SEARCH
Search Details
NODA ShuheiGraduate School of Science, Technology and Innovation / Department of Science, Technology and InnovationAssociate Professor
Research activity information
■ Award- Mar. 2022 理化学研究所, 桜舞賞
- Mar. 2021 The Society of Chemical Engineers, 研究奨励賞, 有用化合物合成のための微生物バイオプロセス構築に関する研究
- Nov. 2019 酵素工学研究会, 酵素工学奨励賞, 微生物を用いた有用バルクケミカル合成プラットホーム開発に関する研究
- Dec. 2017 iBioS-2017, Best Poster Award
- Oct. 2015 YABEC 2015: 21st Young Asian Biochemical Engineers’ Community, Best Poster Award
- Oct. 2011 YABEC2011: 17st Young Asian Biochemical Engineers’ Community, Best Poster Award
- American Chemical Society (ACS), Apr. 2025, Journal of Agricultural and Food Chemistry[Refereed]Scientific journal
- Corresponding, Elsevier BV, Apr. 2025, Metabolic Engineering[Refereed]Scientific journal
- ABSTRACT The modularization of biosynthetic pathways is a promising approach for enhancing microbial chemical production. We have developed a co-utilization method with glucose and xylose substrates to divide metabolic pathways into distinct production and energy modules to enhance the biosynthesis of para -aminobenzoic acid (pABA) in Escherichia coli . Optimizing initial glucose/xylose concentrations and eliminating carbon leakage resulted in a pABA titer of 8.22 g/L (yield: 0.23 g/g glucose). This strategy was then applied to the biosynthesis of 4APhe, a compound synthesized from chorismate without pyruvate (PYR) release. Utilizing glucose and xylose as co-substrates resulted in the production of 4.90 g/L 4APhe. Although 4APhe production did not benefit from PYR-driven energy generation as pABA production did, high titer was still achieved. This study highlights the effectiveness of modular metabolic pathway division for enhancing the production of key aromatic compounds and provides valuable insight into microbial production of chemicals that require specific biosynthetic donors such as amino groups. IMPORTANCE Microbial biosynthesis of chemicals from renewable resources offers a sustainable alternative to fossil fuel-based production. However, inefficiencies due to substrate diversion into by-products and biomass hinder optimal yields. In this study, we employed a modular metabolic engineering approach, decoupling pathways for chemical production from cell growth. Using glucose and xylose as co-substrates, we achieved the enhancement of p -aminobenzoic acid production in Escherichia coli . Additionally, we demonstrated the versatility of this approach by applying it to the biosynthesis of 4-amino-phenylalanine production. This study highlights the potential of modular metabolic pathway division for increased production of target compounds and provides valuable insight into microbial production of chemicals that require specific biosynthetic donors such as amino groups.Corresponding, American Society for Microbiology, Apr. 2025, Applied and Environmental Microbiology[Refereed]Scientific journal
- Aug. 2024, Biotechnology Journal, 19(8) (8), 2400210 - 2400210Parallel metabolic pathway engineering for aerobic 1,2‐propanediol production in Escherichia coli[Refereed]
- Elsevier BV, Jun. 2024, Bioresource Technology, 130927 - 130927[Refereed]Scientific journal
- Jan. 2024, BioTech, 13(1) (1)Styrene Production in Genetically Engineered Escherichia coli in a Two-Phase Culture[Refereed]
- Dec. 2023, Enzyme and Microbial Technology, 171, 110321p-Nitrobenzoate production from glucose by utilizing p-aminobenzoate N-oxygenase: AurF[Refereed]
- Sep. 2023, Applied Microbiology, 3(3) (3), 1027 - 1036Population Dynamics in the Biogenesis of Single-/Multi-Layered Membrane Vesicles Revealed by Encapsulated GFP-Monitoring Analysis[Refereed]
- Elsevier BV, Mar. 2023, Enzyme and Microbial Technology, 164, 110193 - 110193[Refereed]Scientific journal
- Abstract Background Flux Balance Analysis (FBA) is a well-known bioinformatics tool for metabolic engineering design. Previously, we have successfully used single-level FBA to design metabolic fluxes in Bacillus subtilis to enhance (R,R)-2,3-butanediol (2,3-BD) production from glycerol. OptKnock is another powerful technique for devising gene deletion strategies to maximize microbial growth coupling with improved biochemical production. It has never been used in B. subtilis. In this study, we aimed to compare the use of single-level FBA and OptKnock for designing enhanced 2,3-BD production from glycerol in B. subtilis. Results Single-level FBA and OptKnock were used to design metabolic engineering approaches for B. subtilis to enhance 2,3-BD production from glycerol. Single-level FBA indicated that deletion of ackA, pta, lctE, and mmgA would improve the production of 2,3-BD from glycerol, while OptKnock simulation suggested the deletion of ackA, pta, mmgA, and zwf. Consequently, strains LM01 (single-level FBA-based) and MZ02 (OptKnock-based) were constructed, and their capacity to produce 2,3-BD from glycerol was investigated. The deletion of multiple genes did not negatively affect strain growth and glycerol utilization. The highest 2,3-BD production was detected in strain LM01. Strain MZ02 produced 2,3-BD at a similar level as the wild type, indicating that the OptKnock prediction was erroneous. Two-step FBA was performed to examine the reason for the erroneous OptKnock prediction. Interestingly, we newly found that zwf gene deletion in strain MZ02 improved lactate production, which has never been reported to date. The predictions of single-level FBA for strain MZ02 were in line with experimental findings. Conclusions We showed that single-level FBA is an effective approach for metabolic design and manipulation to enhance 2,3-BD production from glycerol in B. subtilis. Further, while this approach predicted the phenotypes of generated strains with high precision, OptKnock prediction was not accurate. We suggest that OptKnock modelling predictions be evaluated by using single-level FBA to ensure the accuracy of metabolic pathway design. Furthermore, the zwf gene knockout resulted in the change of metabolic fluxes to enhance the lactate productivity.Springer Science and Business Media LLC, Jan. 2023, Journal of Biological Engineering, 17(1) (1), 3 - 13[Refereed]Scientific journal
- Sciscan Publishing Limited, 2023, Synthetic Biology and Engineering, 1(1) (1), 1 - 9[Refereed]Scientific journal
- Escherichia coli, the most studied prokaryote, is an excellent host for producing valuable chemicals from renewable resources as it is easy to manipulate genetically. Since the periplasmic environment can be easily controlled externally, elucidating how the localization of specific proteins or small molecules in the periplasm affects metabolism may lead to bioproduction development using E. coli. We investigated metabolic changes and its mechanisms occurring when specific proteins are localized to the E. coli periplasm. We found that the periplasmic localization of β-glucosidase promoted the shikimate pathway involved in the synthesis of aromatic chemicals. The periplasmic localization of other proteins with an affinity for glucose-6-phosphate (G6P), such as inactivated mutants of Pgi, Zwf, and PhoA, similarly accelerated the shikimate pathway. Our results indicate that G6P is transported from the cytoplasm to the periplasm by the glucose transporter protein EIICBGlc, and then captured by β-glucosidase.Corresponding, Jul. 2022, Metabolic Engineering, 72, 68 - 81, English, International magazine[Refereed]Scientific journal
- Microbial metabolic pathway engineering is a potent strategy used worldwide to produce aromatic compounds. We drastically rewired the primary metabolic pathway of Escherichia coli to produce aromatics and their derivatives. The metabolic pathway of E. coli was compartmentalized into the production and energy modules. We focused on the pyruvate-forming reaction in the biosynthesis pathway of some compounds as the reaction connecting those modules. E. coli strains were engineered to show no growth unless pyruvate was synthesized along with the compounds of interest production. Production of salicylate and maleate was demonstrated to confirm our strategy's versatility. In maleate production, the production, yield against the theoretical yield, and production rate reached 12.0 g L-1, 67%, and up to fourfold compared to that in previous reports, respectively; these are the highest values of maleate production in microbes to our knowledge. The results reveal that our strategy strongly promotes the production of aromatics and their derivatives.May 2021, Metabolic Engineering, 67, 1 - 10, English, International magazine[Refereed]Scientific journal
- The C4 unsaturated compound 1,3-butadiene is an important monomer in synthetic rubber and engineering plastic production. However, microorganisms cannot directly produce 1,3-butadiene when glucose is used as a renewable carbon source via biological processes. In this study, we construct an artificial metabolic pathway for 1,3-butadiene production from glucose in Escherichia coli by combining the cis,cis-muconic acid (ccMA)-producing pathway together with tailored ferulic acid decarboxylase mutations. The rational design of the substrate-binding site of the enzyme by computational simulations improves ccMA decarboxylation and thus 1,3-butadiene production. We find that changing dissolved oxygen (DO) levels and controlling the pH are important factors for 1,3-butadiene production. Using DO-stat fed-batch fermentation, we produce 2.13 ± 0.17 g L-1 1,3-butadiene. The results indicate that we can produce unnatural/nonbiological compounds from glucose as a renewable carbon source via a rational enzyme design strategy.Apr. 2021, Nature Communications, 12(1) (1), 2195 - 2206, English, International magazine[Refereed]Scientific journal
- Microbial production of mevalonate from renewable feedstock is a promising and sustainable approach for the production of value-added chemicals. We describe the metabolic engineering of Escherichia coli to enhance mevalonate production from glucose and cellobiose. First, the mevalonate-producing pathway was introduced into E. coli and the expression of the gene atoB, which encodes the gene for acetoacetyl-CoA synthetase, was increased. Then, the deletion of the pgi gene, which encodes phosphoglucose isomerase, increased the NADPH/NADP+ ratio in the cells but did not improve mevalonate production. Alternatively, to reduce flux toward the tricarboxylic acid cycle, gltA, which encodes citrate synthetase, was disrupted. The resultant strain, MGΔgltA-MV, increased levels of intracellular acetyl-CoA up to sevenfold higher than the wild-type strain. This strain produced 8.0 g/L of mevalonate from 20 g/L of glucose. We also engineered the sugar supply by displaying β-glucosidase (BGL) on the cell surface. When cellobiose was used as carbon source, the strain lacking gnd displaying BGL efficiently consumed cellobiose and produced mevalonate at 5.7 g/L. The yield of mevalonate was 0.25 g/g glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing mevalonate from cellobiose or cellooligosaccharides using an engineered E. coli strain.Jul. 2020, Biotechnology and Bioengineering, 117(7) (7), 2153 - 2164, English, International magazine[Refereed]Scientific journal
- Corresponding, Jan. 2020, Nature Communications, 11, 279 - 290Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose–xylose co-substrate[Refereed]
- Lead, Jul. 2019, Microbial Cell Factories, 18(1) (1)[Refereed]Scientific journal
- Corresponding, Nov. 2018, ACS Synthetic Biology, 7(11) (11), 2698 - 2705[Refereed]
- Lead, Oct. 2017, Nature Communications, 8(1) (1), 1153 - 1165, English[Refereed]Scientific journal
- Lead, Aug. 2017, Trends in Biotechnology, 35(8) (8), 785 - 796, English[Refereed]
- Dec. 2016, Journal of Bioscience and Bioengineering, 122(6) (6), 730 - 735, English[Refereed]Scientific journal
- Oct. 2016, Biochemical Engineering Journal, 114, 271 - 278, English[Refereed]Scientific journal
- Sep. 2016, Biotechnology Letters, 38(9) (9), 1543 - 1549, English[Refereed]Scientific journal
- Lead, Jan. 2016, Metabolic Engineering, 33, 119 - 129, English[Refereed]Scientific journal
- Jun. 2015, Bioresource Technology, 185, 158 - 164, English[Refereed]Scientific journal
- Lead, May 2015, PLOS ONE, 10(5) (5), e0125488, English[Refereed]Scientific journal
- May 2015, Enzyme and Microbial Technology, 72, 16 - 24, English[Refereed]Scientific journal
- Lead, Mar. 2015, Bioresource Technology, 180, 59 - 65, English[Refereed]Scientific journal
- Lead, Jan. 2015, Microbial Cell Factories, 14, 5, English[Refereed]Scientific journal
- Oct. 2013, Microbial Cell Factories, 12, 88, English[Refereed]Scientific journal
- Lead, Jul. 2013, Applied Microbiology and Biotechnology, 97(13) (13), 5711 - 5720, English[Refereed]Scientific journal
- May 2013, Microbial Cell Factories, 12(1) (1), 45, English[Refereed]Scientific journal
- Lead, May 2013, Biochemical Engineering Journal, 74, 76 - 80, English[Refereed]Scientific journal
- 2013, Chemical Communications, 49(62) (62), 6971 - 6973, English[Refereed]Scientific journal
- Lead, Apr. 2012, MICROBIAL CELL FACTORIES, 11, 49, English[Refereed]Scientific journal
- Lead, Jan. 2012, Bioresource Technology, 104, 648 - 651, English[Refereed]Scientific journal
- Lead, May 2011, Journal of Industrial Microbiology and Biotechnology, 38(5) (5), 643 - 648, English[Refereed]Scientific journal
- Lead, Oct. 2010, Protein Expression and Purification, 73(2) (2), 198 - 202, English[Refereed]Scientific journal
- Mar. 2024, 生物工学会誌 バイオミディア, 102(3) (3), 124 - 124人工的な共培養空間デザイン
- Feb. 2024, 化学工学 トピックス, 88(2) (2), 88 - 88代謝工学的アプローチによる微生物共培養の技術革新及び最新の研究動向
- Nov. 2022, バイオサイエンスとインダストリー, 80(6) (6), 474 - 475大腸菌ペリプラズムでのグルコース-6-リン酸の捕捉は芳香族アミノ酸合成を促進する
- Oct. 2022, 化学工業, 73(10) (10)糖の使い分け技術 ・ 代謝制御添加剤を駆使した 微生物発酵生産
- Dec. 2021, バイオインダストリー, 38(12) (12), 9 - 16糖の使い分け技術・“代謝スパイス”を駆使した微生物発酵生産
- Jul. 2020, バイオサイエンスとインダストリー(B&I), 78(4) (4), 316 - 317物質生産とエネルギー獲得を独立させるパラレル型代謝工学技術
- May 2020, クリーンエネルギー 2, 29(5) (5), 20 - 25微生物に糖を目的別に使い分けさせる新技術によるポリマー原料の生産性向上
- 2018, RIKEN research, Fall, 26 - 28Gut microbes become tiny industrial chemical factories
- 2018, バイオサイエンスとインダストリー(B&I), 76(4) (4), 294 - 295, Japanese大腸菌を用いたポリマー原料としてのマレイン酸生産Introduction other
- Dec. 2017, フジサンケイビジネスアイ, 13 - 13大腸菌を用いたマレイン酸合成法の開発
- 学術変革領域A 予知生合成科学 第五回公開シンポジウム, Feb. 2025炭素をつなぐ:SAMT⾃在制御基盤の確⽴[Invited]
- 第12回日本生物工学会東日本支部コロキウム「微生物代謝工学の研究最前線」, Feb. 2024代謝経路の大規模改変から発想する有用化合物生産プラットホーム[Invited]
- 質量分析インフォマティクス研究会ワークショップ, Mar. 2019, Japanese, Domestic conference有用バルクケミカル合成大腸菌プラットホーム開発における質量分析機器の活用[Invited]Invited oral presentation
- 第70回 日本生物工学会大 シンポジウム「新時代の物質生産宿主開発の方法論:ゲノムを大規模に編集する。代謝計測から設計図を書く」, Sep. 2018, Japanese, Domestic conference芳香族化合物合成プラットホームの開発~芳香族モノマー合成に理想的な大腸菌代謝デザイン~Oral presentation
- 2nd Korea-Japan Smart Biodesign Workshop: Technology exchange for green biotechnology, Feb. 2017, English, International conferenceMetabolic design of a platform Escherichia coli strain producing various chorismate derivatives[Invited]Oral presentation
- YABEC 2016 : 22nd Symposium of Young Asian Biological Engineers' Community, Oct. 2016, English, International conferenceMetabolic design of a platform Escherichia coli strain producing various chorismate derivatives[Invited]Oral presentation
- The 6th iBioK Asian Workshop, Dec. 2015, English, International conferenceMetabolic design of a platform Escherichia coli strain producing various chorismate derivatives[Invited]Oral presentation
- 日本生物物理学会
- Japanese Society of Enzyme Engineering
- The Society for Biotechnology, Japan
- THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN
- 日本学術振興会, 基盤研究(B), Apr. 2025 - Mar. 2028, Principal investigator階層間ネットワークの理解が拓く理想的バイオ生産基盤
- 日本学術振興会, 科学研究費助成事業, 学術変革領域研究(A), 神戸大学, Apr. 2025 - Mar. 2027CO世界で進化する合成微生物
- 国立研究開発法人科学技術振興機構, 戦略的創造研究推進事業(さきがけ)「持続可能な材料設計に向けた確実な結合とやさしい分解」領域, Oct. 2022 - Mar. 2026, Principal investigator剛直成分含有ポリマーの完全バイオ循環空間デザイン
- 日本学術振興会, 科学研究費助成事業, 学術変革領域研究(A), 神戸大学, Apr. 2023 - Mar. 2025, Principal investigator炭素をつなぐ:SAMT自在制御基盤の確立
- 日本学術振興会, 基盤研究(B), Apr. 2022 - Mar. 2025, Principal investigator代謝ブラックボックスの可視化から紐解く遺伝子導入パターン最適化手法の確立
- 一般財団法人 カーボンリサイクルファンド, 2022年度 CRF研究助成活動(一般公募枠), Aug. 2022 - Jul. 2024, Principal investigator革新的CO2利用に向けたC1完全バイオ循環空間デザイン
- 日本学術振興会, 若手研究, Apr. 2019 - Mar. 2023, Principal investigator新奇酵素の合理的デザインによる芳香族化合物合成プラットホームの拡張Competitive research funding
- 国立研究開発法人科学技術振興機構, 未来社会創造事業(探索加速型), 2017 - Mar. 2022【未来社会】 細胞表層工学と代謝工学を用いたPEP蓄積シャーシ株の創製Competitive research funding
- 日本学術振興会, 若手研究(B), Apr. 2017 - Mar. 2019, Principal investigatorピルビン酸バイパス/リサイクル技術を拡張した芳香族化合物合成プラットホームの開発Competitive research funding
- 日本学術振興会, 研究活動スタート支援, Aug. 2013 - Mar. 2015, Principal investigatorNon-Conventional酵母によるテーラーメイド芳香族化合物合成法の開発Competitive research funding
- 日本学術振興会, 科学研究費助成事業, 特別研究員奨励費, 神戸大学, 2012 - 2013放射菌の抗生物質生産における素反応を応用した芳香族化合物生産経路の合理的構築近年、化石資源の枯渇・地球温暖化等の環境問題が顕在化している。温室効果ガスの削減、持続可能な社会形成のため、石油依存社会から、エネルギーや化成品を再生可能なバイオマス資源に依存したバイオリファイナリー社会への変革が求められている。特に、芳香族系の化成品原料生産は、その生合成経路が複雑であること、また酵母や大腸菌等の微生物にとって毒性を示すため、バイオプロセスに置き換えるのが困難であり、石油資源からの生産に完全に依存している。本研究では、既存化成品原料生産のケミカルプロセスからバイオプロセスへの変換を目指した。本研究においては、放線菌Atreptomyces属に注目し、バイオマス資源からの芳香族化合物生産、バイオマス資源からの高効率な物質生産のための基盤の開発を行った。 放線菌Streptomyces maritimusの2次代謝経路の一部を利用することにより、微生物を用いて初めて安息香酸の生産に成功した。3%デンプンから最大で460mg/Lの安息香酸生産に成功した。また、セルロースからの安息香酸生産を目指し、木質系バイオマス糖化酵素の一種であるエンドグルカナーゼ導入株を創製した。創製した株を用い、1%セルロースから最大で120mg/Lの安息香酸生産に成功した。本研究における報告は、微生物発酵によるバイオマス資源からの芳香族化合物生産に関する初めての報告であり、その収率もグルコースを用いた他の微生物による他の芳香族化合物生産における報告に匹敵するものである。しかしながら、セルロースからの安息香酸収率は、同仕込み量のグルコースの場合と比較して不十分であった。そこでバイオマス糖化効率を高めるためにバイオマス糖化酵素生産量の増強を検討し、バイオマス糖化酵素分泌生産量を10倍に向上させることに成功した。 以上より、セルロース資化性安息香酸生産菌とバイオマス糖化酵素大量生産技術を組み合わせることにより、セルロースから効率的に芳香族化合物を生産可能な技術の確立が期待される。
- グルコース6リン酸を捕捉する物質を用いた芳香族化合物の製造方法特願2019-123262, 01 Jul. 2019, 国立大学法人神戸大学・特定国立研究開発法人理化学研究所, 特開2021-7388Patent right
- 糖代謝経路が改変された微生物特願2019-089294, 13 May 2019, 国立大学法人神戸大学・特定国立研究開発法人理化学研究所, 特開2020-184993Patent right
- Method for producing aromatic compound and derivative thereofPCT/JP2016/074649, 24 Aug. 2016, 02 Mar. 2017Patent right