SEARCH
検索詳細
足助 聡一郎大学院農学研究科 生命機能科学専攻助教
研究活動情報
■ 受賞- 2025年03月 日本植物病理学会, 令和7年度 学術奨励賞, いもち病菌の菌群分化ならびにムギ類の抵抗性に関する分子遺伝学的研究
- 2015年05月 日本植物病理学会創立100周年記念大会, 平成27年度 学生優秀発表賞
- Plants have intricate innate immune receptors that detect pathogens. Research has intensely focused on two receptor classes recognizing external and internal threats. Recent research has identified a class of disease-resistance proteins called tandem kinase proteins (TKPs). We investigated RWT4, a wheat TKP that confers resistance to the devastating fungal pathogen Magnaporthe oryzae. We established a rice protoplast system, revealing RWT4 specifically recognizes the AvrPWT4 effector, leading to the transcription of defense genes and inducing cell death. RWT4 possesses both kinase and pseudokinase domains, with its kinase activity essential for defense. RWT4 directly interacts with and transphosphorylates AvrPWT4. Biolayer interferometry revealed both RWT4 kinase and pseudokinase regions bind the effector. Sequence similarity and structural modeling revealed a partial kinase duplication in RWT4's kinase region as critical for effector interaction and defense activation. Collectively, these findings demonstrate that TKPs can directly bind a recognized effector, leading to downstream defense activation.2025年05月, Nature genetics, 57(5) (5), 1238 - 1249, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Wheat blast is a devastating disease in the tropical and subtropical regions of South America and has recently spread to Bangladesh and Zambia. Host resistance to this disease has primarily relied on the 2NS/2AS translocation, making it crucial to identify and utilize novel sources of resistance. In the current study, a recombinant inbred line population consisting of 345 BC1F4 progenies was generated, using the susceptible wheat genotype 'Gladius' as the female and recurrent parent, and the resistant Aegilops tauschii line 'KU-2097' as the male parent. Field phenotyping was conducted at two locations in Bolivia and one in Bangladesh, each with two sowing dates, during the 2022-23 or 2023 cropping cycles. Genotyping was performed using DArTseq® technology. QTL mapping identified a major and consistent QTL on the long arm of chromosome 7D, designated as Qwb.cim-7D, which explained 7.7 to 50.6% of the phenotypic variation across different experiments. The DArTseq markers in the QTL region were converted to KASP markers, enabling the precise mapping of this QTL to a genomic region between 619.90 and 625.61 Mb, flanked by the KASP markers K3222157 and K1061589. This novel QTL, along with its flanking markers, could be valuable for breeding programs targeting wheat blast resistance.2025年03月, Phytopathology, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Wheat blast, caused by Pyricularia oryzae (syn. Magnaporthe oryzae) pathotype Triticum (MoT), is a devastating disease that can result in up to 100% yield loss in affected fields. To find new resistance genes against wheat blast, we screened 199 accessions of Aegilops tauschii Coss., the D genome progenitor of common wheat (Triticum aestivum L.) by seedling inoculation assays with Brazilian MoT isolate Br48, and found 14 resistant accessions. A synthetic hexaploid wheat line (Ldn/KU-2097) derived from a cross between the T. turgidum cultivar 'Langdon' (Ldn) and resistant Ae. tauschii accession KU-2097 exhibited resistance in seedlings and spikes against Br48. In an F2 population derived from 'Chinese Spring' (CS) × Ldn/KU-2097, resistant and susceptible individuals segregated in a 3:1 ratio, suggesting that the resistance from KU-2097 is controlled by a single dominant gene. We designated this gene Rmg10. Genetic mapping using an F2:3 population from the same cross mapped the RMG10 locus to the short arm of chromosome 2D. Rmg10 was ineffective against Bangladesh isolates but effective against Brazilian isolates. Field tests in Bolivia showed increased spike resistance in a synthetic octaploid wheat line produced from a cross between common wheat cultivar 'Gladius' and KU-2097. These results suggest that Rmg10 would be beneficial in farmers' fields in South America.2024年09月, Phytopathology, 114(9) (9), 2113 - 2120, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Wheat blast caused by Pyricularia oryzae pathotype Triticum (MoT) has been transmitted from South America to Bangladesh and Zambia and is now spreading in these countries. To prepare against its further spread to Asian countries, we introduced Rmg8, a gene for resistance to wheat blast, into a Japanese elite cultivar, Chikugoizumi (ChI), through recurrent backcrosses, and established ChI near-isogenic lines, #2-1-10 with the Rmg8/Rmg8 genotype and #4-2-10 with the rmg8/rmg8 genotype. A molecular analysis suggested that at least 96.6% of the #2-1-10 genome was derived from the recurrent parent ChI. The #2-1-10 line was resistant to MoT not only in primary leaves at the seedling stage but also in spikes and flag leaves at the heading stage. The strength of the resistance in spikes of this Rmg8 carrier was comparable to that of a carrier of the 2NS segment which has been the only genetic resource released to farmer's field for wheat blast resistance. On the other hand, the 2NS resistance was not expressed on leaves at the seedling stage nor flag leaves at the heading stage. Considering that leaf blast has been increasingly reported and regarded as an important inoculum source for spike blast, Rmg8 expressed at both the seedling and heading stages, or more strictly in both leaves and spikes, is suggested to be useful to prevent the spread of MoT in Asia and Africa.2024年08月, Phytopathology, 114(8) (8), 1843 - 1850, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Wheat blast caused by Pyricularia oryzae pathotype Triticum has spread to Asia (Bangladesh) and Africa (Zambia) from the endemic region of South America. Wheat varieties with durable resistance are needed, but very limited resistance resources are currently available. After screening tetraploid wheat accessions, we found an exceptional accession St19 (Triticum dicoccum, KU-114). Primary leaves of St19 were resistant not only to Brazilian isolate Br48 (a carrier of the type eI of AVR-Rmg8) but also to Br48ΔA8, an AVR-Rmg8 disruptant of Br48, even at 30℃, suggesting that the resistance of St19 is tolerant to high temperature and controlled by gene(s) other than Rmg8. When F2 population derived from a cross between St19 and St30 (a susceptible accession of T. paleocolchicum, KU-191) was inoculated with Br48, resistant and susceptible seedlings segregated in a 3:1 ratio, indicating that resistance of St19 is conferred by a single gene. We designated this gene as Rmg11. Molecular mapping revealed that the RMG11 locus is located on the short arm of chromosome 7A. Rmg11 is effective not only against other two Brazilian isolates (Br5 and Br116.5) but also against Bangladeshi isolates (T-108 and T-109) at the seedling stages. At the heading stages, lines containing Rmg11 were highly susceptible to the Bangladeshi isolates but moderately resistant to the Brazilian isolates. Stacking of Rmg11 with Rmg8 and the 2NS segment is highly recommended to achieve durable wheat blast resistance.2024年08月, Phytopathology, 114(8) (8), 1878 - 1883, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Abstract Wheat blast caused by Pyricularia oryzae pathotype Triticum is now becoming a very serious threat to global food security. Here, we report an essential pathogenicity factor of the wheat blast fungus that is recognized and may be targeted by a rice resistance gene. Map-based cloning of Pwt2 showed that its functional allele is the ACE1 secondary metabolite gene cluster of the wheat blast fungus required for its efficient penetration of wheat cell walls. ACE1 is required for the strong aggressiveness of Triticum, Eleusine, and Lolium pathotypes on their respective hosts, but not for that of Oryza and Setaria pathotypes on rice and foxtail millet, respectively. All ACE1 alleles found in wheat blast population are recognized by a rice resistance gene, Pi33, when introduced into rice blast isolates. ACE1 mutations for evading the recognition by Pi33 do not affect the aggressiveness of the rice blast fungus on rice but inevitably impair the aggressiveness of the wheat blast fungus on wheat. These results suggest that a blast resistance gene already defeated in rice may be revived as a durable resistance gene in wheat by targeting an Achilles heel of the wheat blast fungus.Springer Science and Business Media LLC, 2024年07月, Communications biology, 7(1) (1), 812 - 812, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Wheat blast, a devastating disease having spread recently from South America to Asia and Africa, is caused by Pyricularia oryzae (synonym of Magnaporthe oryzae) pathotype Triticum, which first emerged in Brazil in 1985. Rmg8 and Rmg7, genes for resistance to wheat blast found in common wheat and tetraploid wheat, respectively, recognize the same avirulence gene, AVR-Rmg8. Here we show that an ancestral resistance gene, which had obtained an ability to recognize AVR-Rmg8 before the differentiation of Triticum and Aegilops, has expanded its target pathogens. Molecular cloning revealed that Rmg7 was an allele of Pm4, a gene for resistance to wheat powdery mildew on 2AL, whereas Rmg8 was its homoeologue on 2BL ineffective against wheat powdery mildew. Rmg8 variants with the ability to recognize AVR-Rmg8 were distributed not only in Triticum spp. but also in Aegilops speltoides, Aegilops umbellulata and Aegilops comosa. This result suggests that the origin of resistance gene(s) recognizing AVR-Rmg8 dates back to the time before differentiation of A, B, S, U and M genomes, that is, ~5 Myr before the emergence of its current target, the wheat blast fungus. Phylogenetic analyses suggested that, in the evolutionary process thereafter, some of their variants gained the ability to recognize the wheat powdery mildew fungus and evolved into genes controlling dual resistance to wheat powdery mildew and wheat blast.Springer Science and Business Media LLC, 2024年06月, Nature plants, 10(6) (6), 971 - 983, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Pyricularia oryzae, a blast fungus of gramineous plants, is composed of various host genus–specific pathotypes. The avirulence of an Avena isolate on wheat is conditioned by PWT3 and PWT4. We isolated the third avirulence gene from the Avena isolate and designated it as PWT7. PWT7 was effective as an avirulence gene only at the seedling stage or on leaves. PWT7 homologs were widely distributed in a subpopulation of the Eleusine pathotype and the Lolium pathotype but completely absent in the Triticum pathotype (the wheat blast fungus). The PWT7 homolog found in the Eleusine pathotype was one of the five genes involved in its avirulence on wheat. A comparative analysis of distribution of PWT7 and the other two genes previously identified in the Eleusine pathotype suggested that, in the course of parasitic specialization toward the wheat blast fungus, a common ancestor of the Eleusine, Lolium, Avena, and Triticum pathotypes first lost PWT6, secondly PWT7, and, finally, the function of PWT3. PWT7 or its homologs were located on core chromosomes in Setaria and Eleusine isolates but on supernumerary chromosomes in Lolium and Avena isolates. This is an example of interchromosomal translocations of effector genes between core and supernumerary chromosomes. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .Scientific Societies, 2023年11月, Molecular plant-microbe interactions : MPMI, 36(11) (11), 716 - 725, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Wheat, one of the most important food crops, is threatened by a blast disease pandemic. Here, we show that a clonal lineage of the wheat blast fungus recently spread to Asia and Africa following two independent introductions from South America. Through a combination of genome analyses and laboratory experiments, we show that the decade-old blast pandemic lineage can be controlled by the Rmg8 disease resistance gene and is sensitive to strobilurin fungicides. However, we also highlight the potential of the pandemic clone to evolve fungicide-insensitive variants and sexually recombine with African lineages. This underscores the urgent need for genomic surveillance to track and mitigate the spread of wheat blast outside of South America and to guide preemptive wheat breeding for blast resistance.2023年04月, PLoS biology, 21(4) (4), e3002052, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Abstract Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.Springer Science and Business Media LLC, 2023年03月, Nature plants, 9(3) (3), 385 - 392, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Pyricularia oryzae and Pyricularia grisea are pathogens that cause blast disease in various monocots. It has been reported that P. oryzae infects the leaves and roots of rice via different mechanisms. However, it is unclear to what extent the tissue types affect the host specificities of P. oryzae and P. grisea. Here, we evaluated the tissue-specific infection strategies of P. oryzae and P. grisea in various gramineous plants. Generally, mycelial plug inoculation caused root browning but the degree of browning did not simply follow the disease index on leaves. Interestingly, the Triticum and Digitaria pathotypes caused strong root growth inhibition in rice, wheat, and barley. Moreover, the Digitaria pathotype inhibited root branching only in rice. Culture filtrate reproduced these inhibitory effects on root, suggesting that some secreted molecules are responsible for the inhibitions. Observation of root sections revealed that most of the infection hyphae penetrated intercellular spaces and further extended into root cells, regardless of pathotype and host plant. The infection hyphae of Digitaria and Triticum pathotypes tended to localize in the outer layer of rice roots, but not in those of wheat and barley roots. The infection hyphae of the Oryza pathotype were distributed in both the intercellular and intracellular spaces of rice root cells. Pathogenesis-related genes and reactive oxygen species accumulation were induced after root inoculation with all combinations. These results suggest that resistance reactions were induced in the roots of gramineous plants against the infection with Pyricularia isolates but failed to prevent fungal invasion.Wiley, 2022年11月, Molecular plant pathology, 23(11) (11), 1658 - 1670, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- MAIN CONCLUSION: MLP-PG1, identified in Cucurbita pepo, plays a crucial role in resistance against fungal pathogens through the induction of pathogenesis-related genes. ASTRACT: MLP-PG1, a major latex-like protein (MLP) from zucchini (Cucurbita pepo), was identified as a transporting factor for hydrophobic organic pollutants. MLPs are members of the Bet v 1 family, similar to pathogenesis-related class 10 proteins (PR-10s). However, the biological functions of MLPs remain unclear. Herein, we show that MLP-PG1 induces the expression of pathogenesis-related (PR) genes and indirectly promotes resistance against pathogens. The activity of the MLP-PG1 promoter in leaves of transgenic tobacco plants was significantly enhanced by inoculation with Pseudomonas syringae pv. tabaci. However, MLP-PG1 did not induce direct resistance through RNase activity. Therefore, we examined the possibility that MLP-PG1 is indirectly involved in resistance; indeed, we found that MLP-PG1 induced the expression of defense-related genes. Overexpression of MLP-PG1 highly upregulated PR-2 and PR-5 and decreased the area of lesions caused by Botrytis cinerea in the leaves of transgenic tobacco plants. Our results demonstrate that MLP-PG1 is involved in indirect resistance against plant diseases, especially caused by fungal pathogens, through the induction of PR genes. This study is the first report to show the induction of PR genes by the expression of MLP from the RNA sequencing analysis and the involvement of MLP-PG1 in the resistance.Springer Science and Business Media LLC, 2021年11月, Planta, 255(1) (1), 10 - 10, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Avirulence of Eleusine isolates of Pyricularia oryzae on common wheat is conditioned by at least five avirulence genes. One is PWT3 corresponding to resistance gene Rwt3 located on chromosome 1D. We identified a resistance gene corresponding to a second avirulence gene, PWT6, and named it Rmg9 (Rwt6). Rwt6 was closely linked to Rwt3. A survey of the population of Aegilops tauschii, the D genome donor to common wheat, revealed that some accessions from the southern coastal region of the Caspian Sea, the birthplace of common wheat, carried both genes. Rwt6 and Rwt3 carriers accounted for 65 and 80%, respectively, of accessions in a common wheat landrace collection. The most likely explanation of our results is that both resistance genes were simultaneously introduced into common wheat at the time of hybridization of Triticum turgidum and A. tauschii. However, a prominent difference was recognized in their geographical distributions in modern wheat; Rwt3 and Rwt6 co-occurred at high frequencies in regions to the east of the Caspian Sea, whereas Rwt6 occurred at a lower frequency than Rwt3 in regions to the west. This difference was considered to be associated with range of pathotypes to which these genes were effective. A. tauschii accessions carrying Rwt3 and Rwt6 also carried Rwt4, another resistance gene involved in the species specificity. We suggest that the gain of the D genome should have given an adaptive advantage to the genus Triticum by conferring disease resistance.Scientific Societies, 2021年11月, Phytopathology, 111(11) (11), 2023 - 2029, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- 2021年07月, Journal of General Plant Pathology, 87(4) (4), 201 - 208, 英語[査読有り]研究論文(学術雑誌)
- The specificity between pathotypes of Pyricularia oryzae and genera of gramineous plants is governed by gene-for-gene interactions. Here, we show that avirulence genes involved in this host specificity have undergone different modes of functional losses dependent on or affected by genomic compartments harboring them. The avirulence of an Eleusine pathotype on wheat is controlled by five genes, including PWT3, which played a key role in the evolution of the Triticum pathotype (the wheat blast fungus). We cloned another gene using an association of its presence or absence with pathotypes and designated it as PWT6. PWT6 was widely distributed in a lineage composed of Eleusine and Eragrostis isolates but was completely absent in a lineage composed of Lolium and Triticum isolates. On the other hand, PWT3 homologs were present in all isolates, and their loss of function in Triticum isolates was caused by insertions of transposable elements or nucleotide substitutions. Analyses of whole-genome sequences of representative isolates revealed that these two genes were located in different genomic compartments; PWT6 was located in a repeat-rich region, while PWT3 was located in a repeat-poor region. These results suggest that the course of differentiation of the pathotypes in P. oryzae appears to be illustrated as processes of functional losses of avirulence genes but that modes of the losses are affected by genomic compartments in which they reside. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .Scientific Societies, 2021年06月, Molecular plant-microbe interactions : MPMI, 34(6) (6), 680 - 690, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- 2021年01月, Journal of general plant pathology, 87(1) (1), 1 - 8, 英語[査読有り]研究論文(学術雑誌)
- Wheat blast caused by the Triticum pathotype of Pyricularia oryzae was first reported in 1985 in Brazil and recently spread to Bangladesh. We tested whether Rmg8 and RmgGR119, recently identified resistance genes, were effective against Bangladeshi isolates of the pathogen. Common wheat accessions carrying Rmg8 alone (IL191) or both Rmg8 and RmgGR119 (GR119) were inoculated with Brazilian isolates (Br48, Br5, and Br116.5) and Bangladeshi isolates (T-108 and T-109). Br48, T-108, and T-109 carried the eI type of AVR-Rmg8 (the avirulence gene corresponding to Rmg8) while Br5 and Br116.5 carried its variants, eII and eII' types, respectively. Detached primary leaves of IL191 and GR119 were resistant to all isolates at 25°C. At a higher temperature (28°C), their resistance was still effective against the eI carriers but was reduced to a low level against the eII/eII' carriers. A survey of databases and sequence analyses revealed that all Bangladeshi isolates carried the eI type which induced a higher level of resistance than the eII/eII' types. The resistance of IL191 (Rmg8/-) to the eI carriers was maintained even at the heading stage and at the higher temperature. In addition, GR119 (Rmg8/RmgGR119) displayed higher levels of resistance than IL191 at this stage. These results suggest that Rmg8 combined with RmgGR119 will be useful in breeding for resistance against wheat blast in Bangladesh.2020年11月, Phytopathology, 110(11) (11), 1802 - 1807, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Eleusine isolates (members of the Eleusine pathotype) of Pyricularia oryzae are divided into two subgroups, EC-I and EC-II, differentiated by molecular markers. A multilocus phylogenetic analysis revealed that these subgroups are very close to Eragrostis isolates. EC-II and Eragrostis isolates were exclusively virulent on finger millet and weeping lovegrass, respectively, while EC-I isolates were virulent on both. The avirulence of EC-II on weeping lovegrass was conditioned by an avirulence gene, PWL1. All EC-II isolates shared a peculiar structure (P structure) that was considered to be produced by an insertion (or translocation) of a DNA fragment carrying PWL1. On the other hand, all EC-I and Eragrostis isolates were noncarriers of PWL1 and shared a gene structure that should have predated the insertion of the PWL1-containing fragment. These results, together with phylogenetic analyses using whole-genome sequences, suggest that the Eleusine-specific subgroup (EC-II) evolved through a loss of pathogenicity on weeping lovegrass caused by a gain of PWL1.Scientific Societies, 2020年02月, Molecular plant-microbe interactions : MPMI, 33(2) (2), 153 - 165, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Pyricularia oryzae is composed of pathotypes that show host specificity at the plant genus level. To elucidate the genetic mechanisms of the incompatibility between the Eleusine pathotype (pathogenic on finger millet) and common wheat, an Eleusine isolate (MZ5-1-6) was crossed with a Triticum isolate (Br48) pathogenic on wheat, and resulting F1 cultures were sprayed onto common wheat cultivars Hope, Norin 4 (N4), and Chinese Spring (CS). On Hope, avirulent and virulent cultures segregated in a 3:1 ratio, suggesting that two avirulence genes are involved. They were tentatively designated as eA1 and eA2. On N4 and CS, the segregation ratio was not significantly deviated from the 7:1, 15:1, or 31:1 ratios, suggesting that three or more genes are involved. A comparative analysis of the segregation patterns suggested that two of these genes were eA1 and eA2. A complementation test indicated that the third gene (tentatively designated as eA3) was the Ao9 type of the PWT3 gene controlling the avirulence of Avena and Lolium isolates on wheat. The fourth gene (tentatively designated as eA4) was detected by backcrossing 200R72, an F1 culture lacking eA1, eA2, and eA3, with Br48. Comparative analyses of phenotypes and the presence and/or absence of molecular markers in the F1 population revealed that some cultures were avirulent on N4/CS in spite of lacking eA1, eA2, eA3, and eA4, indicating the presence of the fifth gene (tentatively designated as eA5). Taken together, we conclude that at least five avirulence genes are involved in the incompatibility between MZ5-1-6 and N4/CS.2020年02月, Phytopathology, 110(2) (2), 465 - 471, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- The wheat blast fungus (Triticum pathotype of Pyricularia oryzae) first arose in Brazil in 1985 and has recently spread to Asia. Resistance genes against this new pathogen are very rare in common wheat populations. We screened 520 local landraces of common wheat collected worldwide with Br48, a Triticum isolate collected in Brazil, and found a highly resistant, unique accession, GR119. When F2 seedlings derived from a cross between GR119 and Chinese Spring (CS, susceptible control) were inoculated with Br48, resistant and susceptible seedlings segregated in a 15:1 ratio, suggesting that GR119 carries two resistance genes. When the F2 seedlings were inoculated with Br48ΔA8 carrying a disrupted allele of AVR-Rmg8 (an avirulence gene corresponding to a previously reported resistance gene, Rmg8), however, the segregation fitted a 3:1 ratio. These results suggest that one of the two genes in GR119 was Rmg8. The other, new gene was tentatively designated as RmgGR119. GR119 was highly resistant to all Triticum isolates tested. Spikes of GR119 were highly resistant to Br48, moderately resistant to Br48ΔA8 and a hybrid culture carrying avr-Rmg8 (nonfunctional allele), and highly resistant to its transformant carrying AVR-Rmg8. The strong resistance of GR119 was attributed to the combined effects of Rmg8 and RmgGR119.2018年11月, Phytopathology, 108(11) (11), 1299 - 1306, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Rmg8 and Rmg7 are genes for resistance to the wheat blast fungus (Pyricularia oryzae), located on chromosome 2B in hexaploid wheat and chromosome 2A in tetraploid wheat, respectively. AVR-Rmg8, an avirulence gene corresponding to Rmg8, was isolated from a wheat blast isolate through a map-based strategy. The cloned fragment encoded a small protein containing a putative signal peptide. AVR-Rmg8 was recognized not only by Rmg8, but also by Rmg7, suggesting that these two resistance genes are equivalent to a single gene from the viewpoint of resistance breeding.2018年05月, Molecular plant pathology, 19(5) (5), 1252 - 1256, 英語, 国際誌[査読有り]研究論文(学術雑誌)
- Genetic analysis of disease emergence In the 1980s, wheat crops began to fall to the fungal pathogen that causes blast disease. First seen in Brazil, wheat blast last year caused devastating crop losses in Bangladesh. Inoue et al. tracked down the shifting genetics that have allowed the emergence of this potentially global threat to wheat crops (see the Perspective by Maekawa and Schulze-Lefert). Wheat varieties with a disabled resistance gene were susceptible to pathogen strains that affected oat and ryegrass crops. Subsequent genetic changes in the pathogen amped up the virulence in wheat. Science , this issue p. 80 ; see also p. 31American Association for the Advancement of Science (AAAS), 2017年07月, Science, 357(6346) (6346), 80 - 83[査読有り]研究論文(学術雑誌)
- 日本の温暖地では、アボカドやコーヒーノキの栽培が近年増加している。海外では養菌性キクイムシのEuwallacea属によるアボカド衰退枯死や、Xylosandrus compactusによるコーヒーの枝枯れが農業生産上の問題となっており、これらの被害には随伴菌のFusarium solani 種複合体(FSSC)の関与が示唆されている。本研究では国内植栽のアボカドとコーヒーノキへのキクイムシ類の加害とその随伴菌類との関係について調査を行った。鹿児島県瀬戸内町のアボカドの枯死枝からはE. fornicatior(あるいはE. perbrevis)が検出された。沖縄県名護市のコーヒーノキ枯死枝からは、X. compactusとE. fornicatusの2種を検出した。被害樹木の組織からの菌分離では、両樹種ともにFSSCに属する菌類が検出された。またこれらの菌の系統解析を行ったところ、両樹種から検出されたFSSCの中には、養菌性キクイムシと共生関係にあるAmbrosia Fusarium Clade(AFC)に属する菌類が含まれていた。AFCには樹木病害の主因となる菌種が多数含まれており、今後検出された養菌性キクイムシによるFSSCの媒介や、宿主範囲について検討する必要がある。日本森林学会, 2023年05月30日, 日本森林学会大会発表データベース, 134, 648, 日本語[査読有り]研究発表ペーパー・要旨(全国大会,その他学術会議)
- 2023年, 育種学研究, 25, 日本語コムギいもち病菌はイネに感染できない:その宿主特異性を決定している因子の単離[査読有り]速報,短報,研究ノート等(学術雑誌)
- 2023年, 育種学研究, 25, 日本語日本コムギ系統が持つコムギいもち病抵抗性遺伝子の探索[査読有り]速報,短報,研究ノート等(学術雑誌)
- 2023年, 育種学研究, 25, 日本語コムギいもち病抵抗性遺伝子Rmg8の単離[査読有り]研究発表ペーパー・要旨(全国大会,その他学術会議)
- 2023年, 植物の生長調節, 58(Supplement) (Supplement)シロイヌナズナの炭疽病菌抵抗性を誘導する3-HAC情報伝達に関わるタンパク質の同定
- 2022年, 育種学研究, 24日本コムギ系統の圃場におけるコムギいもち病抵抗性の評価
- 2022年, 樹木医学研究, 26(2) (2), 日本語国内2地域のアボカド(Persea americana)衰退木から検出されたキクイムシと菌類[査読有り]速報,短報,研究ノート等(学術雑誌)
- 近年日本ではアボカドやコーヒーなどの外国種や熱帯性果樹の栽培が増加している。海外の栽培地では養菌性キクイムシによる加害が報告され、同種や近縁種が日本にも生息することから、日本でのキクイムシ類の加害とその随伴菌類との関係を調査した。 愛媛県愛南町の農園のアボカドの枯死枝からは養菌性キクイムシScolytoplatypus mikadoが検出され、木部の変色部からRaffaelea属菌が高率で検出された。鹿児島県瀬戸内町のアボカドからは2種類の養菌性キクイムシEuwallacea sp.とXylosandrus crassiusculusが検出された。木部からはLasiodiplodia属菌やFusarium属菌が検出された。また、沖縄県名護市の農園のコーヒー枯死枝から、養菌性キクイムシXylosandrus compactusが検出され、菌類は主にFusarium属菌が検出された。この3か所で検出された菌類は、養菌性キクイムシによって樹木組織に持ち込まれた可能性がある。今後、これらの菌類の病原性の確認やキクイムシ類との共生関係について明らかにしていく必要がある。日本森林学会, 2022年, 日本森林学会大会学術講演集, 133rd, 641, 日本語研究発表ペーパー・要旨(全国大会,その他学術会議)
- 2022年, 樹木医学研究, 26(3) (3), 日本語南西諸島におけるデイゴ・マンゴー等の衰退枯死と養菌性キクイムシ随伴菌との関係[査読有り]速報,短報,研究ノート等(学術雑誌)
- 2021年, 日本森林学会大会学術講演集, 132nd, 日本語Euwallacea spp.が随伴するFusarium属菌のデイゴとマンゴーへの影響研究発表ペーパー・要旨(全国大会,その他学術会議)
- 2021年, 樹木医学研究, 25(3) (3), 日本語マンゴーの枯れ枝から検出されたEuwallacea属キクイムシに随伴するFusarium属菌の分類学的検討[査読有り]速報,短報,研究ノート等(学術雑誌)
- 2020年, 日本農芸化学会大会講演要旨集(Web), 2020, 日本語ズッキーニから同定された汚染物質輸送タンパク質のストレス応答への関与研究発表ペーパー・要旨(全国大会,その他学術会議)
- 2017年, 日本農芸化学会大会講演要旨集(Web), 2017, 日本語ウリ科植物が持つ汚染物質輸送因子のストレス応答への関与研究発表ペーパー・要旨(全国大会,その他学術会議)
- 令和7年度日本植物病理学会大会, 2025年03月植物表面組織の新たなサンプリング法はコムギうどんこ病感染葉のRNA-seqデータにおける病原菌リードの割合を高める口頭発表(一般)
- The 5th Korea-Japan Joint Symposium on Plant Pathology, 2025年03月Molecular mechanisms of the host specificity of the blast fungus at the plant genus level[招待有り]口頭発表(招待・特別)
- 第2回兵庫アグリ・バイオ研究会・兵庫県バイオ技術研究会合同交流会, 2025年03月植物の病害抵抗性における新育種技術 ~おとり分子のエンジニアリング~口頭発表(一般)
- 2025 K-MPMI International Symposium, 2025年02月Identification of wheat genetic factors conferring high-temperature tolerance to genes for resistance to the blast fungus口頭発表(一般)
- 2025 K-MPMI International Symposium, 2025年02月Progressive evolution of virulence on oat in the blast fungus口頭発表(一般)
- 2025 K-MPMI International Symposium, 2025年02月Toward cloning of Rbl2, an oat gene for resistance to Avena and Triticum isolates of Pyricularia oryzae口頭発表(一般)
- 2025 K-MPMI International Symposium, 2025年02月Engineering of the recognition specificity of Rmo2, a barley gene against various pathotypes of Pyricularia oryzae口頭発表(一般)
- 2025 K-MPMI International Symposium, 2025年02月, 英語Cloning of Rwt3.6.8, a wheat resistance gene encoding an NLR and a protein kinase that recognizes three different avirulence genes of the blast[招待有り]口頭発表(招待・特別)
- 3rd International Wheat Congress, 2024年09月, 英語EXPLORING WHEAT BLAST RESISTANCE GENES IN JAPANESE WHEAT ACCESSIONSポスター発表
- 令和6年度日本植物病理学会関西部会, 2024年09月オオムギが保有するいもち病抵抗性遺伝子Rmo2の病原体認識機構口頭発表(一般)
- 令和6年度日本植物病理学会関西部会, 2024年09月Rmg8と2NS転座染色体が付与するコムギいもち病抵抗性効果の比較と2NSに対応する非病原力遺伝子の同定口頭発表(一般)
- 令和6年度日本植物病理学会関西部会若手の会, 2024年09月ムギ類抵抗性遺伝子の進化過程に関する考察 ― 標的病原体拡大モデル[招待有り]
- 9th International Rice and Wheat Blast Conference(Panama), 2024年06月, 英語Cloning of Rmg8 and its variants, genes for resistance to wheat blast in Triticum and Aegilops species[招待有り]口頭発表(招待・特別)
- Kyoto mini-symposium on plant-microbe interactions, 2024年05月, 英語Impact of acquisition of a single resistance gene recognizing three avirulence genes on the adaptation of common wheat to East Asia[招待有り]口頭発表(招待・特別)
- 令和6年度日本植物病理学会大会, 2024年03月イプコナゾール(Ip)及びベノミル(Be)はコムギいもち病菌(コムギ菌)のコムギへの感染を強く抑制する
- 令和6年度日本植物病理学会大会, 2024年03月コムギ近縁野生種Aegilops umbellulataが保有するコムギいもち病抵抗性遺伝子Rmg8バリアントAeuRmg8の同定
- International Wheat Blast Training in Zambia, 2024年03月, 英語Utilization of genetic resources for resistance to wheat blast[招待有り]
- 第18回ムギ類研究会, 2023年12月日本コムギ系統から見出された新規いもち病抵抗性遺伝子の解析ポスター発表
- 第18回ムギ類研究会, 2023年12月いもち病菌の3つの非病原力遺伝子を認識する普通系コムギの新奇ペア抵抗性遺伝子の単離と、その世界在来コムギ系統における分布解析ポスター発表
- 第18回ムギ類研究会, 2023年12月二粒系・普通系コムギにおけるコムギいもち病抵抗性遺伝子Rmg8およびRmg7の配列多様性解析ポスター発表
- 第18回ムギ類研究会, 2023年12月Aegilops 属植物のコムギいもち病菌とコムギうどんこ病菌に対する反応の比較に基づくコムギいもち病抵抗性遺伝子Rmg8 成立過程の推定ポスター発表
- 第22回糸状菌分子生物学コンファレンス, 2023年11月シコクビエいもち病菌(Pyricularia oryzae)の普通系コムギに対する3つの非病原力エフェクター遺伝子を認識する新規抵抗性遺伝子の単離(第15回学生優秀ポスター発表賞 受賞)ポスター発表
- The third barley mutant conference (3BMC), 2023年10月, 英語Cloning of Rmo2, a gene for resistance in barley to various host species-specific pathotypes of the blast fungus[招待有り]口頭発表(招待・特別)
- The third barley mutant conference (3BMC), 2023年10月, 英語A novel resistance resource found in Sv196, a Turkish accession of barley (Hordeum vulgare), conferring resistance against Triticum isolates of Pyricularia oryzaeポスター発表
- 日本植物病理学会令和5年度関西部会, 2023年09月エンバクのいもち病抵抗性遺伝子Rbl1, Rbl2に対する非病原力遺伝子の同定口頭発表(一般)
- 日本植物病理学会令和5年度関西部会, 2023年09月Aegilops umbellulata におけるコムギいもち病抵抗性遺伝子Rmg8バリアントの機能解析口頭発表(一般)
- 日本植物病理学会令和5年度関西部会, 2023年09月二粒系コムギ系統St24が保有する抵抗性遺伝子Rmg7の単離口頭発表(一般)
- 日本育種学会第144回講演会, 2023年09月コムギいもち病菌はイネに感染できない:その宿主特異性を決定している因子の単離口頭発表(一般)
- 日本育種学会第144回講演会, 2023年09月日本コムギ系統が持つコムギいもち病抵抗性遺伝子の探索口頭発表(一般)
- 日本育種学会第144回講演会, 2023年09月コムギいもち病抵抗性遺伝子Rmg8の単離口頭発表(一般)
- 12TH INTERNATIONAL CONGRESS OF PLANT PATHOLOGY (ICPP2023 Lyon), 2023年08月Detection of Rmg8, a gene for resistance to the wheat blast fungus, in Aegilops umbellulataポスター発表
- 12TH INTERNATIONAL CONGRESS OF PLANT PATHOLOGY (ICPP2023 Lyon), 2023年08月Distribution of wheat blast resistance genes in tetraploid wheatポスター発表
- 12TH INTERNATIONAL CONGRESS OF PLANT PATHOLOGY (ICPP2023 Lyon), 2023年08月Detection of genes for resistance to the wheat blast fungus in oats and their corresponding avirulence genesポスター発表
- 12TH INTERNATIONAL CONGRESS OF PLANT PATHOLOGY (ICPP2023 Lyon), 2023年08月Significance of the wheat resistance gene(s) located on chromosome 1DS as a host barrier to non-adapted isolates of Pyricularia oryzaeポスター発表
- 12TH INTERNATIONAL CONGRESS OF PLANT PATHOLOGY (ICPP2023 Lyon), 2023年08月Evolution of the wheat blast fungus through stepwise losses of function of avirulence genes partially accompanied by inter-chromosomal translocationsポスター発表
- TSL seminar, 2023年08月Molecular basis of the host specificity of Pyricularia oryzae at the plant genus level[招待有り]
- 令和5年度日本植物病理学会大会, 2023年03月コムギいもち病抵抗性遺伝子Rmg8を導入したチクゴイズミ準同質遺伝子系統の育成とその抵抗性評価
- 令和5年度日本植物病理学会大会, 2023年03月湿度制御型グロースチャンバーを用いたイプコナゾール(Ip), ベノミル(Be)のコムギいもち病防除効果の評価
- Hands-on training on disease screening and surveillance of wheat blast (CIMMYT Bangladesh), 2023年03月, 英語Identification of genes for resistance to the wheat blast fungus[招待有り]公開講演,セミナー,チュートリアル,講習,講義等
- 日本育種学会第142回講演会, 2022年09月日本コムギ系統の圃場におけるコムギいもち病抵抗性の評価
- 日本植物病理学会令和4年度関西部会, 2022年09月コムギ近縁野生種におけるいもち病抵抗性遺伝子のスクリーニング口頭発表(一般)
- 日本植物病理学会令和4年度関西部会, 2022年09月Identification of RmgSt19(t), a new gene for resistance to wheat blast with exceptional high-temperature insensitivity, in a tetraploid wheat accession
- 日本植物病理学会令和4年度関西部会, 2022年09月シコクビエいもち病菌と普通系コムギの非親和性を決定する PWT8 – Rwt8遺伝子相互作用の解析口頭発表(一般)
- 12th Japan-US Seminar in Plant Pathology, 2022年08月Molecular basis of the resistance in wheat and barley against the blast fungus[招待有り]口頭発表(招待・特別)
- 12th Japan-US Seminar in Plant Pathology, 2022年08月Detection of resistance genes to wheat blast in oat, using a disruptant of PAT1 controlling the avirulence of the wheat blast fungus(Travel Award 受賞)ポスター発表
- 12th Japan-US Seminar in Plant Pathology, 2022年08月Cloning of PWT8, an avirulence gene of an Eleusine isolate of Pyricularia oryzae on common wheat (Travel Award 受賞)ポスター発表
- 令和4年度日本植物病理学会大会, 2022年03月いもち病菌非病原力遺伝子PWT7に対するコムギの抵抗性遺伝子Rwt7の単離
- 令和4年度日本植物病理学会大会, 2022年03月Characterization of Pwt2 locus reveals a virulence factor of the blast fungus for wheat infection
- 日本育種学会第140回講演会, 2021年09月コムギいもち病抵抗性系統のNBRP 六倍体コムギコアコレクションに おける探索:地理的分布、遺伝的 多様性とゲノムワイドアソシエー ション解析
- ムギ学オンラインセミナー, 2021年04月病理学的視点からみた普通系コムギのアジア進出に関する一考察[招待有り]
- 令和3年度日本植物病理学会大会, 2021年03月普通系コムギならびにそのDゲノム供与種におけるいもち病抵抗性遺伝子の分布とそれらの起源に関する一考察口頭発表(一般)
- 令和3年度日本植物病理学会大会, 2021年03月コムギいもち病菌に対するペフラゾエート及びイプコナゾールの抑制効果口頭発表(一般)
- 令和2年度日本植物病理学会関西部会, 2020年11月コムギいもち病菌に対するベノミルの抑制効果ポスター発表
- 令和2年度日本植物病理学会関西部会, 2020年11月シコクビエいもち病菌が保有するコムギに対する非病原力遺伝子の分子マッピングポスター発表
- 12th Japan-US Seminar in Plant Pathology, 2020年10月The effect of genomic compartments harboring PWT3 and PWT6, the host-genus specificity determinants of Pyricularia oryzae, on the distribution of their corresponding resistance genes in common wheat[招待有り]
- 第132回日本森林学会大会, 2020年03月Euwallacea spp. が随伴するFusarium属菌のデイゴとマンゴーへの影響ポスター発表
- 令和2年度日本植物病理学会大会, 2020年03月Rmg8 and RmgGR119 are effective against the wheat blast fungus (Pyriculari oryzae)in Bangladesh口頭発表(一般)
- 令和2年度日本植物病理学会大会, 2020年03月シコクビエいもち病菌の非病原力遺伝子PWT6に対するコムギ抵抗性遺伝子Rwt6の詳細マッピング口頭発表(一般)
- 日本農芸化学会2020年度大会, 2020年03月ズッキーニから同定された汚染物質輸送タンパク質のストレス応答への関与ポスター発表
- 令和元年度日本植物病理学会関西部会, 2019年09月コムギいもち病菌のオオムギに対する非病原力遺伝子PBY2のクローニング口頭発表(一般)
- 2019 IS-MPMI XVIII Congress, 2019年07月Identification of Rwt6, a wheat resistance gene corresponding to PWT6 which is distributed in Eleusine and Oryza isolates of Pyricularia oryzae.[招待有り]
- The 8th International Rice Blast Conference, 2019年05月A model for the evolution of new pathotypes in Pyricularia oryzae inferred from host-specialization of the Eleusine subgroup.ポスター発表
- 平成31年度日本植物病理学会大会, 2019年03月コムギいもち病抵抗性遺伝子Rmg8と相加的に働く新規抵抗性遺伝子RmgGR119の同定口頭発表(一般)
- 第18回糸状菌分子生物学コンファレンス, 2018年11月コムギいもち病菌のエンバクに対する非病原性の分子解析[招待有り]口頭発表(一般)
- The International Training Course on Triticeae Genomics, 2018年10月Toward cloning of Rmo2, a barley gene for resistance to various pathotypes of Pyricularia oryzae[招待有り]
- 第39回日本植物病理学会関西部会若手の会, 2018年09月いもち病菌のコムギへの寄生過程の解明と抵抗性育種の方向性[招待有り]
- 平成30年度日本植物病理学会関西部会, 2018年09月オオムギの各種いもち病菌に対する抵抗性遺伝子Rmo2の1アリル候補配列の機能解析口頭発表(一般)
- TSL Seminar, 2018年06月Elucidating the genetic mechanism of host parasitic specialization of Pyricularia oryzae to wheat[招待有り]
- 神戸大学研究基盤センター若手フロンティア研究会, 2017年12月いもち病菌と普通系コムギ間の非親和性を支配する非病原力遺伝子のクローニングポスター発表
- 平成29年度日本植物病理学会関西部会, 2017年09月コムギいもち病菌に対する新規抵抗性遺伝子の探索口頭発表(一般)
- NGS現場の会第五回研究会, 2017年05月次世代シーケンサーを用いたbulked segregant analysis法によるシコクビエいもち病菌の普通系コムギに対する非病原力遺伝子のマッピングポスター発表
- 平成29年度日本植物病理学会大会, 2017年04月いもち病菌集団内エフェクター分布解析によるシコクビエいもち病菌の普通系コムギに対する新規非病原力遺伝子のクローニング口頭発表(一般)
- 平成29年度日本植物病理学会大会, 2017年04月コムギいもち病菌の保有するシコクビエに対する非病原力遺伝子の検出と分子マッピング口頭発表(一般)
- 平成29年度日本植物病理学会大会, 2017年04月エンバクいもち病菌のコムギ品種Hopeに対する非病原力遺伝子のクローニング口頭発表(一般)
- The 7th International Rice Blast Conference, 2016年10月Cloning of an avirulence gene of an Eleusine isolate of Pyricularia oryzae against common wheatポスター発表
- 2016 IS-MPMI XVII Congress, 2016年07月Identification of gene pairs involved in the incompatibility between Eleusine isolates of Pyricularia oryzae and common wheat.ポスター発表
- 平成28年度日本植物病理学会大会, 2016年03月シコクビエいもち病菌が保有するPWT3ホモログの普通系コムギに対する非病原力遺伝子としての機能の検討口頭発表(一般)
- 生命情報科学若手の会第7回研究会, 2015年10月次世代シーケンサを用いたbulked segregant analysis (BSA) 法によるシコクビエいもち病菌の普通系コムギに対する非病原力遺伝子の解析ポスター発表
- 平成27年度日本植物病理学会関西部会, 2015年09月シコクビエいもち病菌の普通系コムギに対する非病原力遺伝子クローニングのためのBC1F1集団の作出および対応する抵抗性遺伝子の座乗候補染色体の検討口頭発表(一般)
- 平成27年度日本植物病理学会大会, 2015年03月シコクビエいもち病菌が保有する普通系コムギに対する非病原力遺伝子数の遺伝学的推定口頭発表(一般)
■ 共同研究・競争的資金等の研究課題
- 日本学術振興会, 科学研究費助成事業, 特別推進研究, 京都大学, 2024年04月01日 - 2029年03月31日イネNLRome-病原菌エフェクター相互作用の全貌解明と育種利用
- 日本学術振興会, 科学研究費助成事業, 基盤研究(B), 神戸大学, 2025年04月01日 - 2028年03月31日タンデムキナーゼのエンジニアリングによるコムギいもち病抵抗性遺伝子カセットの作出
- 日本学術振興会, 科学研究費助成事業, 基盤研究(B), 京都府立大学, 2024年04月01日 - 2028年03月31日日本品種からのコムギいもち病抵抗性遺伝子の単離と抵抗性遺伝子進化へのアプローチ
- 日本学術振興会, 科学研究費助成事業 若手研究, 若手研究, 神戸大学, 2023年04月01日 - 2026年03月31日いもち病菌の次期標的植物の予測-特に栽培エンバクへのホストジャンプ機構の解析
- 日本学術振興会, 科学研究費助成事業 研究活動スタート支援, 研究活動スタート支援, 神戸大学, 2022年08月31日 - 2024年03月31日ムギ類-いもち病菌間特異性を支配する抵抗性遺伝子の病原菌認識機構の解明クローニングに成功したHMA-tandem kinaseをコードする抵抗性遺伝子の非病原力遺伝子認識機構を明らかにするために、Rmo2とRwt7のHMAドメインとtandem kinaseドメインをスワップさせたキメラコンストラクトを導入したオオムギ形質転換体を用いた接種実験を試みた。しかしながら、すべての接種組み合わせにおいて形質転換体は感受性を示し、期待通りの結果を得ることはできなかった。各遺伝子の配列類似性をもとにキメラ化したが、その際に、抵抗性遺伝子として機能するために重要な構造を壊してしまった可能性がある。そこで、Rmo2の近傍に座乗し同じくHMA-tandem kinaseをコードする黒さび病抵抗性遺伝子Rpg1に着目した。今後、Rmo2に構造がより類似しているRpg1 kinaseドメインにRmo2 HMAドメインを融合させたキメラコンストラクトを作成し、プロトプラストアッセイによって、PBY2の認識による細胞死が起こるかどうかを検証する予定である。 一方、アワいもち病菌GFSI1-7-2が保有するMAXエフェクター様遺伝子の逆遺伝学的な予測を試みた。GFSI1-7-2の参照配列に感染時のRNA-seqリードをマッピングし、transcriptomeを予測した。SignalP、HMMERを用いたモチーフ検索によって、最終的に26個の遺伝子をMAXエフェクター様の構造をとる分泌シグナルを有するタンパク質コード遺伝子として同定した。このうちいずれかの遺伝子産物が、HMAドメインを有するオオムギの抵抗性遺伝子Rmo2又はコムギの抵抗性遺伝子Rwt7によって認識されていると予想する。
- 日本学術振興会, 科学研究費助成事業, 基盤研究(B), 神戸大学, 2019年04月01日 - 2023年03月31日養菌性キクイムシ随伴Fusarium属菌の生存戦略:樹木病原菌化の条件とは?養菌性キクイムシと共生菌の生存戦略は複雑で、1種対1種の組み合わせとは限らない。複数種のキクイムシが同一の菌と共生する例がある。Fusarium pseudensiformeがデイゴとマンゴー両樹種に病原性を示し、病原菌の伝播と感染拡大に寄与すると推測した。Fusarium属の多様な種が枝枯れや萎徴の原因であることを、栽培現場に周知する必要がある。Euwallacea属では、Fusarium属菌以外の菌種とも共生関係が認められた。国内のアボカドでは、米国等海外の枯死被害に関わっているEuwallacea属ではなくPlatypus属の生息が確認され、米国から日本への侵入ではないと推測された。