SEARCH
Search Details
KOYAMA RyoheiGraduate School of Agricultural Science / Department of Bioresource ScienceAssistant Professor
Research activity information
■ Award■ Paper
- 2025, In Vitro Cellular & Developmental Biology - Plant, EnglishAnther-based regeneration of carnation (Dianthus caryophyllus L.) for haploid production[Refereed]Scientific journal
- 2025, Plant Cell, Tissue and Organ Culture, English[Refereed]Scientific journal
- 2024, Horticulture Journal, EnglishFunctional characterization of DcFT1, an ortholog for the FLOWERING LOCUS T gene in carnation (Dianthus caryophyllus L.)[Refereed]Scientific journal
- 2024, Acta Horticulturae, EnglishVarietal differences in the content of strawberry allergen Fra a 1.01 among Japanese cultivars.[Refereed]Scientific journal
- Abstract Prickly lettuce (Lactuca serriola), which is considered the wild ancestor of lettuce, has black seeds, whereas the major seed color of domesticated lettuce is black or white. The successfully-selected white seed trait is a key domestication trait for lettuce cultivation and breeding; however, the mechanism underlying the shift from black to white seeds remains to be clarified. We aimed to identify the gene/s responsible for white seed trait in lettuce. Genetic mapping of a candidate gene was performed with double-digest RAD sequencing using an F2population derived from a cross between ‘ShinanoPower’ (white seed) and ‘Escort’ (black seed). The white seed trait was controlled by a single recessive locus (48.055–50.197 Mbp) in linkage group 7. Narrowing down using five PCR-based markers and 84 cultivars, eight candidate genes were mapped in the locus. Only theLG7_v8_49.251Mbp_HinfImarker, which employs a single nucleotide mutation in the stop codon ofLsat_1_v5_gn_7_35020.1was completely linked to the seed color phenotype. In addition, the sequences of the coding region for candidate genes except forLsat_1_v5_gn_7_35020.1were identical in the resequence analysis of ‘ShinanoPower’ (white seed) and ‘Escort’ (black seed). Therefore, we proposedLsat_1_v5_gn_7_35020.1, a gene located in the locus, as the candidate gene and designated it asLsTT2, an ortholog encoding the R2R3 MYB transcription factor inArabidopsis. When we validated the role ofLsTT2in seed color through genome editing,LsTT2knockout mutants harboring an early termination codon showed a change in seed color from black to white. White seeds accumulated less proanthocyanidins than black seeds, which was similar to the phenotype observed inArabidopsis TRANSPARENT TESTA 2(TT2) mutants. Therefore,LsTT2was the allele responsible for the shift in seed color from black to white. The development of a robust marker for marker-assisted selection and identification of the gene responsible for white seeds has implications for future breeding technology and physiological analysis.Cold Spring Harbor Laboratory, Sep. 2023, Plant Cell Reports, 43, 35, English[Refereed]Scientific journal
- The strawberry fruit contains abundant polyphenols, such as anthocyanins, flavan-3-ol, and ellagitannin. Polyphenol enrichment improves the quality of strawberries and leads to a better understanding of the polyphenol induction process. We measured the total polyphenol content of strawberry fruits under different growth conditions, developmental stages, and treatment conditions during pre-harvest and post-harvest periods. High fruit polyphenol content was observed in cold treatment, which was selected for further analysis and optimization. A transcriptome analysis of cold-treated fruits suggested that the candidate components of polyphenols may exist in the phenylpropanoid pathway. Coverage with a porous film bag excluded the effects of drought stress and produced polyphenol-rich strawberry fruits without affecting quality or quantity. The degree of stress was assessed using known stress indicators. A rapid accumulation of abscisic acid was followed by an increase in superoxide dismutase and DPPH (2,2-Diphenyl-1-picrylhydrazyl) activity, suggesting that the strawberry fruits responded to cold stress immediately, reaching the climax at around 6 days, a trend consistent with that of polyphenol content. These findings enhance our understanding of the mechanism of post-harvest polyphenol accumulation and the value of strawberries as a functional food.Lead, MDPI AG, Aug. 2022, Plants, 11(17) (17), 2220(13page) - 2220, English[Refereed][Invited]Scientific journal
- Efficient cultivation methods were investigated to promote the branding of products in plant factories. Moderate stress can enhance plant constituents that are beneficial for human health, without reducing yield. Dehydration stress in lettuce rhizospheres increased some antioxidants, including L-ascorbic acid (AsA) and polyphenols. In this study, the major factors contributing to the augmentation of antioxidant constituents were investigated. The drought treatment resulted in increased hydrophilic oxygen radical absorbance capacity (ORAC) values but not hydrophobic ORAC values. Both activities of antioxidant enzymes (superoxide dismutase, SOD, and ascorbate peroxidase, APX) were elevated under drought conditions. RNA-seq analysis revealed 33 upregulated and 115 downregulated differentially expressed genes, and 40 gene ontology enrichment categories. A dehydrin gene was the most significant among the upregulated genes in response to drought stress. Dehydrin protects plant cells from dryness through multiple functions, such as radical scavenging and protection of enzymes. Real-time PCR validated the substantial increase in some dehydrin paralogs with root desiccation. In conclusion, the enhancement of antioxidant levels by drought stress is likely not due to the induction of antioxidant enzyme genes, but due to increased enzymic activities. These activities might be protected by dehydrins encoded by the upregulated paralogs under drought stress.Lead, MDPI, Nov. 2021, HORTICULTURAE, 7(11) (11), English[Refereed]Scientific journal
- Tipburn is a physiological disorder caused by a calcium (Ca) deficiency that occurs mainly in leafy vegetables, such as lettuce, resulting in a reduced commercial value. To prevent tipburn injury, a sensitive cultivar was tested as an indicator for early symptom detection. An indicator cultivar began to develop tipburn two days earlier than the target cultivar. This allowed for the rescue of the target cultivar by the addition of extra Ca. The yield rate was improved from 4% to 70% with the use of an indicator cultivar in the hydroponic cultures. The top fresh weight of the target cultivar when using an indicator cultivar decreased compared with control plants, but increased compared with negative control plants lacking Ca in the culture. Water contents and root lengths were not affected by the use of an indicator cultivar and additional Ca. These results were consistent with other target cultivars under excess ammonium conditions. This system may be used against tipburn incidence without additional costs and equipment in plant factories. (C) 2016 Elsevier B.V. All rights reserved.ELSEVIER, Oct. 2016, SCIENTIA HORTICULTURAE, 210, 14 - 18, English[Refereed]Scientific journal
- Lettuce tipburn is an irreversible physiological disorder caused by calcium deficiency that decreases the crop value. Breeding a tipburn-resistant cultivar is the only causal therapy in many cases. In this study, we investigated an efficient method to evaluate lettuce resistance to tipburn in vitro. Seedlings of 19 lettuce cultivars representing three head types were cultured on agar medium containing EGTA, which chelates Ca2+. The percentage of tipburned leaves decreased proportionally with EGTA concentration. Susceptible cultivars were distinguished at 0.01 mM EGTA, whereas resistant cultivars were classified at 1.0 mM EGTA. Based on mean values of tipburn measurements, tipburn susceptibility was highest for 'Leaf Lettuce', followed by 'Butterhead Lettuce', and then 'Crisphead Lettuce'. Two cultivars were selected for further tests using hydroponic and pot culture. The rank order of susceptibility to tipburn in these experiments was consistent with that of the in vitro assay. The in vitro evaluation of lettuce susceptibility to calcium deficiency is useful for initial screening of lettuce cultivars against tipburn incidence. Resistant cultivars identified in this study are practical candidates for cultivation in controlled environments, such as a plant factory, while sensitive cultivars are also useful as indicator plants to monitor environmental conditions.Lead, SPRINGER, Feb. 2012, PLANT CELL TISSUE AND ORGAN CULTURE, 108(2) (2), 221 - 227, English[Refereed]Scientific journal
- Plants can synthesize some antioxidants, including L-ascorbic acid (AsA) and polyphenol, in response to environmental stresses. Antioxidants detoxify reactive oxygen species in plants and also aid in human health. In this study, we demonstrate that a novel hydroponic treatment can increase leafy vegetable nutritional quality without retarding growth. Leaf lettuce (Lactuca sativa) was grown hydroponically and subjected to rhizosphere drought stress by lowering the water level in the solution tub before harvesting. Appropriate drought stress using this method could increase AsA, polyphenol, and sugar content by 24%, 50%, and 17%, respectively, and decrease nitrate nitrogen content by 18% without reducing yield. Similar effects of drought stress on AsA content were observed in four other plant species. This hydroponic method has a universal potential to increase leafy vegetable quality without reducing yield in controlled environments such as plant factories.Lead, AMER SOC HORTICULTURAL SCIENCE, Feb. 2012, HORTTECHNOLOGY, 22(1) (1), 121 - 125, English[Refereed]Scientific journal
- An in vitro regeneration and transient expression systems were developed for the halophyte sea aster (Aster tripolium L.), an important genetic resource for salt tolerance. Adventitious shoots were formed from both leaf explants and suspension-cultured cells in a Murashige and Skoog (MS) (Physiol Plant 15:473-497, 1962) basal salts containing 500 mg l(-1) casamino acids, and supplemented with 5.4 mu M a-naphthaleneacetic acid (NAA) and 4.7 mu M kinetin to the culture medium. Hyperhydricity of shoots was avoided by increasing the ventilation of the culture vessel. Root formation from shoots was promoted in the presence of 26.9 mu M NAA. A high yield of protoplasts was isolated using 1% cellulase and 0.25% pectinase from both leaf mesophyll and suspension-cultured cells, and these were used for transient expression. The highest level of transient expression of the green fluorescent protein was obtained with 1 x 10(5) protoplasts ml(-1), 25 mu g batch(-1) of plasmid vector, and 30% polyethylene glycol 4,000.SPRINGER, Sep. 2009, PLANT CELL TISSUE AND ORGAN CULTURE, 98(3) (3), 303 - 309, English[Refereed]Scientific journal
- We established a novel in vitro method, termed the root recovery assay, to evaluate the survival under osmotic stress of lettuce (Lactuca sativa L.) seedlings. Under salinity and drought stress, combination of the root-bending assay and root recovery assay showed the same trends in dry weight and survival rate as a hydroponic culture. Both in vitro assays and hydroponics ranked the three lettuce cultivars in the same order of drought tolerance. The root-bending assay evaluated the plant's growth and the root recovery assay indicated the plant's survival. In addition, the combined assay required less space and approximately half the time period compared with the hydroponic culture. These results suggested that application of the root-bending and root recovery assay should be a rapid and space-saving method with which to evaluate the osmotic stress tolerance of lettuce from both growth and survival standpoints.Lead, SPRINGER, Oct. 2008, PLANT CELL TISSUE AND ORGAN CULTURE, 95(1) (1), 101 - 106, English[Refereed]Scientific journal
- Mar. 2025, 園芸学研究 別冊, 24(1) (1), Japaneseイチゴ液体培養苗を利用した一季成りイチゴの連続栽培条件の研究
- Mar. 2025, 園芸学研究 別冊, 24(1) (1), 311, JapaneseLsBADH遺伝子のゲノム編集による“香りレタス”の育成
- Dec. 2024, 奨励研究報告書 一般財団法人東洋水産財団, 153 - 159, Japanese‘ゼニゴケ’ב植物工場’による新しい機能性野菜開発Technical report
- Nov. 2024, 2023年度研究報告概要集 一般財団法人旗影会, 25, Japaneseイチゴの通年・無農薬栽培のためのクリーン苗生産技術と花芽分化検定手法の開発
- Nov. 2024, 園芸学研究 別冊, 23(2) (2), 256, Japanese新規機能性野菜としての‘ゼニゴケ’栽培研究Summary international conference
- Nov. 2024, 園芸学研究 別冊, 23(2) (2), 188, JapaneseイチゴアレルゲンFra a 1.01 機能欠損変異体の作出Summary national conference
- Sep. 2024, 日本生物環境工学会2024年大阪大会 要旨集新たな農作物資源としての‘ゼニゴケ’栽培技術の開発
- Sep. 2024, 日本生物環境工学会2024年大阪大会 要旨集, Japanese液体培養イチゴ苗の植物工場利用の可能性
- Sep. 2024, 令和5年度 神戸大学地域連携活動報告書, 74 - 75場所を問わない水耕栽培システムによる農業実証と研究・教育利用
- Aug. 2024, 令和6年度 園芸学会近畿支部滋賀大会 研究発表・シンポジウム要旨レタスのアラントイナーゼ機能欠損変異体の作出と解析
- Aug. 2024, 令和6年度 園芸学会近畿支部滋賀大会 研究発表・シンポジウム要旨接ぎ木によるイチゴアレルゲンFra a 1.01の移行性の解析
- Mar. 2024, 園芸学研究 別冊, 23(1) (1), 127イチゴアレルゲンFra a 1.01 の組織特異性および移行性 の解析
- Mar. 2024, 園芸学研究 別冊, 23(1) (1), 110ゲノム編集によるアラントイン高蓄積型レタスの作出と解析
- Mar. 2024, 園芸学研究 別冊, 23(1) (1), 375ナデシコ属植物の春化応答に関わるFLCオルソログの解析
- Mar. 2024, 園芸学研究 別冊, 23(1) (1), 264イチゴ液体培養苗を利用した水耕栽培への導入および花芽分化条件の確立
- Sep. 2023, 令和5年度 園芸学会近畿支部兵庫大会 研究発表・シンポジウム要旨イチゴアレルゲンFra a 1.01 の組織特異性の解析による移⾏性の検証
- Sep. 2023, 令和5年度 園芸学会近畿支部兵庫大会 研究発表・シンポジウム要旨イチゴ液体培養苗からの環境制御型水耕栽培モデル確立
- Sep. 2023, 令和5年度 園芸学会近畿支部兵庫大会 研究発表・シンポジウム要旨サニーレタスの複合的発色要因の解析と品質改善の応用
- Aug. 2023, The 4th Asian Horticultural Congress (AHC2023) Abstract Book, EnglishReduction of strawberry major allergen Fra a 1.01 by CRISPR/Cas9-based genome editingSummary international conference
- Aug. 2023, The 4th Asian Horticultural Congress (AHC2023) Abstract Book, EnglishPlant regeneration from leaf segments using a seed propagation type of carnation (Dianthus caryophyllus L.)Summary international conference
- Aug. 2023, The 4th Asian Horticultural Congress (AHC2023) Abstract Book, EnglishFunctional characterization of DcFT1, an ortholog for the flowering locus T gene in carnation (Dianthus caryophyllus L.)Summary international conference
- Aug. 2023, The 4th Asian Horticultural Congress (AHC2023) Abstract Book, EnglishVarietal differences in content of strawberry allergen Fra a 1.01 among Japanese cultivars.Summary international conference
- Aug. 2023, The 4th Asian Horticultural Congress (AHC2023) Abstract Book, EnglishDevelopment of a Cultivation Model and Varietal Selection for Darkly Colored Red Leaf Lettuce in Hydroponics under Artificial LightSummary international conference
- Mar. 2023, 園芸学研究 別冊, 22(1) (1)Production and analysis of transformants targeting strawberry allergen Fra a 1.01.
- 2021, 園芸学研究 別冊, 20(1) (1)The analysis of dehydrin genes under the transcriptional regulation by DREB/CBF in lettuce
- Lead, 2021, アグリバイオ, 5(12) (12)Augumentation of nutritive functional components by drought stress in leafy vegetables
- Lead, 2021, 農業電化, 74(8) (8)赤青LEDを用いた多品種,高付加価値野菜の植物工場[Invited]
- 2019, 日本栄養・食糧学会近畿支部大会および公開シンポジウム講演抄録集, 58th完全制御型植物工場の特長を活かした生鮮野菜の機能性表示取得への試み
- 2012, 園芸学研究 別冊, 11(1) (1)指標品種の利用によるレタスのチップバーン抑制技術の開発
- AMER SOC HORTICULTURAL SCIENCE, Sep. 2011, HORTSCIENCE, 46(9) (9), S147 - S147, EnglishAugmentation of Antioxidant Constituents by Drought Stress on Roots in Leafy VegetablesSummary international conference
- AMER SOC HORTICULTURAL SCIENCE, Sep. 2011, HORTSCIENCE, 46(9) (9), S147 - S148, EnglishIn Vitro Evaluation of Tipburn Resistance in Lettuce (Lactuca sativa L.)Summary international conference
- 2011, 園芸学研究 別冊, 10(1) (1)レタスのチップバーン抵抗性診断法の評価
- 2009, 園芸学研究 別冊, 8(1) (1)in vitroにおけるレタスのチップバーン抵抗性診断法の確立
- 2007, 日本植物生理学会年会要旨集, 48thシロイヌナズナDREB1A遺伝子の導入によるレタスへの乾燥・塩ストレス耐性の付与
- 2005, 園芸学会雑誌 別冊, 74(2) (2)レタスの耐塩性および耐乾燥性の評価
- Contributor, 第2編第2章第2節 乾燥ストレスによる葉菜の栄養・ 機能性成分の増強(P239-242), エヌ・ティー・エス, Feb. 2025乾燥工学ハンドブック ~基礎・メカニズム・評価・事例~
- 園芸学会令和7年度春季大会, Mar. 2025, JapaneseLsBADH遺伝子のゲノム編集による“香りレタス”の育成Poster presentation
- 園芸学会令和7年度春季大会, Mar. 2025, Japaneseイチゴ液体培養苗を利用した一季成りイチゴの連続栽培条件の研究Poster presentation
- 若手フロンティア研究会2024, Dec. 2024, JapaneseイチゴアレルゲンFra a 1.01機能欠損体の解析Poster presentation
- 若手フロンティア研究会2024, Dec. 2024, Japanese接ぎ木によるイチゴアレルゲンFra a 1.01の長距離移行の検証Poster presentation
- 若手フロンティア研究会2024, Dec. 2024, JapaneseLsBADH 1は2APを介してレタスの香りを調節するPoster presentation
- 園芸学会令和6年度秋季大会, Nov. 2024, Japanese新規機能性野菜としての‘ゼニゴケ’栽培研究Oral presentation
- 園芸学会令和6年度秋季大会, Nov. 2024, JapaneseイチゴアレルゲンFra a 1.01 機能欠損変異体の作出Oral presentation
- 日本生物環境工学会2024年大阪大会, Sep. 2024, Japanese新たな農作物資源としての‘ゼニゴケ’栽培技術の開発Oral presentation
- 日本生物環境工学会2024年大阪大会, Sep. 2024, Japanese液体培養イチゴ苗の植物工場利用の可能性Oral presentation
- 令和6年度園芸学会近畿支部滋賀大会, Aug. 2024, Japaneseレタスのアラントイナーゼ機能欠損変異体の作出と解析
- 令和6年度園芸学会近畿支部滋賀大会, Aug. 2024, Japanese接ぎ木によるイチゴアレルゲンFra a 1.01の移行性の解析Poster presentation
- 園芸学会令和6年度春季大会, Mar. 2024ゲノム編集によるアラントイン高蓄積型レタスの作出と解析Oral presentation
- 園芸学会令和6年度春季大会, Mar. 2024イチゴアレルゲンFra a 1.01の組織特異性および移行性の解析Oral presentation
- 園芸学会令和6年度春季大会, Mar. 2024ナデシコ属植物の春化応答に関わるFLCオルソログの解析Poster presentation
- 園芸学会令和6年度春季大会, Mar. 2024, Japaneseイチゴ液体培養苗を利用した水耕栽培への導入および花芽分化条件の確立Poster presentation
- 第65回植物生理学会(高校生生物研究発表会), Mar. 2024塩ストレスよる水耕トウモロコシのムシゲル分泌量の変化Poster presentation
- 兵庫アグリ・バイオ研究会・兵庫バイオ技術研究会, Mar. 2024ゲノム編集の応用~作物育種およびコケへの利用~[Invited]Public discourse
- 神戸大学研究基盤センター若手フロンティア研究会2023, Dec. 2023カーネーションの開花関連遺伝子FTの機能解析Poster presentation
- 神戸大学研究基盤センター若手フロンティア研究会2023, Dec. 2023イチゴアレルゲンFra a 1.01の長距離移行性の解析Poster presentation
- 神戸大学研究基盤センター若手フロンティア研究会2023, Dec. 2023CRISPR/Cas9によるレタスアラントイナーゼ欠損変異体の作出と生理機能の解析Poster presentation
- 神戸大学研究基盤センター若手フロンティア研究会2023, Dec. 2023ナデシコ属植物の春化応答におけるFLCの役割Poster presentation
- 第3回神戸大学先端バイオ工学センター成果発表会, Sep. 2023ゲノム編集によるアラントイン高蓄積型レタスの作出と生理機能の解析Poster presentation
- 日本宇宙生物科学会 第37回大会, Sep. 2023月面における自給的なキノコの栽培に向けてInvited oral presentation
- 令和5年度 園芸学会近畿支部兵庫大会, Sep. 2023サニーレタスの複合的発色要因の解析と品質改善の応用
- 令和5年度 園芸学会近畿支部兵庫大会, Sep. 2023イチゴ液体培養苗からの環境制御型水耕栽培モデル確立
- 第40回日本植物バイオテクノロジー学会, Sep. 2023ゼニゴケの実用化に向けて ー食用ゼニゴケと合成生物学プラットフォームー
- 令和5年度 園芸学会近畿支部兵庫大会, Sep. 2023イチゴアレルゲンFra a 1.01 の組織特異性の解析による移⾏性の検証
- The 4th Asian Horticultural Congress (AHC2023), Aug. 2023, EnglishVarietal differences in content of strawberry allergen Fra a 1.01 among Japanese cultivars.Poster presentation
- The 4th Asian Horticultural Congress (AHC2023), Aug. 2023, EnglishPlant regeneration from leaf segments using a seed propagation type of carnation (Dianthus caryophyllus L.)Poster presentation
- The 4th Asian Horticultural Congress (AHC2023), Aug. 2023, EnglishReduction of strawberry major allergen Fra a 1.01 by CRISPR/Cas9-based genome editingPoster presentation
- The 4th Asian Horticultural Congress (AHC2023), Aug. 2023, EnglishDevelopment of a Cultivation Model and Varietal Selection for Darkly Colored Red Leaf Lettuce in Hydroponics under Artificial LightPoster presentation
- The 4th Asian Horticultural Congress (AHC2023), Aug. 2023Functional characterization of DcFT1, an ortholog for the flowering locus T gene in carnation (Dianthus caryophyllus L.)
- 7th Science Conference in Hyogo, Jul. 2023Mushroom cultivation for subsistence food production on the Moon basePoster presentation
- 園芸学会令和5年度春季大会, Mar. 2023Production a;nalysis of;ransformants targeting strawberry allergen FraProduction and analysis of transformants targeting strawberry allergen Fra a 1.01.
- 園芸学研究 別冊, 2021The analysis of dehydrin genes under the transcriptional regulation by DREB/CBF in lettuce
- 日本栄養・食糧学会近畿支部大会および公開シンポジウム講演抄録集, 2019完全制御型植物工場の特長を活かした生鮮野菜の機能性表示取得への試み
- 園芸学研究 別冊, 2012指標品種の利用によるレタスのチップバーン抑制技術の開発
- HORTSCIENCE, Sep. 2011, English, AMER SOC HORTICULTURAL SCIENCEIn Vitro Evaluation of Tipburn Resistance in Lettuce (Lactuca sativa L.)
- HORTSCIENCE, Sep. 2011, English, AMER SOC HORTICULTURAL SCIENCEAugmentation of Antioxidant Constituents by Drought Stress on Roots in Leafy Vegetables
- 園芸学研究 別冊, 2011レタスのチップバーン抵抗性診断法の評価
- 園芸学研究 別冊, 2009in vitroにおけるレタスのチップバーン抵抗性診断法の確立
- 日本植物生理学会年会要旨集, 2007シロイヌナズナDREB1A遺伝子の導入によるレタスへの乾燥・塩ストレス耐性の付与
- 園芸学会雑誌 別冊, 2005レタスの耐塩性および耐乾燥性の評価
■ Industrial Property Rights
- 水耕パネル洗浄装置および水耕パネル洗浄装置用のブラシ特願2019-231223, 23 Dec. 2019, 日本山村硝子株式会社, 特開2021-097633, 01 Jul. 2021, 特許7483370, 07 May 2024Patent right
- 植物栽培ラック特願2018-085131, 26 Apr. 2018, 三協立山株式会社, 日本山村硝子株式会社, 特開2019-187332, 31 Oct. 2019, 特許7072434, 12 May 2022, 20 May 2022Patent right
- 青果物混合品、及び青果物混合品の製造方法特願2019-105274, 05 Jun. 2019, 日本山村硝子株式会社, 特開2020-195352, 10 Dec. 2020Patent right
- 植物栽培機特願2016-070160, 31 Mar. 2016, 日本山村硝子株式会社, 特開2017-176072, 05 Oct. 2017, 特許第6661443号, 14 Feb. 2020Patent right
- 植物栽培設備特願2018-063498, 29 Mar. 2018, 日本山村硝子株式会社, ダイダン株式会社, 特開2019-180239, 24 Oct. 2019, 特許第6625685号, 06 Dec. 2019Patent right
- 青果物混合品の製造方法、及び青果物混合品を含む包装製品の製造方法特願2018-068513, 30 Mar. 2018, 日本山村硝子株式会社, 特開2019-176806, 17 Oct. 2019, 特許第6608985号, 01 Nov. 2019Patent right
- 青果物混合品、及び青果物混合品を含む包装製品特願2017-225136, 22 Nov. 2017, 日本山村硝子株式会社, 特開2019-092444, 20 Jun. 2019Patent right
- 植物育成用照明装置並びに植物水耕栽培装置および植物水耕栽培方法特願2015-072183, 31 Mar. 2015, ウシオ電機株式会社, 日本山村硝子株式会社, 特開2016-189741, 10 Nov. 2016, 特許第6484083号, 22 Feb. 2019Patent right
- 植物体の画像生成装置特願2013-067146, 27 Mar. 2013, 国立大学法人神戸大学, 日本山村硝子株式会社, 特開2014-191624, 06 Oct. 2014, 特許第6172657号, 14 Jul. 2017Patent right
- 植物栽培装置特願2016-040274, 02 Mar. 2016, 日本山村硝子株式会社, 三進金属工業株式会社, 特開2017-153423, 07 Sep. 2017, 特許第6153637号, 09 Jun. 2017Patent right
- 養液栽培による植物の育成方法特願2012-075217, 28 Mar. 2012, 日本山村硝子株式会社, 特開2013-201983, 07 Oct. 2013, 特許第6008535号, 23 Sep. 2016Patent right
- 水耕栽培における高機能性植物体の生産方法特願2011-518480, 02 Jun. 2010, 日本山村硝子株式会社, 特開2015-192682, 05 Nov. 2015, WO2010-140632, 09 Dec. 2010, 特許第5991705号, 26 Aug. 2016Patent right
- 水耕栽培における植物体の有用成分含有量向上方法特願2011-507287, 01 Apr. 2010, 日本山村硝子株式会社, WO2010-114091, 07 Oct. 2010, 特許第5906085号, 25 Mar. 2016Patent right
- 軟白部を有する葉菜類の生産方法特願2012-075231, 28 Mar. 2012, 国立大学法人神戸大学, 日本山村硝子株式会社, 特開2013-201984, 07 Oct. 2013, 特許第5896523号, 11 Mar. 2016Patent right
- 植物体の画像領域抽出方法、植物体の画像領域抽出装置、および植物体の生育監視システム特願2011-075227, 30 Mar. 2011, 国立大学法人神戸大学, 日本山村硝子株式会社, 特開2012-208839, 25 Oct. 2012, 特許第5761789号, 19 Jun. 2015Patent right
- 植物栽培機特願2010-078090, 30 Mar. 2010, 日本山村硝子株式会社, 特開2011-205991, 20 Oct. 2011, 特許第5735749号, 24 Apr. 2015Patent right
- 植物栽培機特願2010-157299, 09 Jul. 2010, 日本山村硝子株式会社, 特開2012-016335, 26 Jan. 2012, 特許第5468481号, 07 Feb. 2014Patent right
- 衛生管理を簡易化した植物栽培機およびその清掃方法特願2010-157298, 09 Jul. 2010, 日本山村硝子株式会社, 特開2012-016334, 26 Jan. 2012, 特許第5456605号, 17 Jan. 2014Patent right
- ツリフネソウ抽出物を含む抗酸化・抗アレルギー剤特願2012-012896, 25 Jan. 2012, 日本山村硝子株式会社, 特開2013-151451, 08 Aug. 2013Patent right
- ロゼット型植物の高収量栽培方法及び高収量株特願2012-211697, 26 Sep. 2012, 日本山村硝子株式会社, 特開2013-081452, 09 May 2013Patent right