MATSUI Akira

Center for Computational Social Science (CCSS)Associate Professor
Research Institute for Economics and Business Administration

Research Keyword

  • Wikipedia
  • 計算社会科学

Research Areas

  • Humanities & social sciences / Economic policy
  • Informatics / Web and service informatics

Committee History

  • Aug. 2025, 人工知能学会, 多様性・包摂推進委員会
  • Apr. 2023, 計算社会科学会, PCメンバー

Award

  • 2024 計算社会科学会, 第3回計算社会科学大会 大会優秀賞, ネットワーク分析による日本美術作品の定量分析: 浮世絵の創造性の変化
    本那 真一, 松井 暉

  • 2015 公共財団法人みずほ学術振興財団「第 56 回懸賞論文」佳作賞, 量的・質的金融緩和の「出口戦略」を考える

  • 2015 神戸大学, 白木賞(優秀卒業論文), 債券の削減バランスを考慮した「質的・量的金融緩和」の出口戦略シミュレーション

Paper

  • Akira Matsui, Emilio Ferrara
    Dec. 2024, PeerJ Computer Science
    [Refereed]

  • Masaru Nishikawa, Daisuke Sakai, Akira Matsui
    Springer Science and Business Media LLC, Oct. 2024, Scientometrics
    [Refereed]
    Scientific journal

  • Shady Salama, Akira Matsui, Takashi Kamihigashi
    Springer Nature Switzerland, Aug. 2024, Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24), 3 - 12
    [Refereed]
    In book

  • Akira Matsui, Taichi Murayama, Mitsuo Yoshida
    Lead, Jun. 2024, ICWSM 2024 Workshop : The 5th International Workshop on Cyber Social Threats (CySoc 2024), English
    [Refereed]
    International conference proceedings

  • Akira Matsui, Kunihiro Miyazaki, Taichi Murayama
    In this era of digital politics, understanding the factors that influence the supply of political information is important. This study investigates the relationship between socio-economic status and the political information supplied on Wikipedia. To this end, it employs a dataset of politicians who ran for local elections in Japan over approximately 20 years and discovers that the creation and revisions of local politicians' pages are associated with socio-economic factors such as the employment ratio by industry and age distribution. We find that the majority of the suppliers of politicians' information are unregistered and primarily interested in politicians' pages compared to registered users. Additional analysis reveals that users who supply information about politicians before and after an election are more active on Wikipedia than the average user. The findings presented imply that the information supply on Wikipedia, which relies on voluntary contributions, may reflect regional socio-economic disparities.
    Association for the Advancement of Artificial Intelligence (AAAI), May 2024, Proceedings of the International AAAI Conference on Web and Social Media (ICWSM), 18, 1027 - 1040, English
    [Refereed]
    International conference proceedings

  • Taichi Murayama, Akira Matsui, Kunihiro Miyazaki, Yasuko Matsubara, Yasushi Sakurai
    Social media has been a paramount arena for election campaigns for political actors. While many studies have been paying attention to the political campaigns related to partisanship, politicians also can conduct different campaigns according to their chances of winning. Leading candidates, for example, do not behave the same as fringe candidates in their elections, and vice versa. We, however, know little about this difference in social media political campaign strategies according to their odds in elections. We tackle this problem by analyzing candidates' tweets in terms of users, topics, and sentiment of replies. Our study finds that, as their chances of winning increase, candidates narrow the targets they communicate with, from people in general to the electrical districts and specific persons (verified accounts or accounts with many followers). Our study brings new insights into the candidates' campaign strategies through the analysis based on the novel perspective of the candidate's electoral situation.
    Association for the Advancement of Artificial Intelligence (AAAI), Jun. 2023, Proceedings of the International AAAI Conference on Web and Social Media (ICWSM), 17, 674 - 685, Bengali
    [Refereed]
    International conference proceedings

  • Kunihiro Miyazaki, Taichi Murayama, Akira Matsui, Masaru Nishikawa, Takayuki Uchiba, Haewoon Kwak, Jisun An
    ACM, Apr. 2023, Proceedings of the 15th ACM Web Science Conference 2023, English
    [Refereed]
    International conference proceedings

  • Daniel M. Benjamin, Fred Morstatter, Ali E. Abbas, Andres Abeliuk, Pavel Atanasov, Stephen Bennett, Andreas Beger, Saurabh Birari, David V. Budescu, Michele Catasta, Emilio Ferrara, Lucas Haravitch, Mark Himmelstein, KSM Tozammel Hossain, Yuzhong Huang, Woojeong Jin, Regina Joseph, Jure Leskovec, Akira Matsui, Mehrnoosh Mirtaheri, Xiang Ren, Gleb Satyukov, Rajiv Sethi, Amandeep Singh, Rok Sosic, Mark Steyvers, Pedro A Szekely, Michael D. Ward, Aram Galstyan
    Wiley, Mar. 2023, AI Magazine, 44(1) (1), 112 - 128
    [Refereed]
    Scientific journal

  • Akira Matsui, Daisuke Moriwaki
    Jan. 2022, The Japanese Economic Review, 73(1) (1), 211 - 242, English
    [Refereed]
    Scientific journal

  • Akira Matsui, Xiang Ren, Emilio Ferrara
    Association for Computational Linguistics, Nov. 2021, Proceedings of the Third Workshop on Economics and Natural Language Processing, English
    [Refereed]
    International conference proceedings

  • Akira Matsui, Emily Chen, Yunwen Wang, Emilio Ferrara
    Sep. 2021, Peerj, 9, English
    [Refereed]

  • Daisuke Moriwaki, Yuta Hayakawa, Akira Matsui, Yuta Saito, Isshu Munemasa, Masashi Shibata
    2021, Proceedings of the IEEE International Conference on Big Data (Big Data), 1877 - 1888, English
    [Refereed]
    International conference proceedings

  • Akira Matsui, Teruyoshi Kobayashi, Daisuke Moriwaki, Emilio Ferrara
    Abstract Understanding consumer behavior is an important task, not only for developing marketing strategies but also for the management of economic policies. Detecting consumption patterns, however, is a high-dimensional problem in which various factors that would affect consumers’ behavior need to be considered, such as consumers’ demographics, circadian rhythm, seasonal cycles, etc. Here, we develop a method to extract multi-timescale expenditure patterns of consumers from a large dataset of scanned receipts. We use a non-negative tensor factorization (NTF) to detect intra- and inter-week consumption patterns at one time. The proposed method allows us to characterize consumers based on their consumption patterns that are correlated over different timescales.
    Lead, Springer Science and Business Media LLC, Aug. 2020, Journal of Computational Social Science
    [Refereed]
    Scientific journal

  • Akira Matsui, Anna Sapienza, Emilio Ferrara
    Jan. 2020, Games and Culture, 15(1) (1), 9 - 31, English
    [Refereed]
    Scientific journal

  • SAGE: A Hybrid Geopolitical Event Forecasting System
    Fred Morstatter, Aram Galstyan, Gleb Satyukov, Daniel Benjamin, Andres Abeliuk, Mehrnoosh Mirtaheri, K. S. M. Tozammel Hossain, Pedro Szekely, Emilio Ferrara, Akira Matsui, Mark Steyvers, Stephen Bennet, David Budescu, Mark Himmelstein, Michael Ward, Andreas Beger, Michele Catasta, Rok Sosic, Jure Leskovec, Pavel Atanasov, Regina Joseph, Rajiv Sethi, Ali Abbas
    2019, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), 6557 - 6559, English
    [Refereed]
    International conference proceedings

  • Social Bots for Online Public Health Interventions
    Ashok Deb, Anuja Majmundar, Sungyong Seo, Akira Matsui, Rajat Tandon, Shen Yan, Jon-Patrick Allem, Emilio Ferrara
    2018, Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 186 - 189, English
    [Refereed]
    International conference proceedings

MISC

  • 連載『「つながり」から経済を読み解くネットワーク科学』vol.4 一般化ランダム・ネットワーク
    Oct. 2025, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • Shintaro Sakai, Haewoon Kwak, Jisun An, Akira Matsui
    Last, Oct. 2025


  • Shinichi Honna, Taichi Murayama, Akira Matsui
    Last, Sep. 2025


  • 連載『「つながり」から経済を読み解くネットワーク科学』 vol.3 次数分布の再現とネットワーク生成モデル
    Aug. 2025, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • Global Patterns of Knowledge: Language, Genre, and the Geography of Knowledge
    Akira Matsui, Fujio Toriumi, Mitsuo Yoshida, Taichi Murayama, Shiori Hironaka
    Online platforms, particularly Wikipedia, have become critical infrastructures for providing diverse linguistic and cultural contexts. This human-curated knowledge now forms the foundation for modern AI. However, we have not yet fully explored how knowledge production capability vary across languages and domains. Here, we address this gap by applying economic complexity analysis to understand the editing history of Wikipedia platforms. This approach allows us to infer the latent mode of ``knowledge-production'' of each language community from the diversity and specialization of its contributed content. We reveal that different language communities exhibit distinct specializations, particularly in cultural subjects. Furthermore, we map the global landscape of these production modes, finding that the structure of knowledge production strongly reflects geopolitical boundaries. Our findings suggest that while a common mode of knowledge production exists for standardized topics such as science, it is more diverse for cultural topics or controversial subjects such as conspiracy theories. The association between differences in knowledge production capability and geopolitical factors implies how linguistic and cultural dynamics shape our worldview and the biases embedded in Wikipedia data, a unique, massive, and essential dataset for modern AI.
    Lead, 29 Jul. 2025, arXiv

  • 連載『「つながり」から経済を読み解くネットワーク科学』 vol.2 つながりの構造に潜む2つの特徴:スモールワールド性とクラスタ性
    Jun. 2025, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • Disruptive Transformation of Artworks in Master-Disciple Relationships: The Case of Ukiyo-e Artworks
    Honna Shinichi, Akira Matsui
    Artwork research has long relied on human sensibility and subjective judgment, but recent developments in machine learning have enabled the quantitative assessment of features that humans could not discover. In Western paintings, comprehensive analyses have been conducted from various perspectives in conjunction with large databases, but such extensive analysis has not been sufficiently conducted for Eastern paintings. Then, we focus on Ukiyo-e, a traditional Japanese art form, as a case study of Eastern paintings, and conduct a quantitative analysis of creativity in works of art using 11,000 high-resolution images. This involves using the concept of calculating creativity from networks to analyze both the creativity of the artwork and that of the artists. As a result, In terms of Ukiyo-e as a whole, it was found that the creativity of its appearance has declined with the maturation of culture, but in terms of style, it has become more segmented with the maturation of culture and has maintained a high level of creativity. This not only provides new insights into the study of Ukiyo-e but also shows how Ukiyo-e has evolved within the ongoing cultural history, playing a culturally significant role in the analysis of Eastern art.
    Last, 13 May 2025, arXiv

  • 連載『「つながり」から経済を読み解くネットワーク科学』 vol.1 「ネットワーク科学」とは何か
    Apr. 2025, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • The "recognition," "belief," and "action" regarding conspiracy theories: An empirical study using large-scale samples from Japan and the United States
    Taichi Murayama, Dongwoo Lim, Akira Matsui, Tsukasa Tanihara
    Conspiracy theories present significant societal challenges, shaping political behavior, eroding public trust, and disrupting social cohesion. Addressing their impact requires recognizing that conspiracy engagement is not a singular act but a multi-stage process involving distinct cognitive and behavioral transitions. In this study, we investigate this sequential progression, "recognition," "belief," and "action" (demonstrative action and diffusion action), using nationally representative surveys from the United States (N=13,578) and Japan (N=16,693). Applying a Bayesian hierarchical model, we identify the key social, political, and economic factors that drive engagement at each stage, providing a structured framework for understanding the mechanisms underlying conspiracy theory adoption and dissemination. We find that recognition serves as a crucial gateway determining who transitions to belief, and that demonstrative and diffusion actions are shaped by distinct factors. Demonstrative actions are more prevalent among younger, higher-status individuals with strong political alignments, whereas diffusion actions occur across broader demographics, particularly among those engaged with diverse media channels. Our findings further reveal that early-life economic and cultural capital significantly influence the shape of conspiratorial engagement, emphasizing the role of life-course experiences. These insights highlight the necessity of distinguishing between different forms of conspiracy engagement and highlight the importance of targeted interventions that account for structural, cultural, and psychological factors to mitigate their spread and societal impact.
    15 Mar. 2025, arXiv

  • 国際会議 IC2S2 2023 参加報告
    松井暉
    2024, 計算社会科学会 機関誌, 3, 50 - 50

  • 引用されない「引用」
    2024, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • コロナ禍と食への関心の変化
    2023, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • 違法広告掲載サイト閉鎖の帰結
    2023, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • Extracting Fast and Slow: User-Action Embedding with Inter-temporal Information
    Akira Matsui, Emilio Ferrara
    With the recent development of technology, data on detailed human temporal behaviors has become available. Many methods have been proposed to mine those human dynamic behavior data and revealed valuable insights for research and businesses. However, most methods analyze only sequence of actions and do not study the inter-temporal information such as the time intervals between actions in a holistic manner. While actions and action time intervals are interdependent, it is challenging to integrate them because they have different natures: time and action. To overcome this challenge, we propose a unified method that analyzes user actions with intertemporal information (time interval). We simultaneously embed the user's action sequence and its time intervals to obtain a low-dimensional representation of the action along with intertemporal information. The paper demonstrates that the proposed method enables us to characterize user actions in terms of temporal context, using three real-world data sets. This paper demonstrates that explicit modeling of action sequences and inter-temporal user behavior information enable successful interpretable analysis.
    20 Jun. 2022, arXiv

  • 特集『計算社会科学の挑戦』鼎談司会
    2022, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • 言葉から内面を探る
    2022, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • 「愛」の文化的発展に迫る
    2022, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • 「調子の良い」時期のはじまりかた
    2022, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • 求職サイトにおける採用者の行動を詳細なデータで分析する
    2021, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • 大規模な投稿データから 機械学習で分析軸を紐解く
    2021, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • モバイル端末の位置情報を利用したマーケティング戦略のフィールド実験
    2021, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • Leveraging Clickstream Trajectories to Reveal Low-Quality Workers in Crowdsourced Forecasting Platforms
    Akira Matsui, Emilio Ferrara, Fred Morstatter, Andres Abeliuk, Aram Galstyan
    Crowdwork often entails tackling cognitively-demanding and time-consuming tasks. Crowdsourcing can be used for complex annotation tasks, from medical imaging to geospatial data, and such data powers sensitive applications, such as health diagnostics or autonomous driving. However, the existence and prevalence of underperforming crowdworkers is well-recognized, and can pose a threat to the validity of crowdsourcing. In this study, we propose the use of a computational framework to identify clusters of underperforming workers using clickstream trajectories. We focus on crowdsourced geopolitical forecasting. The framework can reveal different types of underperformers, such as workers with forecasts whose accuracy is far from the consensus of the crowd, those who provide low-quality explanations for their forecasts, and those who simply copy-paste their forecasts from other users. Our study suggests that clickstream clustering and analysis are fundamental tools to diagnose the performance of crowdworkers in platforms leveraging the wisdom of crowds.
    04 Sep. 2020, arXiv

  • Unbiased Lift-based Bidding System
    Daisuke Moriwaki, Yuta Hayakawa, Isshu Munemasa, Yuta Saito, Akira Matsui
    Conventional bidding strategies for online display ad auction heavily relies on observed performance indicators such as clicks or conversions. A bidding strategy naively pursuing these easily observable metrics, however, fails to optimize the profitability of the advertisers. Rather, the bidding strategy that leads to the maximum revenue is a strategy pursuing the performance lift of showing ads to a specific user. Therefore, it is essential to predict the lift-effect of showing ads to each user on their target variables from observed log data. However, there is a difficulty in predicting the lift-effect, as the training data gathered by a past bidding strategy may have a strong bias towards the winning impressions. In this study, we develop Unbiased Lift-based Bidding System, which maximizes the advertisers' profit by accurately predicting the lift-effect from biased log data. Our system is the first to enable high-performing lift-based bidding strategy by theoretically alleviating the inherent bias in the log. Real-world, large-scale A/B testing successfully demonstrates the superiority and practicability of the proposed system.
    08 Jul. 2020, arXiv

  • 特集『ネットワーク科学と経済学』鼎談司会
    2020, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • 機械学習でテキストに隠れたバイアスを 定量化する
    2020, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • 科学者を科学する
    2020, 経済セミナー(日本評論社)
    Introduction commerce magazine

  • 松井暉
    Sep. 2019, 人工知能, 34(5) (5), 735 - 738
    [Invited]

  • Botによるフェイクニュース(low-credibility content)の拡散
    2019, 経済セミナー(日本評論社)
    Introduction commerce magazine

Books And Other Publications

  • サイエンス・オブ・サイエンス
    Wang, Dashun, Barabási, Albert-Laszló, 三浦, 崇寛, 松井, 暉, 浅谷, 公威, 坂田, 一郎, 神楽坂, やちま, SciSci翻訳委員会
    森北出版, Jul. 2025, Japanese, ISBN: 9784627975415

Lectures, oral presentations, etc.

  • Staying Streamed: The Impact of Loyalty and Diversity in Driving User Retention on Live Streaming Platforms
    Ryo Adachi, Ryo Sasaki, Akira Matsui
    The International Conference for Computational Social Science, Jul. 2025
    Poster presentation

  • Global Editing Patterns on Wikipedia Platform Reveal Segmentations in Knowledge Production
    Akira Matsui, Fujio Toriumi, Mitsuo Yoshida, Taichi Murayama, Shiori Hironaka
    The International Conference for Computational Social Science, Jul. 2025
    Oral presentation

  • ツイッター(X)以外の計算社会科学研究 情報通信と社会科学の学際領域「計算社会科学」の最前線
    松井暉
    電子情報通信学会総合大会, Mar. 2025
    [Invited]
    Invited oral presentation

  • データドリブンな文章構造と情報伝達の抽出手法
    本那 真一, 村山 太一, 松井 暉
    言語処理学会 第31回年次大会, Mar. 2025
    Oral presentation

  • TikTokにおける音楽的要素が拡散現象に与える影響の分析
    天野俊, 天野穂, 江田渉吾, 大石健太郎, 櫻井真歩, 山下克月, 山﨑瑛真, 松井暉
    第4回計算社会科学会大会(CSSJ2025), Feb. 2025, Abkhazian
    Poster presentation

  • Wikipediaにおける編集パターンの言語間比較
    松井暉, 鳥海不二夫, 吉田光男, 村山太一, 廣中詩織
    第4回計算社会科学会大会(CSSJ2025), Feb. 2025
    Oral presentation

  • The impact of loyalty and diversity on user behavior in live streaming platform
    安達涼, 佐々木亮, 松井暉
    第4回計算社会科学会大会(CSSJ2025), Feb. 2025
    Oral presentation

  • 決済アプリの送金時のテキストメッセージ分析
    新納胤月, 松井暉
    第4回計算社会科学会大会(CSSJ2025), Feb. 2025
    Poster presentation

  • ライブ配信プラットフォームにおけるユーザー行動分析:探索・深化と感情体験
    松井暉
    分析的マーケティング研究会セミナー, Nov. 2024
    [Invited]
    Public discourse

  • Throw Your Hat in the Ring (of Wikipedia): Exploring Urban-Rural Disparities in Local Politicians' Information Supply
    Akira Matsu
    Wikimedia Research/Showcase, Oct. 2024, English
    [Invited]
    Invited oral presentation

  • ロイヤルティプログラムの分析:​努力の有無を考慮した報酬の効果
    松井暉
    日本行動計量学会52回大会マーケティング特別セッション, Sep. 2024, Japanese
    Invited oral presentation

  • Wikipediaにおける情報供給に関する研究
    松井暉
    学術情報メディアセンターセミナー「Web情報学の今」, Sep. 2024
    [Invited]
    Public discourse

  • Balancing Act: The Dual Pathways of Exploitation and Exploration in Live Streaming
    Akira Matsui, Fujikawa Kazuki, Ryo Sasaki, Ryo Adachi
    The International Conference for Computational Social Science, Jul. 2024
    Oral presentation

  • Behind the screens of fandom: Unraveling the threads of online platform.
    Akira Matsui, Murayama Taichi, Mituo Yoshida
    The International Conference for Computational Social Science, Jul. 2024, English
    Poster presentation

  • 購買行動とロイヤリティプログラム:努力の有無を考慮した報酬の効果の分析
    松井暉, 寺本高, 本橋永至, 鶴見裕之
    日本マーケティング・サイエンス学会第115回研究大会, Jun. 2024
    Oral presentation

  • The Two-Sided Nature of Online Platforms
    CCSS Workshop on Computational Social Science, Dec. 2023

  • 家計簿データを利用したマイナポイントの効果測定
    松井暉, 寺本高, 本橋永至, 鶴見裕之
    日本マーケティング・サイエンス学会第114回研究大会, Dec. 2023
    Oral presentation

  • Exploring urban-rural disparities in the production of politicians’ information.
    The International Conference for Computational Social Science, Jul. 2023, English
    Oral presentation

  • Computational framework of ast model reveals mechanism of knowledge accumulation.
    The International Conference for Computational Social Science, 2023, English
    Oral presentation

  • Human behavior in collaborative work the case of peer-reviewing and forecasting.
    CCSS Workshop on Computational Soci, Jan. 2020

  • The impact of peer reviews on papers’ contribution potential.
    The International Conference for Computational Social Science, 2020, English
    Oral presentation

  • Leveraging clickstream trajectories to reveal low-quality workers in crowdsourced forecasting platforms.
    The International Conference for Computational Social Science, 2020, English
    Oral presentation

  • Playing under the influence (of twitch): The effects of streaming on gamers’ performance.
    UCI Esports Conference,, 2018, English
    Oral presentation

Affiliated Academic Society

  • 計算社会科学会

  • 人工知能学会

Research Themes

  • Understanding the substitution and complementary relationships in the two-sided market structure of partnership loyalty programs
    寺本高, 赤松直樹, 中野暁, 松井暉, 鶴見裕之, 本橋永至, 清水聰
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, rants-in-Aid for Scientific Research (B), Chuo University, Apr. 2025 - Mar. 2029

  • 日本の研究の包括的な再考察:科学者学による研究ポートフォリオの分析
    松井 暉
    日本学術振興会, 科学研究費助成事業, 若手研究, 横浜国立大学, 01 Apr. 2024 - 31 Mar. 2027

  • 村山太一, 松井暉, 谷原吏, 上島淳史, 廣中詩織, 林東佑
    科学技術振興機構社会技術研究開発センター(JST RISTEX), SDGsの達成に向けた共創的研究開発プログラム(情報社会における社会的側面からのトラスト形成), Nov. 2023 - Mar. 2027
    ソーシャルメディアが普及し、誰でも情報の発信と受信ができるようになったことにより、陰謀論のまん延という新たな課題が生じている。陰謀論は2021年アメリカ議事堂襲撃事件やコロナワクチンなどと関連し、現実に深刻な被害をもたらしている。陰謀論信者はSNSなどで強固なクラスターを形成し、認知バイアスの影響により信念を容易に捨てないことから、陰謀論の対抗策として採用されるファクトチェックなどの事後的な介入であるデバンキングの効果は限定的である。 本研究開発プロジェクトでは、既存の対策であるデバンキングとは異なり、陰謀論を信じてしまう可能性がある人達にアプローチを行うことで、陰謀論信者を生み出すことを事前に抑制するプレバンキングの技術の社会実装を目指す。具体的には、陰謀論信者の行動パターンや人々が陰謀論に陥ってしまうメカニズムを理解するために、まず、ウェブ上から陰謀論に関するデータを収集する。そして、ウェブ上で人々がどのような経路をたどり陰謀論に陥ってしまうかを視覚的に理解できる「陰謀論経路マップ」の作成を目指す(トラスト形成のメカニズム理解、阻害要因の分析)。構築したリソースを活用し、ウェブ上での行動データから陰謀論に陥る可能性のあるユーザーを早期に発見する前兆行動発見アルゴリズムを開発する(分析結果を踏まえた対策の開発)。最終的には、発見したユーザーに対し陰謀論の抑制を行うための介入フレームワークを社会実装する(社会実装手法と効果測定法の提案)。本プロジェクトの達成は、陰謀論信者化を事前に抑制することで、人々が情報発信やコミュニケーションを安心して行えるトラスト社会の構築に寄与するものである。

  • 日本における科学者学:大規模な研究者データ構築による郵送限定公募の効果分析
    松井 暉
    日本学術振興会, 科学研究費助成事業 研究活動スタート支援, 研究活動スタート支援, 横浜国立大学, 31 Aug. 2022 - 31 Mar. 2024

  • 消費者の移動行動を基点とした商圏内小売競争構造の動態的把握に関する研究
    寺本 高, 清水 聰, 齊藤 嘉一, 本橋 永至, 鶴見 裕之, 赤松 直樹, 松井 暉
    日本学術振興会, 科学研究費助成事業 基盤研究(B), 基盤研究(B), 01 Apr. 2021 - 31 Mar. 2024

  • 金融危機対応の経済分析:非線形DSGEモデルによる大きなショック下の金融政策分析
    松井 暉
    日本学術振興会, 科学研究費助成事業, 特別研究員奨励費, 神戸大学, Apr. 2017 - Mar. 2020
    本研究の目的は、非線形モデルを構築し金融危機下の金融政策の効果と適切な実施期間を明らかにすることである。まず、非線形DSGEモデルを数値計算するため、動的計画法を用いて最適な関数を集めた価値関数を数値計算する手法を研究した。具体的には、形が未知の価値関数を知るために多数のグリッド(点)をつくり、線形補間を用いずに価値関数を求める手法を応用する方法を研究した。 また、同時に実証研究も行った。これは、金融政策における商業銀行の役割の重要性を示すためである。課題では、非伝統的金融政策を分析する理論モデルに商業銀行を組み込むことを計画していたが、先行研究は存在していたものの、非伝統的金融政策において銀行の貸出行動がどの程度の重要性を持っているかを実証的に示せていない問題があったからである。 具体的な実証分析の目的として、日本におけるポートフォリオリバランス効果を明らかにすることを設定した。各銀行が半期毎に発行している64行の2006年度から2016年度までのディスクロージャーからデータを取得し、パネルデータを作成した。ディスクロージャーを用いることで、各銀行の国債を残存期間毎に取得することができ、貸出額も貸出期間別で保有額を取得することが可能になった。分析の結果として、貸出に関係する変数をコントロールした上でも、なお銀行の国債保有と貸出に負の関係があることが示された。また、国債の残存期間毎に貸出に対する反応が異なることも示された。

Social Contribution Activities

  • 公開シンポジウム「研究ってナニ?~私たちのリアルな挑戦~高校生と大学研究者の場合」
    神戸大学
    Aug. 2025

Academic Contribution Activities

  • ウェブ・ソーシャルメディア 論文読み会
    ウェブ・ソーシャルメディア 論文読み会
    2022 - 2024