および役割を解明することを目指した。細胞質量を人為的に増減させたマウス卵母細胞をライブイメージングし、減数第一分裂における紡錘体動態を4D解析したところ、卵母細胞の細胞質量とともに紡錘体体積が変化することが分かった。これらの紡錘体の機能性について詳細に調べたところ、細胞質が大きいほど紡錘体の機能性が低下し、染色体分配エラーが起きやすくなることが分かった。これらの結果は、卵母細胞で染色体分配エラーが起きやすい理由の一つはその大きな細胞質にあることを示唆した(Kyogoku & Kitajima 2017 Dev Cell)。
- 日本学術振興会, 科学研究費助成事業 特別研究員奨励費, 特別研究員奨励費, 神戸大学, 2011年 - 2013年マイクロマニピュレーション操作を用いた哺乳類卵母細胞核小体の機能解析最近の研究から, 核小体を除去(脱核小体)した卵核胞期(GV期)の卵母細胞は, 正常に成熟するが, 受精後の前核期の核中に核小体は形成されず, 胚は2~4細胞期で発生を停止することが示された。正常な前核期胚の核中に形成される核小体は, 卵核胞期(GV期)の核小体と同様に緊密な形態をしている。2細胞期以降, この緊密な卵母細胞型の核小体の周囲から体細胞型の核小体が形成され始め, 胚盤胞では完全に体細胞型の核小体となる。本研究では, 前核中の核小体が, それ以降の胚発生に必須であるかを前核から核小体を除去することによって調べた。また, 脱核小体した前核期胚から発生した胚に核小体が再形成される可能性を探った。まず, 顕微操作により雌雄両前核から核小体を除去した後, 体外で発生させ, 胚盤胞への発生率を調べた。また, 2細胞期へと発生した胚を移植することによって産仔への発生を調べた。GV期で脱核小体した胚は発生しなかったが, 前核期で脱核小体した胚は正常に胚盤胞へ発生し, 胚移植により正常な産仔となった。次に, 核小体の形成を確認するために, GFPタグのついた卵母細胞の核小体に特異的な蛋白質NPM2のmRNAを用いたライブセルイメージングと体細胞の核小体に特異的な蛋白質(B23, UBFなど)に対する抗体を用いた免疫蛍光染色を行った。前核期で脱核小体した胚は, 卵母細胞型の核小体なしに, 発生過程で体細胞型の核小体を形成した。以上の結果から, 卵母細胞型の核小体は前核期以降の胚発生に必須ではないこと, 卵母細胞型の核小体がなくとも胚は体細胞型の核小体を形成することが明らかとなった。
- 本人以外, The Science News, 2024年10月08日, https://sj.jst.go.jp/news/202410/n1008-01k.htmlDiscovery of a specialized DNA replication mode in early mouse embryos immediately after fertilizationインターネットメディア
- 本人以外, Scitech Daily, 2024年09月26日, http://ct.moreover.com/?a=54877568470&p=1pl&v=1&x=hWv23kaOlkE2DnkcoALmBgEarly Embryo DNA Replication Defies Expectationsインターネットメディア
- 本人以外, 朝日新聞, 2024年09月10日, 夕刊特殊なDNA複製「受精直後だけ」新聞・雑誌
- 本人以外, 科学新聞, 2024年09月06日受精直後のマウス初期胚で特殊なDNA複製様式発見新聞・雑誌
- 本人以外, 科学新聞, 2024年09月06日, https://sci-news.co.jp/topics/9231/受精直後のマウス初期胚で特殊なDNA複製様式発見 理研・神戸大・三重大インターネットメディア
- 本人以外, Mirage News, 2024年08月31日, http://ct.moreover.com/?a=54668807999&p=1pl&v=1&x=aEkQT9_8GV73Dk9IhdazjQChromosome Copy Errors Pinpointed In Embryo Developmentインターネットメディア
- 本人以外, 日本経済新聞, 2024年08月30日, https://www.nikkei.com/article/DGXZQOSG2793H0X20C24A8000000/受精直後の細胞で特殊なDNA複製 理研などマウスで発見インターネットメディア
- 本人以外, AZO Life Sciences, 2024年08月29日, https://www.azolifesciences.com/news/20240829/Study-Reveals-Unique-DNA-Replication-Dynamics-in-Early-Embryogenesis.aspxStudy Reveals Unique DNA Replication Dynamics in Early Embryogenesisインターネットメディア
- 本人以外, The Medical News, 2024年08月29日, http://ct.moreover.com/?a=54651495124&p=1pl&v=1&x=VrBlG-yDVHJkHE_GwJSHegEarly embryos are prone to chromosomal copying errors, new research showsインターネットメディア
- 日本経済新聞, 2024年08月29日, https://www.nikkei.com/article/DGXZRSP677441_Z20C24A8000000/理研・神戸大・三重大・JST、マウス初期胚の型破りなDNA複製様式を発見インターネットメディア
- 本人以外, 朝日新聞デジタル, 2024年08月29日, https://www.asahi.com/articles/ASS8Y0RKLS8YULBH00SM.html受精直後に特殊なDNA複製、染色体異常誘発か 理研がマウスで発見インターネットメディア
- 本人以外, Alert Breaking News-US, 2024年08月28日, https://us.alertbreakingnews.com/embryonic-genome-instability-upon-dna-replication-timing-program-emergence-nature/Embryonic genome instability upon DNA replication timing program emergence - Nature - Alert Breaking News -United Statesインターネットメディア
- 本人以外, Phys.org, 2024年08月28日, http://ct.moreover.com/?a=54648641579&p=1pl&v=1&x=7O_pdJto1xa_WAWLfJW7BQDNA replication in early embryos differs from previous assumptions, study showsインターネットメディア
- 本人以外, ScienMag, 2024年08月28日, https://scienmag.com/chromosome-copying-errors-pinpointed-in-embryo-development/Chromosome copying errors pinpointed in embryo developmentインターネットメディア
- 本人以外, Bioengineer.org, 2024年08月28日, http://ct.moreover.com/?a=54648488134&p=1pl&v=1&x=_wr9aDl6Ik-tFYYkpA2fLQChromosome copying errors pinpointed in embryo developmentインターネットメディア
- 本人以外, EurekAlert!, 2024年08月28日, http://ct.moreover.com/?a=54648400734&p=1pl&v=1&x=8tfIBzcln03-XzuS-5Z00AChromosome copying errors pinpointed in embryo developmentインターネットメディア
研究シーズ
■ 研究シーズ- 家畜におけるTZP形成能を有する卵丘細胞への分化機構の解明シーズカテゴリ:自然科学一般研究キーワード:畜産, 卵母細胞, 卵丘細胞, TZP, 顆粒膜細胞研究の背景と目的:卵母細胞は周囲の顆粒膜細胞と相互に影響を及ぼし合いながら発育します。発育過程で、顆粒膜細胞は、卵胞の内壁を覆う壁顆粒膜細胞と卵母細胞を取り囲む卵丘細胞へと分化していく。卵丘細胞は、TZPを形成し、卵母細胞と結合している。体外培養系において質の高い卵母細胞を生み出すためには、顆粒膜細胞を正しく分化させる必要があり、効率的な体外培養系を作るため、卵丘細胞への分化機構の解明を目的とします。研究内容:ライブセルイメージング技術、NGSによる解析技術と長期体外培養系を組み合わせた全く新しいアプローチにより卵丘細胞および壁顆粒膜細胞のマーカー遺伝子の探索、卵丘細胞への分化誘導メカニズムの解明、卵胞のステージによる顆粒膜細胞の卵丘細胞への再分化能力の確認を行っています。期待される効果や応用分野:近年、マウスでは幹細胞から、受精・発生能力を備えた卵子の作出が報告されています。しかし、依然として質の高い卵母細胞を生み出すのは困難であり、体外培養系において顆粒膜細胞が正しく分化していないのが原因だと考えられています。卵丘細胞への分化機構が解明されれば、より効率的な体外培養系が作成が期待されます。