三宅 洋平 | ![]() |
ミヤケ ヨウヘイ | |
大学院システム情報学研究科 計算科学専攻 | |
准教授 | |
工学その他 |
2018年07月 37th JSST Annual International Conference on Simulation Technology, Student Poster Presentation Award, The Particle-In-Cell Simulation on LEO Spacecraft Charging and the Wake Structure using EMSES
日本国国際学会・会議・シンポジウム等の賞
2017年10月 地球電磁気・地球惑星圏学会, 大林奨励賞, プラズマ粒子シミュレーションによる人工衛星周辺プラズマ環境の研究
日本国国内学会・会議・シンポジウム等の賞
[査読有り]
研究論文(学術雑誌)
Kinetic plasma simulations suggest that unconventional surface electrical charging conditions develop within deep cavities on the Moon and other airless planetary bodies, which are directly impacted by the solar wind. Due to their aligned directions of motion, ions are more likely to reach the innermost part of such deep cavities than thermal electrons without being lost at the cavity sidewall. The ion current at the bottom of a cavity with a high depth-width aspect ratio tends to exceed the electron current. This generates a significant positive potential, similar in magnitude to the kinetic energy of solar wind ions and independent of the work done by photoelectron emissions. This positive charging process, primarily due to solar wind ions, is localized at depths in the cavities and may result in strong electric fields on the dayside of the Moon and asteroids.
Wiley, 2023年01月28日, Journal of Geophysical Research: Planets, 英語, 国際誌, 国際共著していない[査読有り]
研究論文(学術雑誌)
[査読有り]
研究論文(学術雑誌)
[査読有り]
研究論文(国際会議プロシーディングス)
[査読有り]
研究論文(国際会議プロシーディングス)
[査読有り]
研究論文(学術雑誌)
Spacecraft-plasma interactions are studied with self-consistent numerical simulations of magnetized plasmas, where electrons are strongly magnetized whereas ions are weakly magnetized. It is found that for a spacecraft in such a magnetized plasma corresponding to a low Earth orbit, electrons can be reflected from a negatively charged spacecraft and then guided by geomagnetic field lines. The reflected electrons can leave a sharp trail like wings if the spacecraft size is greater than an average electron gyroradius of the environment. Such an electron wing-like structure is associated with propagating Langmuir waves. This results in nontrivial asymmetric electrostatic potentials close to the spacecraft and even farther than the Debye screening distance. The convective electric field also gives rise to a differential potential of the spacecraft with respect to the plasma, resulting in yet another asymmetry in the plasma dynamics and the potential distribution around the spacecraft. These asymmetries in the plasma dynamics can significantly influence in-situ measurements of space plasma. The results show a good qualitative agreement with actual measurements by a satellite in the polar regions.
Wiley, 2020年02月, Journal of Geophysical Research: Space Physics, 125 (2), e2019JA027379, 英語, 国際誌, 国際共著している[査読有り]
研究論文(学術雑誌)
[査読有り]
研究論文(国際会議プロシーディングス)
[査読有り]
研究論文(学術雑誌)
[査読有り]
研究論文(学術雑誌)
[査読有り]
研究論文(学術雑誌)
[査読有り]
研究論文(学術雑誌)
[査読有り]
研究論文(学術雑誌)
A satellite placed in space is constantly affected by the space environment, resulting in various impacts from temporary faults to permanent failures depending on factors such as satellite orbit, solar and geomagnetic activities, satellite local time, and satellite construction material. Anomaly events commonly occur during periods of high geomagnetic activity that also trigger plasma variation in the low Earth orbit (LEO) environment. In this study, we diagnosed anomalies in LEO satellites using electron data from the Medium Energy Proton and Electron Detector onboard the National Oceanic and Atmospheric Administration (NOAA)-15 satellite. In addition, we analyzed the fluctuation of electron flux in association with geomagnetic disturbances 3 days before and after the anomaly day. We selected 20 LEO anomaly cases registered in the Satellite News Digest database for the years 2000–2008. Satellite local time, an important parameter for anomaly diagnosis, was determined using propagated two-line element data in the SGP4 simplified general perturbation model to calculate the longitude of the ascending node of the satellite through the position and velocity vectors. The results showed that the majority of LEO satellite anomalies are linked to low-energy electron fluxes of 30–100 keV and magnetic perturbations that had a higher correlation coefficient (~ 90%) on the day of the anomaly. The mean local time calculation for the anomaly day with respect to the nighttime migration of energetic electrons revealed that the majority of anomalies (65%) occurred on the night side of Earth during the dusk-to-dawn sector of magnetic local time.[Figure not available: see fulltext.].
Springer Berlin Heidelberg, 2018年12月01日, Earth, Planets and Space, 70 (1), 英語[査読有り]
研究論文(学術雑誌)
We carry out a series of self-consistent electron hybrid code simulations for the dependence of chorus generation process on the temperature anisotropy and density of energetic electrons in the Earth's inner magnetosphere. We use the same magnetic field gradient in the simulation system and different temperature anisotropy AT for the initial distribution of energetic electrons at the magnetic equator. We conduct 6 sets of simulations for different AT from 4 to 9, changing the initial number density Nh of energetic electrons at the equator in each set of simulations. By analyzing the spectra obtained in the simulation results, we identify chorus elements with rising tones in the results for higher Nh but no distinct chorus in smaller Nh. We compare the simulation results with estimations of the threshold and optimum amplitude proposed by the nonlinear wave growth theory. We find that the chorus generation processes reproduced in the simulation results are consistently explained by the theoretical estimates. We also compare the simulation results with linear growth rates for all simulation runs. We find clear disagreement between the spectral characteristics of reproduced chorus and the predictions by the linear theory. The present study clarifies that the spectra of chorus are essentially different from those predicted by the linear theory and are determined fully by nonlinear processes of wave-particle interactions in the chorus generation region.
Blackwell Publishing Ltd, 2018年02月01日, Journal of Geophysical Research: Space Physics, 123 (2), 1165 - 1177, 英語[査読有り]
研究論文(学術雑誌)
We study the electric and dust environment near a complex surface structure on the moon: a vertical hole. In order to model an electric field structure near the surface, we performed the particle-in-cell simulations. The simulations provide electric field and plasma current density profiles in three-dimensional space above the complex lunar surface topography. Subsequently, we applied the obtained electric field and plasma current density data to the test-particle simulation on the dynamics of submicronsized charged dust grains. We focus on an effect of a stochastic charging process of such small dust grains. Because of their small surface areas, the dusts will get/lose one elementary charge infrequently. The preliminary simulation results show an evidence of dust mobilization across the sunlight-shadow interface formed inside the lunar hole.
American Institute of Physics Inc., 2018年01月05日, AIP Conference Proceedings, 1925, 020001, 英語[査読有り]
研究論文(国際会議プロシーディングス)
The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F-2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.
AMER GEOPHYSICAL UNION, 2017年09月, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 122 (9), 9603 - 9621, 英語[査読有り]
研究論文(学術雑誌)
We are now developing a manycore-aware implementation of multiprocessed PIC (particle-in-cell) simulation code with automatic load balancing. A key issue of the implementation is how to exploit the wide SIMD mechanism of manycore processors such as Intel Xeon Phi. Our solution is 'particle binning' to rank all particles in a cell (voxel) in a chunk of SOA (structure-of-arrays) type one-dimensional arrays so that 'particle-push' and 'current-scatter' operations on them are efficiently SIMD-vectorized by our compiler. In addition, our sophisticated binning mechanism performs sorting of particles according to their positions 'on-the-fly', efficiently coping with occasional 'bin overflow' in a fully multithreaded manner. Our performance evaluation with up to 64 nodes of Cray XC30 and XC40 supercomputers, equipped with Xeon Phi 5120D (Knights Corner) and 7250 (Knights Landing) respectively, not only exhibited good parallel performance, but also proved the effectiveness of our binning mechanism.
Institute of Electrical and Electronics Engineers Inc., 2017年06月30日, Proceedings - 2017 IEEE 31st International Parallel and Distributed Processing Symposium, IPDPS 2017, 202 - 212, 英語[査読有り]
研究論文(国際会議プロシーディングス)
We consider a three-dimensional electromagnetic particle-in-cell simulation of the boundary layer current in a minimagnetosphere created by the interaction between a magnetized plasma flow, which models the typical solar wind, and a small-scale magnetic dipole, which represents the Reiner Gamma magnetic anomaly on the lunar surface. The size of this magnetic anomaly (measured as the distance from the dipole center to the position where the pressure of the local magnetic field equals the dynamic pressure of the solar wind) is one quarter that of the Larmor radius of the solar wind ions. In spite of the weak magnetization of the ions, a minimagnetosphere is formed above the magnetic anomaly. In the boundary layer of the minimagnetosphere, the electron current is dominant. Due to the intense electric field induced by charge separation, electrons entering the boundary layer undergo E x B drift. In each hemisphere, the electron boundary current due to the drift shows a structure where the convection reverses; these structures are symmetric with respect to the magnetic equator. Detailed analysis of the electron cyclotron motion shows that electrons at the edge of the inner boundary layer obtain maximum velocity by the electric field acceleration due to the charge separation, not due to the drift of the electron's guiding center. The maximum electron velocity is approximately 8 times that of the upstream plasma. The width of the boundary layer current becomes approximately equal to the radius of the local electron cyclotron.
AMER GEOPHYSICAL UNION, 2017年02月, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 122 (2), 1555 - 1571, 英語[査読有り]
研究論文(学術雑誌)
The double-probe technique, commonly used for electric field measurements in magnetospheric plasmas, is susceptible to environmental perturbations caused by spacecraft-plasma interactions. To better model the interactions, we have extended the existing particle-in-cell simulation technique so that it accepts very small spacecraft structures, such as thin wire booms, by incorporating an accurate potential field solution calculated based on the boundary element method. This immersed boundary element approach is effective for quantifying the impact of geometrically small but electrically large spacecraft elements on the formation of sheaths or wakes. The developed model is applied to the wake environment near a Cluster satellite for three distinctive plasma conditions: the solar wind, the tail lobe, and just outside the plasmapause. The simulations predict the magnitudes and waveforms of wake-derived spurious electric fields, and these are in good agreement with in situ observations. The results also reveal the detailed structure of potential around the double probes. It shows that any probes hardly experience a negative wake potential in their orbit, and instead, they experience an unbalanced drop rate of a large potential hill that is created by the spacecraft and boom bodies. As a by-product of the simulations, we also found a photoelectron short-circuiting effect that is analogous to the well-known short-circuiting effect due to the booms of a double-probe instrument. The effect is sustained by asymmetric photoelectron distributions that cancel out the external electric field.
AMER GEOPHYSICAL UNION, 2016年12月, RADIO SCIENCE, 51 (12), 1905 - 1922, 英語, 国際誌[査読有り][招待有り]
研究論文(学術雑誌)
[査読有り][招待有り]
研究論文(国際会議プロシーディングス)
The dayside electrostatic environment near the lunar surface is governed by interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. Three-dimensional, particle-in-cell simulations are applied to recently discovered vertical holes on the Moon, which have spatial scales of tens of meters and greater depth-to-diameter ratios than typical impact craters. The vertical wall of the hole introduces a new boundary for both photo and solar wind electrons. The current balance condition established at a hole bottom is altered by the limited solar wind electron penetration into the hole due to loss at the wall and photoelectron current path connecting the hole bottom and wall surfaces. The self-consistent modeling not only reproduces intense differential charging between sunlit and shadowed surfaces, but also reveals the potential difference between sunlit surfaces inside and outside the hole, demonstrating the uniqueness of the near-hole electrostatic environment. (C) 2015 Elsevier Inc. All rights reserved.
ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015年11月, ICARUS, 260, 301 - 307, 英語[査読有り]
研究論文(学術雑誌)
The double-probe electric field measurements in drifting plasmas are subject to spurious effects caused by asymmetric electrostatic structure near scientific spacecraft. Some in situ observations just outside the plasmasphere detected spurious electric fields due to such environmental asymmetry even in subsonic ion flows across the magnetic field line. We have performed three-dimensional particle-in-cell simulations, which allow us to include long and extremely thin wire booms as well as a spacecraft chassis, and investigated an electrostatic environment that accounts for the observations. The present simulations reveal that even subsonic ion flows can produce an appreciable potential difference between the upstream and downstream sides of the spacecraft, and the potential difference would be detected as a spurious field of a few mV/m. The necessary condition for the spurious field is a relatively high (a few tens of V) spacecraft potential, and also the spacecraft potential hump needs to be expanded by thin wire booms biased at the spacecraft potential. The analysis also reveals that the presence of a heavy ion flow and a field-aligned ion upflow can further enhance the spurious field up to 5 mV/m.
AMER GEOPHYSICAL UNION, 2015年08月, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 120 (8), 6357 - 6370, 英語[査読有り]
研究論文(学術雑誌)
We have been studying plasma flow response to a mesoscale magnetic dipole in space by means of full kinetic simulations using Particle-In-Cell method. The size of magnetic dipole structure is characterized by distance L at which the pressure equilibrium is satisfied between the dipole magnetic field and the plasma flow under the MHD approximation. We focus on a mesoscale magnetic dipole in which L is smaller than the ion Larmor radius or the ion inertial length but larger than the electron Lamor radius. In this situation, the plasma kinetics such as finite Larmor radius effect will play an important role to determine the plasma response to the magnetic dipole. In the simulations, we found that a mesoscale magnetosphere is created even though the magnetization of ions is weak. In the dayside region, charge separation occurs because of the difference of dynamics between magnetized electrons and unmagnetized ions and intense electrostatic field is induced. The incoming ion flow to the dipole fields is eventually influenced by this electric field and the ions’ trajectories are largely distorted. The width of the boundary current layer as well as the spatial gradient of the local magnetic field compression in the dayside region can be characterized by the electron Larmor radius and is independent of ion’s spatial scale. Meanwhile the KAGUYA spacecraft also observed ion reflection and electron heating and acceleration over crustal magnetic anomalies on the lunar surface. By performing threedimensional PIC simulation, we started to examine the solar wind interactions with the magnetic anomaly called Reiner Gamma on the lunar surface. We will discuss some of the simulation results on the plasma behavior over the magnetic anomaly.
American Institute of Aeronautics and Astronautics Inc, AIAA, 2015年, 53rd AIAA Aerospace Sciences Meeting, 英語[査読有り]
研究論文(国際会議プロシーディングス)
We examined the plasma flow response to meso- and microscale magnetic dipoles by performing three-dimensional full particle-in-cell simulations. We particularly focused on the formation of a magnetosphere and its dependence on the intensity of the magnetic moment. The size of a magnetic dipole immersed in a plasma flow can be characterized by a distance L from the dipole center to the position where the pressure of the local magnetic field becomes equal to the dynamic pressure of the plasma flow under the magnetohydrodynamics (MHD) approximation. In this study, we are interested in a magnetic dipole whose L is smaller than the Larmor radius of ions r(iL) calculated with the unperturbed dipole field at the distance L from the center. In the simulation results, we confirmed the clear formation of a magnetosphere consisting of a magnetopause and a tail region in the density profile, although the spatial scale is much smaller than the MHD scale. One of the important findings in this study is that the spatial profiles of the plasma density as well as the current flows are remarkably affected by the finite Larmor radius effect of the plasma flow, which is different from the Earth's magnetosphere. The magnetopause found in the upstream region is located at a position much closer to the dipole center than L. In the equatorial plane, we also found an asymmetric density profile with respect to the plasma flow direction, which is caused by plasma gyration in the dipole field region. The ion current layers are created in the inner region of the dipole field, and the electron current also flows in the region beyond the ion current layer because ions with a large inertia can closely approach the dipole center. Unlike the ring current structure of the Earth's magnetosphere, the current layers in the microscale dipole fields are not circularly closed around the dipole center. Since the major current is caused by the particle gyrations, the current is independently determined to be in the direction of the electron and ion gyrations, which are the same in both the upstream and downstream regions. The present analysis on the formation of a magnetosphere in the regime of a microscale magnetic dipole is significant for understanding the solar wind response to the crustal magnetic anomalies on the Moon surface, such as were recently observed by spacecraft. (C) 2014 AIP Publishing LLC.
AMER INST PHYSICS, 2014年12月, PHYSICS OF PLASMAS, 21 (12), 122903, 英語[査読有り]
研究論文(学術雑誌)
Five spacecraft-plasma models are used to simulate the interaction of a simplified geometry Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. By considering similarities and differences between results obtained with different numerical approaches under well defined conditions, the consistency and validity of our models can be assessed. The impact on model predictions of physical effects of importance in the SPP mission is also considered by comparing results obtained with and without these effects. Simulation results are presented and compared with increasing levels of complexity in the physics of interaction between solar environment and the SPP spacecraft. The comparisons focus particularly on spacecraft floating potentials, contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. The physical effects considered include spacecraft charging, photoelectron and secondary electron emission, and the presence of a background magnetic field. Model predictions obtained with our different computational approaches are found to be in agreement within 2% when the same physical processes are taken into account and treated similarly. The comparisons thus indicate that, with the correct description of important physical effects, our simulation models should have the required skill to predict details of satellite-plasma interaction physics under relevant conditions, with a good level of confidence. Our models concur in predicting a negative floating potential V-fl similar to -10V for SPP at perihelion. They also predict a "saturated emission regime" whereby most emitted photo-and secondary electron will be reflected by a potential barrier near the surface, back to the spacecraft where they will be recollected. (C) 2014 AIP Publishing LLC.
AMER INST PHYSICS, 2014年06月, PHYSICS OF PLASMAS, 21 (6), 062901, 英語[査読有り]
研究論文(学術雑誌)
By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter.
IOP PUBLISHING LTD, 2013年, 24TH IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (IUPAP-CCP 2012), 454, 英語[査読有り]
研究論文(国際会議プロシーディングス)
Double-probe electric field sensors installed on scientific spacecraft are often deployed using wire booms with radii much less than typical Debye lengths of magnetospheric plasmas (millimeters compared to tens of meters). However, in tenuous and cold-streaming plasmas seen in the polar cap and lobe regions, the wire booms, electrically grounded at the spacecraft, have a high positive potential due to photoelectron emission and can strongly scatter approaching ions. Consequently, an electrostatic wake formed behind the spacecraft is further enhanced by the presence of the wire booms. We reproduce this process for the case of the Cluster satellite by performing plasma particle-in-cell (PIC) simulations, which include the effects of both the spacecraft body and the wire booms in a simultaneous manner. The simulations reveal that the effective thickness of the booms for the Cluster Electric Field and Wave (EFW) instrument is magnified from its real diameter (2.2mm) to several meters, when the spacecraft potential is at tens of volts. Such booms enhance the wake electric field magnitude by a factor of 1.5-2 depending on the spacecraft potential and play a principal role in explaining the in situ Cluster EFW data showing sinusoidal spurious electric fields with about 10mV/m amplitude. The boom effects are quantified by comparing PIC simulations with and without wire booms and also by examining the wake formation for various spacecraft potentials. Key Points Particle-in-cell simulations of spacecraft wakes formed in streaming cold ionsQuantification of the wake enhancement effect by thin wire boom instrumentParameterization of spurious electric field waveforms induced by the wakes ©2013. American Geophysical Union. All Rights Reserved.
Blackwell Publishing Ltd, 2013年, Journal of Geophysical Research: Space Physics, 118 (9), 5681 - 5694, 英語[査読有り]
研究論文(学術雑誌)
This paper describes a parallel implementation of our practical particle-in-cell (PIC) simulator with the OhHelp dynamic load-balancing algorithm. Although the code parallelization is based on simple block domain decomposition, OhHelp accomplishes load balancing and thus the scalability in terms of the number of particles by making each computation node help another heavily loaded node. In addition to the OhHelp application, a number of additional layers overlapping with adjacent domains are newly introduced outside the boundaries of each subdomain for the purpose of minimizing overhead costs of OhHelp. The optimization can drastically reduce overhead costs for particle transfer among nodes, whereas it leads to increase in domain size which each node is responsible for. Despite this trade-off feature, the overlapping layer attachment and a further lower-level optimization exert 1.8-fold improvement of the PIC simulator performance. Consequently, the optimized simulator exhibits a good scalability and a stable efficiency in parallel executions using up to 4096 cores, showing small parallel efficiency degradation of 3% from 16-to 4096-core parallel executions. © 2013 IEEE.
IEEE, 2013年, Proceedings - 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2013, 1107 - 1114, 英語[査読有り]
研究論文(国際会議プロシーディングス)
In tenuous space plasmas, photoelectron flows produce complex current paths among multiple conducting elements of spacecraft, which may influence the current-voltage characteristics of double-probe electric field sensors. We performed full-particle simulations on this effect by assuming a sensor configuration that is typical of recent designs like those on Cluster, THEMIS, and BepiColombo/MMO; the spherical probe is separated from a conducting boom by biased electrodes known as the 'stub' and the 'guard'. The assumed bias potential scheme corresponds to that planned for BepiColombo/MMO and is different from those used in the other satellites. The analysis focuses on stray photoelectron currents flowing from these electrodes and a spacecraft body. Photoelectrons approaching the probe are commonly repelled by the guard, the potential of which is strongly biased negatively, and are subsequently affected by the probe potential. Consequently, the photoelectron current magnitude increases with increasing probe potential regardless of their origins, when the probe operates between the plasma and floating spacecraft potentials. The result indicates that both photoelectron currents from the spacecraft body and biased electrodes can be minimized by selecting the probe working potential as close as possible to the plasma potential. We also examine the photoelectron current dependence on the presence or absence of the guard electrode operation and confirm a positive effect of reducing the photoelectron current from the spacecraft. However, negative side effects of the guard operation enhance the photoelectron currents from the stub and guard, when the probe operates nearly at the plasma potential.
AMER GEOPHYSICAL UNION, 2012年09月, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 117 (A9), A09210, 英語[査読有り]
研究論文(学術雑誌)
[査読有り]
研究論文(国際会議プロシーディングス)
In tenuous space plasmas, photoelectron flows produce complex current paths among multiple conducting elements of spacecraft, which may influence the current-voltage characteristics of double-probe electric field sensors. We performed full-particle simulations on this effect by assuming a sensor configuration that is typical of recent designs like those on Cluster, THEMIS, and BepiColombo/MMO the spherical probe is separated from a conducting boom by biased electrodes known as the 'stub' and the 'guard'. The assumed bias potential scheme corresponds to that planned for BepiColombo/MMO and is different from those used in the other satellites. The analysis focuses on stray photoelectron currents flowing from these electrodes and a spacecraft body. Photoelectrons approaching the probe are commonly repelled by the guard, the potential of which is strongly biased negatively, and are subsequently affected by the probe potential. Consequently, the photoelectron current magnitude increases with increasing probe potential regardless of their origins, when the probe operates between the plasma and floating spacecraft potentials. The result indicates that both photoelectron currents from the spacecraft body and biased electrodes can be minimized by selecting the probe working potential as close as possible to the plasma potential. We also examine the photoelectron current dependence on the presence or absence of the guard electrode operation and confirm a positive effect of reducing the photoelectron current from the spacecraft. However, negative side effects of the guard operation enhance the photoelectron currents from the stub and guard, when the probe operates nearly at the plasma potential. © 2012. American Geophysical Union. All Rights Reserved.
Blackwell Publishing Ltd, 2012年, Journal of Geophysical Research: Space Physics, 117 (9), 英語[査読有り]
研究論文(学術雑誌)
[査読有り]
研究論文(国際会議プロシーディングス)
[査読有り]
研究論文(国際会議プロシーディングス)
[査読有り]
研究論文(国際会議プロシーディングス)
We have developed a numerical model of a double-probe electric field sensor equipped with a photoelectron guard electrode for the particle-in-cell simulation. The model includes typical elements of modern double-probe sensors on, e.g., BepiColombo/MMO, Cluster, and THEMIS spacecraft, such as a conducting boom and a preamplifier housing called a puck. The puck is also used for the guard electrode, and its potential is negatively biased by reference to the floating spacecraft potential. We apply the proposed model to an analysis of an equilibrium plasma environment around the sensor by assuming that the sun illuminates the spacecraft from the direction perpendicular to the sensor deployment axis. As a simulation result, it is confirmed that a substantial number of spacecraft-originating photoelectrons are once emitted sunward and then fall onto the puck and sensing element positions. In order to effectively repel such photoelectrons coming from the sun direction, a potential hump for electrons, i.e., a negative potential region, should be created in a plasma region around the sunlit side of the guard electrode surface. The simulation results reveal the significance of the guard electrode potential being not only lower than the spacecraft body but also lower than the background plasma potential of the region surrounding the puck and the sensing element. One solution for realizing such an operational condition is to bias the guard potential negatively by reference to the sensor potential because the sensor is usually operated nearly at the background plasma potential.
AMER GEOPHYSICAL UNION, 2011年05月, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 116, 英語[査読有り]
研究論文(学術雑誌)
Recent expansion and sophistication of electric antenna applications in space missions increase the demand for better understanding of plasma and electromagnetic environment around the electric antenna and spacecraft. Because of strong plasma inhomogeneity emerging around the antenna and spacecraft, antenna behavior is difficult to resolve analytically and thus should be analyzed by means of some numerical approaches such as a plasma simulation. Actually, a practical merit of the plasma simulation has been demonstrated through its application to an analysis of antenna impedance in plasma [1]. Also, such a numerical approach has further advantages for an analysis of modern electric antennas equipped with distinctive devices: e.g., a photoelectron guard electrode, which greatly complicates the antenna-plasma interactions. In the present study, we apply the particle-in-cell simulations to the studies of the antenna and spacecraft environment. We particularly focus on electric properties of modern electric antennas used for static electric field measurements and plasma wave observations. © 2011 IEEE.
2011年, 2011 30th URSI General Assembly and Scientific Symposium, URSIGASS 2011, 英語[査読有り]
研究論文(国際会議プロシーディングス)
[査読有り]
研究論文(研究会,シンポジウム資料等)
© World Scientific Publishing Company. Attempts have been made to achieve extreme miniaturization in plasma wave receivers for future space science missions. The plasma wave receivers onboard scientific satellites are classified into two types: waveform receivers and spectrum analyzers. The present paper describes one-chip waveform type receivers that are developed using analogue ASIC technology. We incorporate the necessary analogue components of the waveform receiver into a chip having dimensions of 3mm × 3mm and confirm the functionality and performance of the chip. The performance and quality of the chip are shown to be sufficient for use in science missions. Furthermore, we extend the application of the miniaturized plasma wave receivers to a sensor network system in space. The sensor network system consists of several small sensor nodes that are distributed randomly throughout the target area and monitor the spatial and time variation of electromagnetic environments in space. We then introduce the concept of this sensor network system and present results obtained during the development of the small sensor node for use in this sensor network in space.
2010年01月01日, Advances in Geosciences: Volume 21: Solar Terrestrial (ST), 461 - 481, 英語[査読有り]
論文集(書籍)内論文
A novel particle simulation code, the electromagnetic spacecraft environment simulator (EMSES), has been developed for the self-consistent analysis of spacecraft-plasma interactions on the full electromagnetic (EM) basis. EMSES includes several boundary treatments carefully coded for both longitudinal and transverse electric fields to satisfy perfect conductive surface conditions. For the longitudinal component, the following are considered: (1) the surface charge accumulation caused by impinging or emitted particles and (2) the surface charge redistribution, such that the surface becomes an equipotential. For item (1), a special treatment has been adopted for the current density calculated around the spacecraft surface, so that the charge accumulation occurs exactly on the surface. As a result, (1) is realized automatically in the updates of the charge density and the electric field through the current density. Item (2) is achieved by applying the capacity matrix method. Meanwhile, the transverse electric field is simply set to zero for components defined inside and tangential to the spacecraft surfaces. This paper also presents the validation of EMSES by performing test simulations for spacecraft charging and peculiar EM wave modes in a plasma sheath.
AMER INST PHYSICS, 2009年06月, PHYSICS OF PLASMAS, 16 (6), 62904, 英語[査読有り]
研究論文(学術雑誌)
We applied the electromagnetic Particle-In-Cell simulation to the analysis of receiving antenna characteristics in space plasma environment. In the analysis, we set up external waves in a simulation region and receive them with a numerical antenna model placed in the simulation region. Using this method, we evaluated the effective length of electric field antennas used for plasma wave investigations conducted by scientific spacecraft. We particularly focused on the effective length of an electric field instrument called MEFISTO for a future mission to Mercury: BepiColombo. We first confirmed that the effective length of the MEFISTO-type antenna is basically longer than that of a simple dipole antenna for both electrostatic and electromagnetic plasma waves. By applying the principle of a voltmeter, the effective length of the MEFISTO-type antenna is predicted to become identical to the separation between two sensor-conductor's midpoints. However, the numerical result revealed that the actual effective length becomes shorter than the prediction, which is caused by the shorting-out effect due to the presence of a center boom conductor between the two sensor conductors. Since the above effect is difficult to treat theoretically, the present numerical method is a powerful tool for further quantitative evaluation of the antenna characteristics.
AMER INST PHYSICS, 2009年, RAREFIED GAS DYNAMICS, 1084, 895 - 900, 英語[査読有り]
研究論文(国際会議プロシーディングス)
This paper proposes a new method for Particle-in-Cell (PIC) simulations which aims at achieving both good load balancing and scalability so as to be efficiently executed on distributed memory systems. This method, named OhHelp, simply and equally partitions the space domain where charged particles reside and assigns each partitioned subdomain to each computation node for scalable simulation with respect to the size of the domain. Load balancing and thus the scalability in terms of the number of particles are accomplished by making each node help another heavily loaded node which deputes a part of particles in its subdomain and replicated subdomain field data to its helpers. The OhHelp load balancer monitors particle movements through subdomain boundaries to check if the helpand-helpers configuration keeps good load balancing and, when unacceptable imbalance is found, dynamically reconfigures it to regain perfect balancing. The efficiency and scalability of OhHelp are confirmed through our experiment with a production-level full-3D plasma simulator and with uniform and non-uniform particle distributions. As a result, we found 256-core parallel simulations, including an extremely imbalanced setting to pack all the particles in a small region, exert 159-190 speedup compared to sequential execution.
ASSOC COMPUTING MACHINERY, 2009年, ICS'09: PROCEEDINGS OF THE 2009 ACM SIGARCH INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, 90 - 99, 英語[査読有り]
研究論文(国際会議プロシーディングス)
プラズマ粒子シミュレーションで電磁界成分を更新する際には電流値が必要であり,そのために,個々の粒子の運動量を各空間格子点に集める必要がある.しかし,粒子が空間的にランダムに分布しているため,電流計算の並列演算による高速化は容易ではなく工夫を要する.本論文では,粒子の位置情報を利用して各スレッドに粒子を明示的に割り当てるスレッド並列化アルゴリズムを新しく提案し,OpenMPを用いた実装によりその有効性を検証した.動作検証により,提案手法のCPU台数効果はシミュレーション内の空間格子数の影響を受け,粒子数密度の影響はないことが分かった.特に,各スレッドに割り当てられた空間格子配列がキャッシュに収まりきる程度に細分化される場合,並列台数効果を得やすいことを明らかにした.特に並列台数10前後の場合,その台数効果はスーパリニアとなり,自動並列化コンパイラを用いた電流ルーチン実装に比べて高速になることを明らかにした.また,本提案手法は,各スレッドで全粒子を走査する冗長的な並列化方法であるため,従来アルゴリズムで用いられていた作業領域用配列は不要となり,シミュレーションに必要なメモリ容量を大幅に節約できることを示した.In Particle-In-Cell (PIC) plasma simulations, we calculate the current density to advance the electromagnetic fields. One of the ways to obtain the current density is to gather the velocity moment of each particle to the adjacent grid points. The current calculation is not basically parallelized because the particle positions, which are random in the simulation space, are independent of the array number of current density. In the present paper, we propose a new parallelization method which explicitly associates particles to threads by using OpenMP and evaluate the performance of the proposed method. We clarified that the scalability performance is affected by the number of spatial grid points and is independent of the number of particle per grid. In the proposed method, each thread is in charge of a part of the array of current density divided with the number of thread. When the memory size of the array allocated to each thread becomes small and close to the data cache size of CPU, we found that the scalability performance shows super-linear characteristics and the execution needs less time than the case of using the automatic parallelization compiler. In addition, each thread redundantly scans the particle array to obtain the information of the particle positions for assigning the corresponding particles in charge. Because of this redundant parallelization, we do not have to use work arrays and can save the memory consumed for simulations.
情報処理学会, 2008年08月21日, 情報処理学会論文誌. コンピューティングシステム, 1 (2), 250 - 260, 日本語[査読有り]
We present photoelectron effects on the impedance of electric field antennas used for plasma wave investigations. To illustrate the photoelectron effects, we applied electromagnetic Particle-In-Cell simulation to the self-consistent antenna impedance analysis. We confirmed the formation of a dense photoelectron region around the sunlit surfaces of the antenna and the spacecraft. The dense photoelectrons enhance the real part, and decrease the absolute value of the imaginary part, of antenna impedance at low frequencies. We also showed that the antenna conductance can be analytically calculated from simulation results of the electron current flowing into or out of the antenna. The antenna impedance in the photoelectron environment is represented by a parallel equivalent circuit consisting of a capacitance and a resistance, which is consistent with empirical knowledge. The results also imply that the impedance varies with the spin of the spacecraft, which causes the variation of the photoelectron density around the antenna.
AMER GEOPHYSICAL UNION, 2008年08月, RADIO SCIENCE, 43 (4), 英語[査読有り]
研究論文(学術雑誌)
We have newly developed a numerical tool for the analysis of antenna impedance in plasma environment by making use of electromagnetic Particle-In-Cell (PIC) plasma simulations. To validate the developed tool, we first examined the antenna impedance in a homogeneous kinetic plasma and confirmed that the obtained results basically agree with the conventional theories. We next applied the tool to examine an ion-sheathed dipole antenna. The results confirmed that the inclusion of the ion-sheath effects reduces the capacitance below the electron plasma frequency. The results also revealed that the signature of impedance resonance observed at the plasma frequency is modified by the presence of the sheath. Since the sheath dynamics can be solved by the PIC scheme throughout the antenna analysis in a self-consistent manner, the developed tool has feasibility to perform more practical and complicated antenna analyses that will be necessary in real space missions.
AMER GEOPHYSICAL UNION, 2008年05月, RADIO SCIENCE, 43 (3), 英語[査読有り]
研究論文(学術雑誌)
Space development has been rapidly increasing, and a strong demand should arise regarding the understanding of the spacecraft-plasma interactions, which is one of the very important issues associated with the human activities in space. To evaluate the spacecraft-plasma interactions including plasma kinetics, transient process, and electromagnetic field variation, the authors have started to develop a numerical plasma chamber called Geospace Environment Simulator (GES) by making the most use of the conventional full particle-in-cell plasma simulations. For the development of a proto model of GES, the authors have used the Earth Simulator, which is one of the fastest supercomputers in the world. GES can be regarded as a numerical chamber in which space experiments can be virtually performed and temporal and spatial evolutions of spacecraft-plasma interactions can be analyzed. In this paper, the authors have briefly introduced GES in terms of its concept, modeling, and research targets. As one of the research topics of GES, the authors have investigated the impedance variation of electric field antenna onboard scientific satellites in the photoelectron environment in space. From the preliminary simulation results, the large change of reactance of the antenna impedance below the characteristic frequency corresponding to the local plasma frequency determined by the photoelectron density could be confirmed.
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2006年10月, IEEE TRANSACTIONS ON PLASMA SCIENCE, 34 (5), 2094 - 2102, 英語[査読有り]
研究論文(学術雑誌)
研究発表ペーパー・要旨(全国大会,その他学術会議)
[招待有り]
[査読有り]
Abbreviated
JAXA, 2013年12月, 第10回宇宙環境シンポジウム, JAXA-SP (JAXA-SP-13-016), 61 - 64, 日本語Abbreviated
JSASS, 2013年06月, The 29th International Space Technology and Sciences, USB, 英語分散制約充足問題を分散並列計算環境で解くにあたり,ジョブを処理の単位とする分散並列処理 (ジョブ並列) に特化したジョブ並列スクリプト言語 Xcrypt で処理を記述することにより,実際の分散並列計算環境であるところの,いわゆるスーパーコンピュータを利用する方法を紹介する.さらに,Xcrypt の遠隔ジョブ投入機構を利用することにより,制約が遠隔の計算機に分散された状態からの制約充足問題,つまり,真の意味での分散制約充足問題を簡便に取り扱うことができることを示す.We introduce a method of parallel executions based on the job unit (job-level parallel executions) for solving distributed constraint satisfaction problems (DCSPs) in parallel and distributed computation environments, the so-called today's many supercomputers. Throughout introducing the method we use the job-level parallel script language Xcrypt, specific to job-level parallel executions. We also show that Xcrypt provides us with a feature of submitting remotely jobs for solving realistic DCSPs (under the circumstances that constraints are truely distributed in separate computers).
2011年07月20日, 研究報告ハイパフォーマンスコンピューティング(HPC), 2011 (59), 1 - 8, 日本語本論文では,粒子・流体ハイブリッドプラズマシミュレーションの,負荷分散技法 OhHelp を用いた並列化について述べる.すでに OhHelp を適用して良好な結果が得られている全粒子シミュレーションに比べ,ハイブリッドシミュレーションは電磁場の計算負荷が相対的に大きいため,計算と通信のバランスを大幅に見直した実装を行った.特に Cyclic Leapfrog 法による電磁場計算に関する,通信回数削減と計算量増加のトレードオフポイントを見出すことが可能な設計とした.また実用的なシミュレーションに不可欠な,スナップショットやダンプファイルの出力方式も検討し,並列 I/O を用いて並列性能と利便性の両立を図る設計・実装を行った.性能評価の結果,256 プロセスでの実行で 241-456 倍の台数効果が得られること,電磁場計算では計算量増加を抑えることが効果的であること,およびスナップショットと Weak/Strong Scalability との関係が明らかになった.This paper describes a parallel implementation of particle-fluid hybrid plasma simulation with our load balancing method OhHelp. In hybrid simulation, the cost to simulate the progress of electromagnetic field is more significant than that in full-particle simulation whose OhHelp'ed parallelization has already been proved efficient. Thus in this work we revisited the issue of the cost balance between computation and communication, especially for Cyclic Leapfrog method and the trade-off between reducing the number of communications and increasing computational amount. We also designed and implemented parallel-I/O for snapshot and dump, being essential for practical use of our simulator, to reconcile parallel performance and convenience of users. Our evaluation exhibited that the speedup with 256 process is 241- to 456-fold and that suppressing computational cost is the first priority in Cyclic Leapfrog. We also obtained valuable insights about the relationship between weak/strong scalability and snapshot frequency.
一般社団法人情報処理学会, 2010年02月15日, 研究報告ハイパフォーマンスコンピューティング(HPC), 2010 (8), 1 - 11, 日本語We proposed an efficient and scalable load balancing method named OhHelp for Particle-in-Cell (PIC) simulations. This method simply and equally partitions the space domain, in which charged particles are distributed nonuniformly in general, so that each computation node works on each partitioned primary subdomain. Load imbalance problem caused by the nonuniformity of the particle distribution is solved by making every but one node also work on another subdomain where particles densely populate as its secondary subdomain together with a part of particles in it. We applied the OhHelp method to a production level full-3D PIC simulator for space plasma and evaluated its performance on our T2K Open Supercomputer. As a result, we confirmed our simulator is not only efficient showing 150--190 speedup with 256 CPU cores compared to the sequential execution of a reference simulator, but also scalable in terms of both the space domain size and the number of particles as the break down of execution times evidences.We proposed an efficient and scalable load balancing method named OhHelp for Particle-in-Cell (PIC) simulations. This method simply and equally partitions the space domain, in which charged particles are distributed nonuniformly in general, so that each computation node works on each partitioned primary subdomain. Load imbalance problem caused by the nonuniformity of the particle distribution is solved by making every but one node also work on another subdomain where particles densely populate as its secondary subdomain together with a part of particles in it. We applied the OhHelp method to a production level full-3D PIC simulator for space plasma and evaluated its performance on our T2K Open Supercomputer. As a result, we confirmed our simulator is not only efficient showing 150--190 speedup with 256 CPU cores compared to the sequential execution of a reference simulator, but also scalable in terms of both the space domain size and the number of particles as the break down of execution times evidences.
一般社団法人情報処理学会, 2009年02月19日, 研究報告計算機アーキテクチャ(ARC), 2009 (14), 1 - 6, 日本語[査読有り]
ポスター発表
ポスター発表
口頭発表(一般)
ポスター発表
ポスター発表
口頭発表(一般)
ポスター発表
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
ポスター発表
口頭発表(一般)
ポスター発表
ポスター発表
ポスター発表
ポスター発表
[招待有り]
公開講演,セミナー,チュートリアル,講習,講義等
ポスター発表
ポスター発表
口頭発表(一般)
口頭発表(一般)
ポスター発表
口頭発表(一般)
ポスター発表
ポスター発表
口頭発表(一般)
口頭発表(一般)
ポスター発表
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
ポスター発表
[招待有り]
口頭発表(基調)
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
[招待有り]
口頭発表(一般)
口頭発表(一般)
ポスター発表
口頭発表(一般)
[招待有り]
シンポジウム・ワークショップパネル(指名)
ポスター発表
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
ポスター発表
口頭発表(一般)
ポスター発表
ポスター発表
ポスター発表
ポスター発表
口頭発表(一般)
ポスター発表
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
[招待有り]
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
ポスター発表
口頭発表(一般)
ポスター発表
ポスター発表
[招待有り]
口頭発表(招待・特別)
ポスター発表
ポスター発表
[招待有り]
口頭発表(招待・特別)
ポスター発表
ポスター発表
ポスター発表
ポスター発表
[招待有り]
口頭発表(招待・特別)
ポスター発表
ポスター発表
ポスター発表
口頭発表(一般)
ポスター発表
口頭発表(一般)
口頭発表(一般)
ポスター発表
ポスター発表
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
口頭発表(一般)
ポスター発表
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
ポスター発表
ポスター発表
ポスター発表
ポスター発表
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
ポスター発表
ポスター発表
口頭発表(一般)
ポスター発表
ポスター発表
[招待有り]
口頭発表(招待・特別)
ポスター発表
口頭発表(一般)
ポスター発表
ポスター発表
口頭発表(一般)
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
口頭発表(一般)
ポスター発表
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
ポスター発表
ポスター発表
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
口頭発表(一般)
ポスター発表
口頭発表(招待・特別)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
ポスター発表
口頭発表(一般)
ポスター発表
口頭発表(一般)
ポスター発表
口頭発表(招待・特別)
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
シンポジウム・ワークショップパネル(指名)
ポスター発表
ポスター発表
口頭発表(一般)
ポスター発表
ポスター発表
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
ポスター発表
ポスター発表
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
ポスター発表
ポスター発表
口頭発表(一般)
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
ポスター発表
口頭発表(一般)
口頭発表(一般)
口頭発表(一般)
ポスター発表
[招待有り]
口頭発表(招待・特別)
口頭発表(一般)
口頭発表(一般)
ポスター発表
ポスター発表
口頭発表(一般)
口頭発表(一般)
ポスター発表
口頭発表(一般)
ポスター発表
ポスター発表
口頭発表(一般)
ポスター発表
口頭発表(招待・特別)
ポスター発表
口頭発表(一般)
口頭発表(招待・特別)
ポスター発表
ポスター発表
次世代太陽地球圏環境(宇宙天気)予報システムの構築に向け、衛星障害の発生確率が高いとされる地球電磁気圏じょう乱時の異常衛星帯電を、経験則ではなく物理機構に基づき予測する手法の確立が急務である。R01年度は、従来の3次元プラズマ粒子シミュレーション手法で現実的に取り扱いが可能な時間幅より、ゆっくりとした時間スケールで起こるプラズマ環境変動の効果を衛星帯電評価に取り入れるため、粒子シミュレーションと、衛星電位の時間発展方程式の数値積分を連成させる新たな帯電評価技法を提案した。 一般的に衛星電位の時間発展は、衛星に流入するプラズマ電流と衛星構体の静電容量によって記述される。プラズマ電流は衛星構体電位や形状、衛星が複数の要素から形成されている場合はそれらを接続する電気回路網、および周辺プラズマのパラメータに依存し、解析的に記述できる状況は限られている。提案手法では、衛星構体電位を制御しながら多数回のプラズマ粒子シミュレーションを実施することで、この各プラズマ電流値を決定し、衛星電位時間発展方程式の入力項として用いることにより、衛星電位の振る舞いを近似的に求める。(電位固定された衛星に対する)流入電流の緩和時間が、衛星電位自体のそれより一般的に短いため、粒子シミュレーションのみを用いる従来手法に比べて、より長期間の衛星電位評価を現実的な時間で求めることが可能である。また流入電流のプラズマ環境パラメータに対する依存性をあらかじめ調べておくことにより、宇宙環境じょう乱に対する衛星電位応答を調べる目的に使用可能である。当該提案手法を時間変動するプラズマ波動環境下の帯電評価に適用し、妥当な予測が行えることを確認した。今後宇宙環境データベースや磁気圏グローバルシミュレーションから抽出した環境変動データを入力とすることにより、地球電磁気圏じょう乱を考慮した衛星帯電評価を実現する計画である。
競争的資金
競争的資金
宇宙天気予報システムの構築に向け、太陽活動度によりダイナミックに変動するプラズマ環境と、衛星障害の原因となりうる衛星帯電現象の間の物理的相関を明らかにすることが、必要不可欠である。H29年度は、3次元の大規模プラズマ粒子シミュレーション解析を用いた広範囲のパラメータ解析により、プラズマ波動に代表される変動電磁環境が衛星帯電に及ぼす影響の特性調査を実施した。主な成果は以下の通りである。 ①宇宙プラズマ空間には、周波数、伝搬特性、偏波が異なる多様なプラズマ波動モードが存在する。本年度は、これらの波動特性に対する衛星電位の依存性を定量化するために、粒子モデルに基づく数値シミュレーションを用いたパラメータ解析を実施した。結果として、背景磁場に平行な波動電界成分を持つケースにおいて、衛星電位の上昇幅が大きくなることが確認された。また磁場に垂直な偏波面をもつ場合においては、右回り円偏波、かつ波動振動数が電子サイクロトロン周波数と一致する条件下で、特異的に顕著な衛星電位上昇が認められた。衛星近傍に存在する光電子の速度分布解析に基づき、この特異な電位上昇がサイクロトロン共鳴に伴う光電子加熱と、それに起因する衛星正電流の増大が原因であることを明らかにした。 ②科学衛星で幅広く用いられるダブルプローブ電場計測では、飛翔体から進展した、対を成すプローブ電位の差をとることで衛星帯電の影響を最小化している。しかし、ウェイク等により、衛星周辺に非対称な電位構造が形成されると、その影響は差動計測では除去されず、不要電場として観測データに混入する。本年度は、地球磁場の影響が比較的大きい電離圏プラズマ中の飛翔体後方ウェイク構造と、それがプローブ観測に及ぼす影響を調査した。結果として電子旋回運動により、非対称のウェイク構造が確認された。またそれに起因する非正弦波状の不要電場の発生を数値的に再現することに成功した。
競争的資金
磁化惑星で普遍的に生じている相対論的電子加速過程の解明を目的とした計算機シミュレーション研究を実施した。惑星磁気圏と太陽風との相互作用を解く磁気流体力学計算と、放射線帯でのプラズマ波動の発生と相対論的電子の加速過程を再現する電子ハイブリッドコードを組み合わせる「連成計算」により、地球および木星磁気圏を対象に、高効率な電子加速過程を引き起こすホイッスラーモード・コーラス放射の発生条件を明らかにした。
本研究は超低軌道における高層大気を推進剤とする大気吸入イオンエンジン(ABIE)について、その最重要技術であるインテイクの設計指針について数値計算を援用して明らかにするとともに、地上試験装置で実験的評価を行う方法を確立し、大気吸入型スラスターシステム全般のインテイク設計に対する指針を得ることを目的とするものである。モンテカルロ法による粒子追跡とプラズマシミュレーションの結果、放電室内の中性ガス分布を考慮した放電室設計を行うことでイオン生成を大幅に効率化できることが明らかになった。また、地上実験装置のパルスビームを用いてABIE軌道上性能の推定を行う方法を確立することに成功した。
3次元電磁モデル大規模プラズマ粒子シミュレーションにより、太陽近傍プラズマ環境中における科学衛星プラズマ相互作用を定量的に解明した。特に①強太陽放射による大量の光電子放出にもかかわらず、空間電荷制限電流の効果により衛星は負に帯電する、②太陽風プラズマ中の対流電場に起因する光電子の非対称分布が衛星搭載電場プローブ位置に数100 mV/mの強い人工電場を発生させる、③衛星からの光電子放出電流により最大数nT程度の局所磁場変動が起こりうる、などの結果により、これまで人類が経験したことのない極限環境における衛星プラズマ相互作用の実態を明らかにし、将来衛星計画の設計に適用可能な知見を得ることに成功した。
競争的資金
本研究の目的は、衛星・プラズマ間相互作用によって変化する宇宙プラズマ電磁環境が、衛星に搭載された波動観測用アンテナ特性に及ぼす影響を、粒子モデル計算機実験により評価・解析することである。 平成20年度は、将来磁気圏探査衛星ミッションにおいて広く適用が期待されるパック式電界アンテナの数値モデリングと特性解析を行った。特に、太陽光照射によって衛星筐体から放出される光電子が、電界計測に及ぼす影響を軽減するために設けられるガード電極・バイアス電流回路の数値モデルを開発し、実際の動作を模擬可能であることが確認された。上記の機構は主に定常電場計測用に最適化されているため、波動電界に対する振る舞いや性能を調査する必要がある。 開発した数値モデルを用い、計算機実験解析を行ったところ、上記機構はアンテナ周辺の定常プラズマ環境、特に光電子の空間分布を大きく変化させることがわかった。しかし、波動受信時のアンテナ特性としては、実効長・インピーダンスともに上記機構の顕著な影響は見られなかった。一方で、多数の導体要素から構成されるパック式アンテナでは、先端のセンサー以外の導体要素からの放出光電子による、アンテナインピーダンス特性変化が見出された。以上の結果から、本計算機実験手法が複雑な光電子環境中でのアンテナ特性定量評価において有力であるとともに、数値ツールとしてガード電極やバイアス電流回路の最適設計にも貢献可能であることが示された。