
MIYAZAKI Kohei
Graduate School of Engineering / Department of Chemical Science and Engineering | Professor |
Faculty of Engineering / Department of Chemical Science and Engineering |
Researcher Information
Research activity information
Paper
- Apr. 2025, ChemSusChem[Refereed]Scientific journal
- 2025, Electrochemistry[Refereed]Scientific journal
- Abstract The relentless quest for sustainable and efficient energy storage solutions has propelled sodium‐ion batteries (SIBs) to the forefront of research and development in the realm of rechargeable batteries. This mini review delves into the intricate interfacial kinetics of Na ion transfer within SIBs, with a special focus on the carbon‐based negative electrode/electrolyte interfaces. By synthesizing insights from a myriad of studies encompassing experimental and theoretical analyses, we illuminate the critical role of electrode material properties and interfacial dynamics in dictating the kinetics of Na ion transfer for SIBs. Strategies for optimizing these parameters are scrutinized, revealing pathways to enhance the kinetic behavior of Na ions. Furthermore, emerging materials such as hard carbon, carbon nanospheres, and graphene‐like graphite are evaluated for their potential to surmount existing limitations.Wiley, Jul. 2024, ChemElectroChem[Refereed]Scientific journal
- Elsevier BV, Jun. 2024, Journal of Electroanalytical Chemistry, 962, 118270 - 118270[Refereed]Scientific journal
- May 2024, X-RAY SPECTROMETRY, 53(3) (3), 166 - 180, English[Refereed]Scientific journal
- American Chemical Society (ACS), Mar. 2024, ACS Energy Letters, 1473 - 1479[Refereed]Scientific journal
- Feb. 2024, Electrochemistry Communications, English[Refereed]Scientific journal
- Jan. 2024, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 171(1) (1), 010511, English[Refereed]Scientific journal
- The Electrochemical Society of Japan, 2024, Electrochemistry[Refereed]Scientific journal
- American Chemical Society (ACS), Dec. 2023, Chemistry of Materials[Refereed]Scientific journal
- Non-graphitizable carbon allows reversible sodium-ion intercalation and hence enables stable and high-capacity sodium storage, making it a promising material for achieving long-term cycling stability in sodium-ion batteries (SIBs). This study investigated the interfacial reactions between various electrolytes and a non-graphitizable carbon electrode for their use in SIBs. The morphology and particle diameter of the non-graphitizable carbon, HC-2000, remained unchanged after heat treatment, indicating its stability. The X-ray diffraction pattern and Raman spectrum suggested a disordered structure of HC-2000 carbon. The interlayer spacing, Brunauer–Emmett–Teller specific surface area, and density were determined to be 0.37 nm, 5.8 m2 g−1, and 1.36 g cm−3, respectively. Electrochemical impedance spectroscopy analysis showed that the charge transfer resistances differed between the Na salts and other electrolytes. Therefore, the use of a large amount of NaF in the solid electrolyte interphase (SEI) resulted in high charge transfer resistances at the non-graphitizable electrodes. However, there were no apparent differences in the activation energy or reversible capacity. In summary, NaF obstructs the penetration pathway of sodium ions into non-graphitizable carbon, impacting the charge transfer resistance and rate stability of SIBs. Charge–discharge measurements revealed reversible capacities of 260–290 mAh g−1, and the rate performance varied depending on the electrolyte. Therefore, an SEI containing minimal inorganic species, such as NaF, is desirable for efficient sodium-ion insertion into non-graphitizable carbon.The Electrochemical Society, Sep. 2023, Journal of The Electrochemical Society, 170(9) (9), 090526 - 090526[Refereed]Scientific journal
- American Chemical Society (ACS), Aug. 2023, Chemistry of Materials, 35(17) (17), 7039 - 7048[Refereed]Scientific journal
- Aug. 2023, CARBON, 212, 118137, EnglishANALYSIS OF THE INTERMEDIATE STATES OF AN ELECTRODE SLURRY BY ELECTRONIC CONDUCTIVITY MEASUREMENTS[Refereed]Scientific journal
- With the growing interest in promising energy sources for high-energy-demand devices, the development of materials for use in rechargeable batteries based on electrochemical charge carrier storage, such as Li and Na, has attracted intensive attention. Among them, carbon materials (e.g., graphene, graphite, and disordered carbons) have been extensively used as electrode materials for battery systems because of their critical advantages, namely, relatively good charge carrier storage capability, low cost, abundant resources, and simple manufacturing process. In particular, various types of defects are indispensably formed in the carbon structure during the manufacturing processes, which significantly influence their electrochemical charge carrier storage mechanisms and thus determine the electrochemical properties of the carbon-based rechargeable battery systems. This comprehensive review summarizes the correlation between the fundamental properties of carbon defects and electrochemical Li and Na storage mechanisms for Li- and Na-based rechargeable batteries, representative cations using battery systems, with a special focus on atomic-scale science and technology, which have a notable role in investigating and understanding the interaction between the defect phases and charge carriers in carbon structures. First, various carbon defects are categorized for the purpose of this work; then, computational/experimental methods for analyzing them and their critical properties (especially electronic structure) are introduced because identifying defect types is critical. Next, the roles and influences of carbon defects on electrochemical charge carrier storage mechanisms (especially adsorption and intercalation [insertion], diffusion, and formation of metal clusters) are described for Li- and Na-based rechargeable batteries. This study focuses on the physicochemical and electrochemical properties, which are key characteristics of carbon defects that determine their optimal utilization in rechargeable battery systems.AIP Publishing, Jul. 2023, Chemical Physics Reviews, 4(3) (3)[Refereed]Scientific journal
- 公益社団法人 電気化学会関西支部, Jul. 2023, 関西電気化学テキストシリーズ, 2023.1(0) (0), 17 - 26, JapaneseScientific journal
- Wiley, Jun. 2023, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, English[Refereed]Scientific journal
- Elsevier BV, May 2023, Electrochimica Acta, 449, 142215 - 142215[Refereed]Scientific journal
- Wiley, Apr. 2023, Angewandte ChemieScientific journal
- Feb. 2023, ChemSusChem[Refereed]Scientific journal
- The Carbon Society of Japan, 2023, Carbon Reports, EnglishScientific journal
- The Electrochemical Society of Japan, 2023, Electrochemistry[Refereed]Scientific journal
- Oct. 2022, ElectrochemistryScientific journal
- The Electrochemical Society of Japan, Oct. 2022, Electrochemistry, 90(10) (10), 102001 - 102001[Refereed]Scientific journal
- American Chemical Society (ACS), Oct. 2022, Chemistry of Materials, 34(19) (19), 8711 - 8718[Refereed]Scientific journal
- 公益社団法人 電気化学会関西支部, Oct. 2022, 関西電気化学テキストシリーズ, 2022.2(0) (0), 1 - 22, JapaneseScientific journal
- 公益社団法人 電気化学会関西支部, Oct. 2022, 関西電気化学テキストシリーズ, 2022.2(0) (0), 23 - 42, JapaneseScientific journal
- The Electrochemical Society of Japan, Sep. 2022, Electrochemistry, 90(10) (10), 103003 - 103003[Refereed]Scientific journal
- Wiley, Aug. 2022, ChemElectroChem, 9(16) (16)Scientific journal
- The Electrochemical Society of Japan, Jul. 2022, Electrochemistry, 90(10) (10), 103002 - 103002[Refereed]Scientific journal
- The Chemical Society of Japan, Jun. 2022, Chemistry Letters, 51(6) (6), 618 - 621[Refereed]Scientific journal
- American Chemical Society ({ACS}), Apr. 2022, ACS Applied Energy Materials, 5(4) (4), 5117 - 5126[Refereed]Scientific journal
- Elsevier BV, Mar. 2022, Journal of Power Sources, 524, 231081 - 231081Scientific journal
- The Electrochemical Society, Feb. 2022, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 169(2) (2), ARTN 020546 - 020546, English[Refereed]Scientific journal
- 住友化学, 2022, 住友化学 : 技術誌, 4 - 14, Japaneseリチウムイオン電池におけるアラミドセパレータ(ペルヴィオ)の機能Scientific journal
- The Electrochemical Society of Japan, 2022, Electrochemistry, advpub(0) (0), 22 - 00083, Japanese[Refereed]Scientific journal
- The Electrochemical Society, Jan. 2022, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 169(1) (1), ARTN 010536, English[Refereed]Scientific journal
- The Electrochemical Society of Japan, 2022, ELECTROCHEMISTRY, 90(3) (3), ARTN 037003 - 037003, English[Refereed]Scientific journal
- The Electrochemical Society of Japan, 2022, ELECTROCHEMISTRY, 90(1) (1), ARTN 017011, English[Refereed]Scientific journal
- Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) is a promising electrocatalyst for the oxygen evolution reaction (OER) in alkaline solution. The OER activities of BSCF are gradually enhanced by prolonging the duration of electrochemical operation at OER potentials, but the underlying cause is not fully understood. In this study, we investigated the role of chemical operation, equivalent to immersion in alkaline solution, in the time-course of OER enhancement of BSCF. Interestingly, the time-course OER enhancement of BSCF was promoted not only by electrochemical operation, which corresponds to potential cycling in the OER region, but also by chemical operation. In situ Raman measurements clarified that chemical operation had a lower rate of surface amorphization than electrochemical operation. On the other hand, the leaching behavior of A-site cations was comparable between chemical and electrochemical operations. Since the OER activity of BSCF was stabilized by saturating the electrolyte with Ba2+, “chemical” A-site leaching was key to inducing the time-course OER enhancement on perovskite electrocatalysts. Based on these results, we provide a fundamental understanding of the role of chemical operation in the OER properties of perovskites.The Electrochemical Society, Jan. 2022, Journal of The Electrochemical Society, 169(1) (1), 010518 - 010518Scientific journal
- The Electrochemical Society of Japan, 2022, ElectrochemistryScientific journal
- 2022, ELECTROCHEMISTRY, 90(1) (1), English[Refereed]Scientific journal
- 2022, ELECTROCHEMISTRY, 90(1) (1), English[Refereed]Scientific journal
- Nov. 2021, ANALYTICAL CHEMISTRY, 93(45) (45), 15058 - 15062, English[Refereed]Scientific journal
- Corresponding, Wiley, Sep. 2021, ChemElectroChem[Refereed]Scientific journal
- Corresponding, American Chemical Society (ACS), Sep. 2021, ACS Applied Materials & Interfaces, 13(37) (37), 44284 - 44293[Refereed]Scientific journal
- Aug. 2021, ACS APPLIED MATERIALS & INTERFACES, 13(30) (30), 35625 - 35638, English[Refereed]Scientific journal
- American Chemical Society (ACS), Jul. 2021, ACS Omega, 6(29) (29), 18737 - 18744Scientific journal
- Wiley, Jul. 2021, Advanced Energy Materials, 11(25) (25), 2170094 - 2170094Scientific journal
- Jul. 2021, Journal of The Electrochemical Society, 168(7) (7), 070508 - 070508, EnglishScientific journal
- The Electrochemical Society, Jun. 2021, Journal of The Electrochemical Society, 168(6) (6), 060525 - 060525Scientific journal
- The Chemical Society of Japan, May 2021, Chemistry Letters, 50(5) (5), 1071 - 1074Scientific journal
- Elsevier BV, May 2021, Electrochimica Acta, 379, 138175 - 138175Scientific journal
- Corresponding, Wiley, Apr. 2021, Advanced Energy Materials, 11(25) (25), 2100756 - 2100756[Refereed]Scientific journal
- Springer Science and Business Media LLC, Apr. 2021, Journal of Applied Electrochemistry, 51(4) (4), 629 - 638
Abstract Graphitic materials cannot be applied for the negative electrode of sodium-ion battery because the reversible capacities of graphite are anomalously small. To promote electrochemical sodium-ion intercalation into graphitic materials, the interfacial sodium-ion transfer reaction at the interface between graphitized carbon nanosphere (GCNS) electrode and organic electrolyte solutions was investigated. The interfacial lithium-ion transfer reaction was also evaluated for the comparison to the sodium-ion transfer. From the cyclic voltammograms, both lithium-ion and sodium-ion can reversibly intercalate into/from GCNS in all of the electrolytes used here. In the Nyquist plots, the semi-circles at the high frequency region derived from the Solid Electrolyte Interphase (SEI) resistance and the semi-circles at the middle frequency region owing to the charge-transfer resistance appeared. The activation energies of both lithium-ion and sodium-ion transfer resistances were measured. The values of activation energies of the interfacial lithium-ion transfer suggested that the interfacial lithium-ion transfer was influenced by the interaction between lithium-ion and solvents, anions or SEI. The activation energies of the interfacial sodium-ion transfer were larger than the expected values of interfacial sodium-ion transfer based on the week Lewis acidity of sodium-ion. In addition, the activation energies of interfacial sodium-ion transfer in dilute FEC-based electrolytes were smaller than those in concentrated electrolytes. The activation energies of the interfacial lithium/sodium-ion transfer of CNS-1100 in FEC-based electrolyte solutions were almost the same as those of CNS-2900, indicating that the mechanism of interfacial charge-transfer reaction seemed to be the same for highly graphitized materials and low-graphitized materials each other.Graphic abstract Scientific journal - 2021, ELECTROCHEMISTRY, 89(6) (6), 585 - 589, EnglishScientific journal
- 日本ポーラログラフ学会, 2021, Review of Polarography, 67(1) (1), 19 - 24, Japanese[Refereed]Scientific journal
- Royal Society of Chemistry (RSC), 2021, Materials Advances, 2(7) (7), 2310 - 2317
Affinity of fluoride-containing polyatomic anions for the formation of graphite intercalation compounds (GICs) in aqueous solutions was investigated by
operando analysis.Scientific journal - Corresponding, American Chemical Society (ACS), Dec. 2020, ACS Applied Materials & Interfaces, 12(50) (50), 56076 - 56085[Refereed]Scientific journal
- Nov. 2020, SCIENTIFIC DATA, 7(1) (1), ARTN 395, English[Refereed]Scientific journal
- Elsevier BV, Nov. 2020, Journal of Power Sources, 477, 229036 - 229036Scientific journal
- The Polarographic Society of Japan, Oct. 2020, Review of Polarography, 66(2) (2), 77 - 84Scientific journal
- Corresponding, American Chemical Society (ACS), Oct. 2020, Chemistry of Materials, 32(19) (19), 8195 - 8202[Refereed]Scientific journal
- The Electrochemical Society of Japan, Sep. 2020, Electrochemistry, 88(5) (5), 365 - 368Scientific journal
- Wiley, Aug. 2020, ChemSusChem, 13(16) (16), 4041 - 4050Scientific journal
- The Electrochemical Society, Aug. 2020, Journal of The Electrochemical Society, 167(12) (12), 120512 - 120512Scientific journal
- May 2020, Electrochemistry, 88(3) (3), 91 - 93, EnglishBis(fluorosulfonyl)amide Aqueous Electrolyte Solutions for Electric Double-layer Capacitors[Refereed]Scientific journal
- 京都大学化学研究所, Mar. 2020, 京都大学化学研究所スーパーコンピュータシステム研究成果報告書, 2019, 39 - 39, Japanese電極触媒の電子状態解析Scientific journal
- Mar. 2020, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 167(6) (6), EnglishScientific journal
- Feb. 2020, Chemistry Letters, 49(2) (2), 195 - 198, English[Refereed]Scientific journal
- The Electrochemical Society of Japan, 2020, Electrochemistry, 89(1) (1), 19 - 24Scientific journal
- Jan. 2020, ACS OMEGA, 5(1) (1), 626 - 633, English[Refereed]Scientific journal
- 2020, ELECTROCHEMISTRY, 88(2) (2), 79 - 82, English[Refereed]Scientific journal
- 2020, ELECTROCHEMISTRY, 88(2) (2), 69 - 73, English[Refereed]Scientific journal
- 炭素材料学会, 2020, 炭素, 2020(291) (291), 9 - 14, Japanese[Refereed]Scientific journal
- Wiley, Nov. 2019, European Journal of Inorganic Chemistry, 2019(42) (42), 4488[Refereed]
- Oct. 2019, European Journal of Inorganic Chemistry, 2019(38) (38), 4117 - 4121, English[Refereed]Scientific journal
- CHEMICAL SOC JAPAN, Aug. 2019, CHEMISTRY LETTERS, 48(8) (8), 799 - 801, English[Refereed]Scientific journal
- Jul. 2019, CHEMELECTROCHEM, 6(18) (18), celc.201900759 - 4756, English[Refereed]Scientific journal
- SPRINGER, Jul. 2019, JOURNAL OF APPLIED ELECTROCHEMISTRY, 49(7) (7), 639 - 646, English[Refereed]Scientific journal
- 日本セラミックス協会, Jul. 2019, Ceramics Japan = セラミックス : bulletin of the Ceramic Society of Japan, 54(7) (7), 473 - 476, JapaneseCIFを出発点とする第一原理計算支援用ユーティリティー (特集 計算材料設計最前線2019)[Refereed]Scientific journal
- ELSEVIER SCIENCE INC, Mar. 2019, ELECTROCHEMISTRY COMMUNICATIONS, 100, 26 - 29, English[Refereed]Scientific journal
- ELECTROCHEMICAL SOC INC, Jan. 2019, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 166(3) (3), A5323 - A5327, English[Refereed]Scientific journal
- 一般社団法人 表面技術協会, Jan. 2019, 表面技術, 70(1) (1), 31 - 34, Japanese[Refereed]Scientific journal
- Oct. 2018, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 165(14) (14), A3299 - A3303, English[Refereed]Scientific journal
- ELECTROCHEMICAL SOC JAPAN, Sep. 2018, ELECTROCHEMISTRY, 86(5) (5), 254 - 259, English[Refereed]Scientific journal
- Elsevier B.V., Aug. 2018, Journal of Power Sources, 395, 195 - 204, English[Refereed]Scientific journal
- ELECTROCHEMICAL SOC INC, Jul. 2018, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 165(10) (10), A2247 - A2254, English[Refereed]Scientific journal
- Elsevier Ltd, Mar. 2018, Electrochimica Acta, 265, 41 - 46, English[Refereed]Scientific journal
- Royal Society of Chemistry, 2018, Journal of Materials Chemistry A, 6(3) (3), 1128 - 1137, English[Refereed]Scientific journal
- 一般社団法人 日本エネルギー学会, Jan. 2018, 日本エネルギー学会機関誌えねるみくす, 97(4) (4), 344 - 351, Japanese[Refereed]Scientific journal
- JXTGエネルギー中央技術研究所, Jan. 2018, JXTG technical review, 60(3) (3), 91 - 95, Japanese固体電解質を用いるアルカリ水電解システムScientific journal
- 2018, Journal of the Electrochemical Society, 165(2) (2), A349 - A354, English[Refereed]Scientific journal
- Chemical Society of Japan, 2018, Chemistry Letters, 47(2) (2), 171 - 174, English[Refereed]Scientific journal
- Nov. 2017, JOURNAL OF APPLIED ELECTROCHEMISTRY, 47(11) (11), 1203 - 1211, English[Refereed]Scientific journal
- Nov. 2017, ELECTROCHEMISTRY COMMUNICATIONS, 84, 53 - 56, English[Refereed]Scientific journal
- Oct. 2017, CARBON, 122, 202 - 206, English[Refereed]Scientific journal
- Sep. 2017, CHEMICAL COMMUNICATIONS, 53(72) (72), 10034 - 10037, English[Refereed]Scientific journal
- Jun. 2017, CHEMISTRY LETTERS, 46(6) (6), 892 - 894, English[Refereed]Scientific journal
- Apr. 2017, CHEMISTRYSELECT, 2(10) (10), 2895 - 2900, English[Refereed]Scientific journal
- Mar. 2017, CHEMICAL COMMUNICATIONS, 53(18) (18), 2713 - 2716, English[Refereed]Scientific journal
- 2017, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 164(2) (2), A48 - A53, English[Refereed]Scientific journal
- Electronic Structures of Electrocatalysts平成28年度 京都大学化学研究所 スーパーコンピュータシステム 利用報告書京都大学化学研究所, Jan. 2017, 京都大学化学研究所スーパーコンピュータシステム研究成果報告書, 2017(2016) (2016), 39 - 39, JapaneseScientific journal
- 電気化学会電池技術委員会新電池構想部会, Jan. 2017, 新電池構想部会講演会, 100, 11 - 16, Japanese亜鉛空気二次電池の課題と展望 (第100回新電池構想部会 記念講演会 ポストリチウム電池 : 次世代を担う若手研究者の挑戦)[Refereed]Scientific journal
- 2017, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 164(4) (4), A555 - A559, English[Refereed]Scientific journal
- 2017, Journal of the Electrochemical Society, 164(14) (14), A3862 - A3867, English[Refereed]Scientific journal
- Nov. 2016, JOURNAL OF APPLIED ELECTROCHEMISTRY, 46(11) (11), 1099 - 1107, English[Refereed]Scientific journal
- Oct. 2016, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 18(39) (39), 27486 - 27492, English[Refereed]Scientific journal
- Oct. 2016, ELECTROCHEMISTRY, 84(10) (10), 769 - 771, English[Refereed]Scientific journal
- Oct. 2016, JOURNAL OF APPLIED ELECTROCHEMISTRY, 46(10) (10), 1067 - 1073, English[Refereed]Scientific journal
- May 2016, ELECTROCHIMICA ACTA, 199, 380 - 387, English[Refereed]Scientific journal
- Feb. 2016, CHEMELECTROCHEM, 3(2) (2), 214 - 217, English[Refereed]Scientific journal
- Feb. 2016, JOURNAL OF POWER SOURCES, 306, 753 - 757, English[Refereed]Scientific journal
- 2016, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 163(3) (3), A499 - A503, English[Refereed]Scientific journal
- 京都大学化学研究所, Jan. 2016, 京都大学化学研究所スーパーコンピュータシステム研究成果報告書, 2016, 40 - 40, Japanese電極触媒の電子状態解析Scientific journal
- 2016, CHEMICAL COMMUNICATIONS, 52(28) (28), 4979 - 4982, English[Refereed]Scientific journal
- 2016, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 163(7) (7), A1265 - A1269, English[Refereed]Scientific journal
- 2016, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 163(8) (8), A1693 - A1696, English[Refereed]Scientific journal
- 2016, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 163(13) (13), A2497 - A2500, English[Refereed]Scientific journal
- Oct. 2015, CHEMISTRY LETTERS, 44(10) (10), 1359 - 1361, English[Refereed]Scientific journal
- Oct. 2015, JOURNAL OF POWER SOURCES, 294, 460 - 464, English[Refereed]Scientific journal
- 2015, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 162(8) (8), A1646 - A1653, English[Refereed]Scientific journal
- Nov. 2014, CHEMISTRY LETTERS, 43(11) (11), 1788 - 1790, English[Refereed]Scientific journal
- Sep. 2014, ELECTROCHEMISTRY, 82(9) (9), 730 - 735, English[Refereed]Scientific journal
- 2014, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 161(6) (6), F694 - F697, English[Refereed]Scientific journal
- 2014, ECS ELECTROCHEMISTRY LETTERS, 3(8) (8), A83 - A86, English[Refereed]Scientific journal
- 2014, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 161(14) (14), A1939 - A1942, English[Refereed]Scientific journal
- Jun. 2013, CARBON, 57, 232 - 238, English[Refereed]Scientific journal
- Jan. 2013, TANSO, 2013(256) (256), 52 - 56, English[Refereed]Scientific journal
- 2013, JOURNAL OF MATERIALS CHEMISTRY A, 1(46) (46), 14569 - 14576, English[Refereed]Scientific journal
- 2013, Chemistry Letters, 42(6) (6), 606 - 608, English[Refereed]Scientific journal
- 2013, Journal of Power Sources, 238, 65 - 68, English[Refereed]Scientific journal
- 2013, RSC ADVANCES, 3(20) (20), 7205 - 7208, English[Refereed]Scientific journal
- 2013, Rsc Advances, 3(48) (48), 26475[Refereed]
- Oct. 2012, ELECTROCHEMISTRY, 80(10) (10), 725 - 727, English[Refereed]Scientific journal
- Oct. 2012, ELECTROCHEMISTRY, 80(10) (10), 728 - 730, English[Refereed]Scientific journal
- Jun. 2012, JOURNAL OF PHYSICAL CHEMISTRY C, 116(23) (23), 12422 - 12425, English[Refereed]Scientific journal
- Apr. 2012, CARBON, 50(4) (4), 1644 - 1649, English[Refereed]Scientific journal
- 2012, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 159(12) (12), A2089 - A2091, English[Refereed]Scientific journal
- 2012, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 159(5) (5), A634 - A641, English[Refereed]Scientific journal
- 2012, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 14(31) (31), 11135 - 11138, English[Refereed]Scientific journal
- 2012, J. Mater. Chem., 22(29) (29), 14691 - 14695, English[Refereed]Scientific journal
- Dec. 2011, ELECTROCHIMICA ACTA, 56(28) (28), 10450 - 10453, English[Refereed]Scientific journal
- Dec. 2011, CHEMISTRY OF MATERIALS, 23(23) (23), 5208 - 5216, English[Refereed]Scientific journal
- Sep. 2011, ELECTROCHIMICA ACTA, 56(22) (22), 7610 - 7614, English[Refereed]Scientific journal
- 2011, JOURNAL OF MATERIALS CHEMISTRY, 21(6) (6), 1913 - 1917, English[Refereed]Scientific journal
- Dec. 2010, FUEL CELLS, 10(6) (6), 960 - 965, English[Refereed]Scientific journal
- Oct. 2010, JOURNAL OF POWER SOURCES, 195(19) (19), 6500 - 6503, English[Refereed]Scientific journal
- Sep. 2010, LANGMUIR, 26(18) (18), 14990 - 14994, English[Refereed]Scientific journal
- Aug. 2010, CHEMISTRY LETTERS, 39(8) (8), 826 - 827, English[Refereed]Scientific journal
- Jul. 2010, JOURNAL OF PHYSICAL CHEMISTRY C, 114(26) (26), 11680 - 11685, English[Refereed]Scientific journal
- A carbonaceous thin-film electrode was prepared by plasma-assisted chemical vapor deposition, and used as a model carbon electrode to study the interfacial reactions between a electrode and electrolyte. Lithium-ion transfer at the interface between carbonaceous thin-film electrode and electrolyte was studied by electrochemical impedance spectroscopy. In the Nyquist plots, semi-circles assigned to charge-transfer resistance were observed in high frequency region. Activation energies for lithium-ion transfer at the interface between carbonaceous thin-film electrode and electrolyte were evaluated, and the values were found to be dependent on the electrolyte solutions. The effects of ion-solvent interaction on the activation energies for the interfacial lithium-ion transfer are discussed based on theoretical calculations.炭素材料学会, Jan. 2010, TANSO, 2010(245) (245), 188 - 191, English[Refereed]Scientific journal
- 2010, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 157(11) (11), A1153 - A1157, English[Refereed]Scientific journal
- Aug. 2009, CHEMISTRY LETTERS, 38(8) (8), 788 - 789, English[Refereed]Scientific journal
- Jun. 2009, FUEL CELLS, 9(3) (3), 284 - 290, English[Refereed]Scientific journal
- Elsevier, Jan. 2009, Encyclopedia of Electrochemical Power Sources, 412 - 419, EnglishIn book
- Dec. 2008, JOURNAL OF POWER SOURCES, 185(2) (2), 740 - 746, English[Refereed]Scientific journal
- Apr. 2008, JOURNAL OF POWER SOURCES, 178(2) (2), 683 - 686, English[Refereed]Scientific journal
- Mar. 2007, ELECTROCHIMICA ACTA, 52(11) (11), 3582 - 3587, English[Refereed]Scientific journal
- Feb. 2007, ELECTROCHEMISTRY, 75(2) (2), 217 - 220, English[Refereed]Scientific journal
- Feb. 2007, JOURNAL OF PHYSICAL CHEMISTRY C, 111(7) (7), 3171 - 3174, English[Refereed]Scientific journal
- 2005, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 152(9) (9), A1870 - A1873, English[Refereed]Scientific journal
MISC
- Wiley-VCH Verlag, 21 Aug. 2020, ChemSusChem, 13(16) (16), 3944, EnglishReport scientific journal
- 2018, 電池技術, 30, 208 - 214亜鉛空気二次電池の課題と展望
- 2017, 電池技術, 29, 22 - 32リチウムイオン電池多孔性電極内でのイオン輸送挙動
- 2015, 電池技術, 27, 74 - 82交流インピーダンス法を用いた多孔質電極の導電ネットワーク構造の解析
- 電気化学会, Mar. 2014, 電気化学および工業物理化学, 82(3) (3), 181 - 185, Japanese
- 2014, セラミックス, 49, 964 - 967マグネシウム金属二次電池の現状と課題
- 2014, 月刊ファインケミカル, 43, 42 - 47マグネシウム金属二次電池用電解液の開発
- 2013, 電池技術, 25, 159 - 164金属-空気二次電池のための亜鉛負極の研究開発
- 炭素材料学会, 15 Jan. 2012, 炭素 = Carbons, (251) (251), 18 - 25, JapaneseDegradation phenomena of carbonaceous materials in polymer electrolyte fuel cells
- Carbonaceous materials have been widely investigated as negative electrode materials of lithium-ion batteries (LIBs). In this review, the properties of nano-carbon materials for use as negative electrodes are summarized from the viewpoint of their morphology. As nano-carbon materials, carbon nanospheres (zero dimension), carbon nanotubes (one dimension), carbon nanofibers (one dimension), graphene (two dimension), and so on were covered. The advantages and disadvantages of nano-carbon materials as the negative electrode in LIBs are discussed.THE CARBON SOCIETY OF JAPAN, 2012, TANSO, 255(255) (255), 274 - 279, Japanese
Lectures, oral presentations, etc.
- 日本化学会年会第98回春季年会, Mar. 2018, Japanese, Domestic conferenceペロブスカイト構造を有する複合アニオン化合物の酸素発生触媒活性Oral presentation
- 電気化学会第85回大会, Mar. 2018, Japanese, Domestic conference有機硫酸塩系電解質を用いた水系リチウムイオン電池の高電圧化Oral presentation
- 電気化学会第85回大会, Mar. 2018, Japanese, Domestic conferenceフルオロエチレンカーボネート系電解液中のSiO電極のリチウムイオン電池負極反応Oral presentation
- 電気化学会第85回大会, Mar. 2018, Japanese, Domestic conference領域分割白金電極を用いたアニオン交換薄膜における局所反応解析Oral presentation
- 電気化学会第85回大会, Mar. 2018, Japanese, Domestic conferenceイオン液体―水溶液複合電解質中におけるチタン酸化物へのナトリウムイオン挿入脱離挙動の検討Oral presentation
- 電気化学会第85回大会, Mar. 2018, Japanese, Domestic conference炭素微小球体/電解液界面におけるナトリウムイオン移動反応Oral presentation
- 電気化学会第85回大会, Mar. 2018, Japanese, Domestic conferenceNi-Fe系層状複水酸化物の酸素発生触媒活性における金属カチオン組成比の影響(2)Oral presentation
- 電気化学会第85回大会, Mar. 2018, Japanese, Domestic conference高配向性熱分解黒鉛におけるリチウムイオン挿入サイトと表面被膜の関係Oral presentation
- 電気化学会第85回大会, Mar. 2018, Japanese, Domestic conferenceその場ラマン分光法による黒鉛合剤電極内電解液の解析Oral presentation
- 電気化学会第85回大会, Mar. 2018, Japanese, Domestic conference表面修飾陽極酸化ナノポーラスアルミナ膜内の有機電解液のイオン輸送挙動Oral presentation
- 電気化学会第85回大会, Mar. 2018, Japanese, Domestic conference水酸化物イオンを含む黒鉛層間化合物の電気化学的合成に対する電解質塩の影響(2)Oral presentation
- 第58回電池討論会, Nov. 2017, Japanese, Domestic conference酸化ナノポーラスアルミナ細孔内におけるイオン輸送(4)Oral presentation
- 第58回電池討論会, Nov. 2017, Japanese, Domestic conferenceアルカリ溶液中におけるペロブスカイト型酸塩化物の酸素電極触媒活性Oral presentation
- 第58回電池討論会, Nov. 2017, Japanese, Domestic conferenceイオン液体―水溶液複合電解質中における負極へのナトリウムイオン挿入脱離挙動の検討Oral presentation
- 13th National Conference on New Carbon Materials, Oct. 2017, English, International conferenceAcceptor-Type Hydroxide Graphite Intercalation Compounds Electrochemically Formed in High Ionic Strength Solutions[Invited]Invited oral presentation
- 232nd ECS Meeting, Oct. 2017, English, International conferenceIon Transport through the Pore Channels of Anodic Nanoporous Alumina Membranes and Graphite Composite Electrodes[Invited]Invited oral presentation
- 232nd ECS Meeting, Oct. 2017, English, International conferenceInfluence of SnO2 Orientation on Electrocatalytic Activities of Pt/SnO2 Model Electrodes for Methanol OxidationOral presentation
- 232nd ECS Meeting, Oct. 2017, English, International conferenceOxygen Electrocatalysis on Cobalt-Based Layered Perovskite Oxychlorides in Alkaline MediaOral presentation
- 2017年電気化学会秋季大会, Sep. 2017, Japanese, Domestic conferenceNi-Fe系層状複水酸化物の酸素発生触媒活性における金属カチオン組成比の影響Oral presentation
- 2017年電気化学会秋季大会, Sep. 2017, Japanese, Domestic conferenceアルカリ溶液中におけるペロブスカイト酸塩化物の酸素電極触媒活性(2)Oral presentation
- Solid State Ionics-21, Jun. 2017, English, International conferenceElectrochemical Redox Behavior of LaS3Fe3O10−δ in Alkaline SolutionsOral presentation
- 電気化学会第84回大会, Mar. 2017, Japanese, Domestic conferencePt/SnO2モデル電極のメタノール酸化触媒活性におけるSnO2配向依存性Oral presentation
Research Themes
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Scientific Research (B), Tohoku University, 01 Apr. 2022 - 31 Mar. 2026Atomic scale visualization of the active sites of oxide catalysis
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Scientific Research (B), Kyoto University, 01 Apr. 2020 - 31 Mar. 2023Development of Anion GICs Using Highly Concentrated Aqueous Solutions and Their Application to Energy Storage Devices研究実績の概要 本研究は、水分子と電解質塩の存在割合が3:1となるような非常に濃度が高い水溶液中で、塩構成アニオンである有機アニオンがグラファイト電極に挿入脱離する反応に着想を得て、新たな蓄電システムの構築を目指したものである。二年度目である2021年度は、より実用的なデバイス設計の観点から、負極反応を意識した電解液を選択し、黒鉛層間化合物の合成が可能であるかの検証を行った。まず、高濃度アルカリ水溶液に酸化亜鉛を溶解させた電解液を用い、亜鉛の溶存種である亜鉛酸イオン[Zn(OH)4]2-の黒鉛への挿入脱離反応を試みた。亜鉛酸イオンを含む水溶液は、亜鉛金属を負極に用いた二次電池の電解質であり、実際に二次電池を構築する際には亜鉛負極と黒鉛正極で電池設計が可能である。数mol dm-3程度の水酸化カリウム水溶液では、亜鉛酸イオンの挿入脱離を示唆する測定結果は得られなかったものの、水酸化カリウム水溶液の濃度を高くすると、アニオンの挿入脱離に伴う酸化・還元の容量が観察された。黒鉛層間化合物の合成を示唆する結果であるが、挿入種の特定や定量的な解析を今後進めていく必要があると考えられる。また、複数のアニオンが混在する水溶液において、特定のアニオンが黒鉛層間化合物を形成しやすいことも分かった。熱力学的および速度論的な観点から、黒鉛層間化合物の形成に有利なアニオンの特性を明らかにしていく必要もあると考えられる。
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Scientific Research (B), Kyoto University, 01 Apr. 2017 - 31 Mar. 2020Research and Development of Aqueous Solutions with Wide Potential Windows for Rechargeable BatteriesIn order to improve the safety of rechargeable batteries, water-based rechargeable batteries using an aqueous solution as an electrolyte have been investigated, but the problem is that the potential range for stable operation is known to be narrow. In this study, we used the addition of organic sulfonates to elucidate the expansion of the potential window of aqueous electrolytes and the mechanism of their expression. An enlarged potential window was found for multiple organic sulfonates, confirming that this is a universal phenomenon. The present findings provide a new perspective that the degradation resistance of aqueous solutions can be improved by controlling the local ion concentration and structure near the electrode, which is beneficial from the viewpoint of device applications.
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Young Scientists (B), Kyoto University, 01 Apr. 2014 - 31 Mar. 2016Investigation of reaction mechanism of electrochemical oxygen reactions by thin-film oxide electrodesMetal-air secondary batteries have attracted much attention since they have some advantages of high energy density. While electrocatalysts are usually used for accelerating oxygen reduction and evolution reactions, the detailed reaction mechanism of these reactions cannot be fully understood. In this research, we used thin film electrodes of perovskite oxides to clarify the reaction mechanism of oxygen reduction and evolution. Electrochemical results clearly showed that carbon materials, which is widely added as an electron-conductive additive, are active for the initial reaction of oxygen reduction and perovskite oxides work at the following chemical reactions.
- Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Young Scientists (B), Kyoto University, 2011 - 2012Fundamental Research on AnionConductive Layered MaterialsIn this study, we investigated the mechanism of ion conduction of layered double hydroxides (LDHs) as a novel anion conductor for the next-generation electrochemical energy devices. LDHs with controlled cation ratios were synthesized by the co-precipitation method. Electrochemical impedance measurements showed that LDHs displayed a sharpened increase in ionic conductivity when the trivalent cation proportion was 0.33 (M3+/M2+= 2). Any change in LDH particle morphology and surface area was not observed, regardless of the change in cation ratios. We therefore concluded that some influences other than the increase in carrier density are predominant to determine the ion conductivities of LDHs.
- 日本学術振興会, 科学研究費助成事業, 特別研究員奨励費, 京都大学, 2006 - 2006燃料電池燃料極のための金超微粒子を用いた新規ナノ制御超活性触媒に関する研究Pt-Ru/Cの場合と同様に耐CO被毒性が高いと言われている白金-スズ合金触媒(Pt-Sn/C)を担体として用い、気相グラフティング法で金超微粒子を担持した触媒を作製し、そのメタノール酸化活性を調べた。その結果、金超微粒子を担持することで低い電位領域においてメタノール酸化に伴う電流が増加し、耐CO被毒性の向上が認められた。また、Pt/Cに金超微粒子を担持した触媒を同様に試験したところ、活性の向上が見られなかったことから、金超微粒子の触媒活性発現には酸素種を供給しうる第二元素の存在が必要であることが示唆された。 上述の気相グラフティング法には粒子サイズや担持量の制御が難しいという問題点があった。そこで、前駆体溶液に静電圧を印可しながら加熱炉内に噴霧し、レイリー分裂を利用しながらナノサイズの微粒を作製する噴霧熱分解法を用いた金超微粒子の作製を試みた。その結果、噴霧溶液の濃度をコントロールすることで微粒子のサイズを制御することができ、触媒活性の粒径依存性を確認することが出来た。 また、原子レベルで平滑な高配向性熱分解黒鉛(HOPG)上に規則的に担持したモデル電極の作製を、レーザーアブレーション法を用いて進めている。走査プローブ顕微鏡による表面状態の観察やX線光電子分光法による担持量の制御などを中心に行い、これらキャラクタリゼーションと平行して電気化学的触媒活性を調べている。現在のところ、レーザーアブレーション法を用いて粒子径10nm以下の金、ルテニウム、白金のナノ粒子が作製できることが明らかとなった。今後、担持粒子のHOPG表面上での挙動などに注目しながら、電気化学的活性について詳細に調べていく予定である。