Directory of Researchers

Mishima Tomokazu
Graduate School of Maritime Sciences / Department of Maritime Sciences
Associate Professor
Electro-Communication Engineering
Last Updated :2022/11/18

Researcher Profile and Settings

Affiliation

  • <Faculty / Graduate School / Others>

    Graduate School of Maritime Sciences / Department of Maritime Sciences
  • <Related Faculty / Graduate School / Others>

    Faculty of Oceanology / Department of Oceanology, Faculty of Maritime Sciences / Department of Marine Engineering, Center for Advanced Medical Engineering Research &Development (CAMED)

Teaching

Research Activities

Research Interests

  • Power Electronics

Research Areas

  • Manufacturing technology (mechanical, electrical/electronic, chemical engineering) / Electrical power engineering

Committee Memberships

  • Oct. 2021 - Present, 電気学会, 産業応用部門 家電民生技術委員会 1号委員
  • Sep. 2021 - Present, パワーアカデミー, パワーアカデミー若手教員/研究支援ワーキンググループ・関西エリア代表幹事
  • Apr. 2021 - Present, 電気学会関西支部, 協議員
  • Sep. 2020 - Jun. 2021, 電気学会, 令和3年電気学会全国大会論文委員会 幹事(第6グループ)
  • Aug. 2020 - Mar. 2021, 電気設備学会, 直流利活用に関する調査委員会 委員
  • Oct. 2019 - Present, 電気学会, 半導体電力変換技術委員会 「高周波スイッチング電力変換回路と応用電源技術調査専門委員会」委員長
  • Oct. 2019 - Present, 電気学会産業応用部門, 半導体電力変換技術委員会 2号委員
  • Apr. 2019 - Present, 電気学会産業応用部門論文委員会, 和文論文誌論文委員会D1グループ(半導体電力変換)幹事
  • Oct. 2018 - Present, 電子情報通信学会, 常任査読員 (ELEX)
  • Oct. 2018 - Present, 米国電気電子学会, IEEE Transactions on Power Electronics (TPEL) associate editor
  • Apr. 2016, 電子情報通信学会, 電子通信エネルギー研究専門委員会委員
  • May 2015 - Apr. 2017, 電気学会, 半導体電力変換技術委員会「エネルギー利用の高度化に対応する最新の高周波電力変換技術調査専門委員会」委員
  • Jun. 2014 - May 2016, 電気学会, 自動車技術委員会「自動車用電源システムとその活用調査専門委員会」委員
  • Apr. 2012 - May 2014, 電気学会, 自動車技術委員会「自動車用スマート電力マネジメント調査専門委員会」委員
  • Apr. 2012 - Mar. 2014, 電気学会, 家電民生技術委員会「家庭内の電力利用機器・創エネ機器・蓄エネ機器の新技術協同研究委員会」委員
  • Nov. 2011 - Oct. 2013, 電気学会, 半導体電力変換技術委員会「エネルギー問題に対応する最新の高周波電力変換技術調査専門委員会」委員
  • Jan. 2011 - Present, 米国電気電子学会, IEEE Transactions on Industrial Electronics (TIES) reviewer
  • Jan. 2011 - Present, 米国電気電子学会, IEEE Transactions on Power Electronics (TPEL) Reviewer
  • Apr. 2010 - Mar. 2012, 電気学会, 自動車技術委員会「自動車用電力マネジメント調査専門委員会」委員
  • Nov. 2008 - Oct. 2010, 電気学会, 導体電力変換技術委員会「地球環境問題に対応する最新パワー半導体スイッチング回路技術調査専門委員会」委員
  • Nov. 2008 - Oct. 2010, 電気学会, 半導体電力変換技術委員会「地球環境問題に対応する最新パワー半導体スイッチング回路技術調査専門委員会」委員
  • Apr. 2008 - Mar. 2010, 電気学会, 自動車技術委員会「自動車用統合電源システム調査専門委員会」委員
  • Apr. 2007, パワーエレクトロニクス学会, 評議委員
  • Apr. 2006 - Mar. 2008, 電気学会, 自動車技術委員会「自動車用電源システムマネジメント技術調査専門委員会」委員
  • Apr. 2005 - Mar. 2007, 電気学会, 半導体電力変換技術委員会 「ソフトスイッチング技術とその実用化動向調査専門委員会」委員

Awards

  • Dec. 2021 日経BP社, 日経エレクトロニクス(NE)パワーエレクトロニクスアワード2021(読者賞)

    三島智和・神戸大学海事科学研究科パワーエレクトロニクス研究室

  • Oct. 2012 IEEE Industrial Electronics Society, Annual Conference of the IEEE Industrial Electronics Society (IECON 2012)- Best Paper Presentation Award, A New ZVS Phase-Shifted High-Frequency Resonant Inverter Incorporating Asymmetrical PWM-based Unit Control for Induction Heating

    Mishima Tomokazu

    International society

  • Nov. 2009 IEEE-PEDS, 2009 IEEE International Conference on Power Electronics and Drive Systems (IEEE-PEDS) Best Paper Award, 研究発表: An Active Rectifier-Phase-Shifted ZVS-PWM DC-DC Converter for Plasma RF Power Generator and Its Practical Evaluation

    MISHIMA Tomokazu, OOUE Yasuyuki, FUKUMOTO Yoshiki, NAKAOKA Mutsuo

  • 2002 電気学会, 電気学会優秀論文発表賞B, 電気二重層キャパシタによる太陽電池部分陰補償制御特性

    Mishima Tomokazu

    Japan society

  • 2001 電気関係学会四国支部, 電気学会電子情報通信学会情報処理学会四国支部奨励賞, ハードロジック方式太陽電池最大出力追従制御特性

    Mishima Tomokazu

    Japan society

  • 1999 徳島電気技術協会, 徳島電気技術協会賞, 徳島大学工学部電子工学科 卒業研究論文

    Mishima Tomokazu

    Japan society

  • Aug. 2022 Institute of Electrical and Electronics Engineers, 2021 IEEE Transactions on Power Electronics Prize Paper Award, Three-Phase to Single-Phase Multiresonant Direct AC–AC Converter for Metal Hardening High-Frequency Induction Heating Applications

    Ryosuke KWASHIMA, Tomokazu MISHIMA, Chiaki IDE

Published Papers

  • A Single-Stage High Frequency-Link Modular Three-Phase LLC AC-DC Converter

    Tomokazu Mishima, Shoya Mitsui

    Mar. 2022, IEEE Transactions on Power Electronics, 37 (3), 3205 - 3218, English

    [Refereed]

    Scientific journal

  • MHz-Driving Current-Fed Snubberless Soft-Switching DC-DC Converter

    Ryusei Miyazaki, Tomokazu Mishima, Ching-Ming Lai

    Corresponding, Jan. 2022, IEEJ Transactions on Industry Applications, 142 (9), 9 - 17, Japanese

    [Refereed]

    Scientific journal

  • Simulation-Assisted Design Process of 22-kW Wireless Power Transfer System Using Three-Phase Coil Coupling for EVs

    Oct. 2021, Chia-Hsuan Wu, Ching-Ming Lai *, Tomokazu Mishima, English

    [Refereed]

    Scientific journal

  • Variable Frequency Phase-Shift Modulation Symmetrical Series-Resonant Bidirectional DC-DC Converter - Analysis and Verification on ZVS Performance and Reactive Power Minimization-

    Tomokazu Mishima, Yasutaka Koga

    Sep. 2021, IEEJ Journal of Industry Applications, 10 (5), 540 - 553, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Ching-Ming Lai

    Jul. 2022, IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol.3 (no.3), 411 - 420, English

    [Refereed]

    Scientific journal

  • High Frequency Three-Level Inverter-based Inductive Wireless Power Transfer (IWPT) System with Double LCC Resonance

    T. Luo, T. Mishima, C. M. Lai

    Corresponding, Jun. 2021, 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 2021, 1 - 8, English

    [Refereed]

    International conference proceedings

  • Three-Phase Inductive Wireless Power Transfer (IWPT) System with High Frequency Three-Level Inverter and Double LCC Resonance

    Tian Luo, Tomokazu Mishima, Ching-Ming Lai

    Corresponding, May 2021, Proc. IEEE Energy Conversion Congress and Expositions (ECCE)- Asia 2021, 455 - 462, English

    [Refereed]

    International conference proceedings

  • Three-Phase to Single-Phase Multi-Resonant Direct AC-AC Converter for Metal Hardening High-Frequency Induction Heating Applications"

    Ryosuke Kawashima, Tomokazu Mishima, Chiaki Ide

    A new multi-resonant three-phase utility frequency ac (UFAC) to high-frequency ac (HFAC) direct power converter for the industrial metal hardening induction heating (IH) applications is presented in this paper. The proposed ac-ac converter features direct frequency conversion with the wide range of soft switching by means of the minimized numbers of bidirectional switches. The conducting current of bidirectional switches can be reduced effectively owing to the multi-resonant tank while keeping a high power in the IH load. Accordingly, the practical power converter with simplicity, cost-effectiveness, and high efficiency can be realized on the basis of a simple pulse frequency modulation. The circuit topology and operating principle of the proposed converter are described, after which the design procedure of the multi-resonant tank and switching frequency is presented. The performances on the soft switching and the steady-state pulse frequency modulation (PFM) characteristics of the ac-ac converter are evaluated in experiment with the 1.7 kW/85kHz-90kHz prototype. Finally, the feasibility of the proposed ac-ac converter is evaluated from a practical view point.

    IEEE, Jan. 2021, IEEE Transactions on Power Electronics, 36 (1), 639 - 653, English, International magazine

    [Refereed]

    Scientific journal

  • Coupled Inductor-assisted Current-Fed Snubber-less Zero-Current Soft-Switching High-Step Up DC-DC Converer for Fule Cell Interface

    Ryusei Miyazaki, Tomokazu Mishima, Ching-Ming Lai

    Corresponding, Oct. 2020, Proc. 9th IEEE Global Conferenec on Consumer Electronics (GCCE), Japanese

    [Refereed]

  • 共振周波数追従Δ-Σ変換パルス密度変調を適用した非接触給電ZVS 共振形コンバータ

    木戸達也・三島智和

    Corresponding, Apr. 2020, 電気学会論文誌D(産業応用部門誌), 140 (4), 314 - 340, Japanese

    [Refereed]

  • Mishima Tomokazu

    Lead, IEEE, Mar. 2020, IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol.8 (No.1), 506 - 516, English

    [Refereed]

    Scientific journal

  • 三相―単相ダイレクト周波数変換回路を適用した産業用高周波誘導加熱電源

    河嶋亮輔・三島智和・井出千明

    Corresponding, 2020, パワーエレクトロニクス学会誌, 45, 83 - 89, Japanese

    [Refereed]

  • A Single-Stage High Frequency-link Modular Three-Phase Soft-Switching AC-DC Converter for EV Battery Charger

    Tomokazu Mishima, Shoya Mitsui

    Lead, Oct. 2019, Proceedings of IEEE Energy Conversion Congress and Expositions, 2141 - 2147, English

    [Refereed]

    International conference proceedings

  • Three-Phase to Single-Phase Multi-Resonant Direct AC-AC Converter for Metal Hardening High-Frequency Induction Heater

    Tomokazu Mishima, Ryosuke Kawashima, and Chiaki Ide

    Lead, Sep. 2019, Proceedings of IEEE Energy Conversion Congress and Expositions, 5472 - 5478, English

    [Refereed]

    International conference proceedings

  • "Three-Phase AC To Single Phase AC Direct Converter for Metal Hardening High-Frequency Induction Heating Aplications

    Ryosuke Kawashima, Tomokazu Mishima, Chiaki Ide

    Corresponding, Jul. 2019, Proc. IEEE Power Electronics and Drive Systems Conf. (PEDS2019), 1 - 6, English

    [Refereed]

    International conference proceedings

  • A Novel Single-Stage Boost Full Bridge Phase Modular Soft Switching Three-Phase AC-DC Converter with High Frequency-Link

    Shoya Mitsui and Tomokazu Mishima

    Corresponding, Jul. 2019, 2019 IEEE Power Electronics and Drive Systems (PEDS2019), 1 - 6, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Tatsuya Kido

    A novel prototype of zero-voltage soft-switching (ZVS) high-frequency resonant converter for inductive power transfer (IPT) applications is presented in this paper. By adopting a natural oscillation-based pulse-density-modulation (PDM) scheme, the resonant current of the sending and receiving coils can be continuously regulated under the condition of soft switching, thereby the

    電気学会, Mar. 2019, 電気学会論文誌D(産業応用部門誌), 139 (3), pp.239 - 248, Japanese

    [Refereed]

    Scientific journal

  • Mishima Tomokazu, Yoshinobu Koji

    IEEE, Mar. 2019, Proc. The 34th Annual IEEE Applied Power Electronics Conference and Exposition, pp.1716 - 1721, English

    [Refereed]

    International conference proceedings

  • Snubber-less Zero Voltage Soft-Switching Resonant Converter for Inductive Power Transfer featuting GaN-HFET

    Mishima Tomokazu, Tatsuya Kido

    JARI, Oct. 2018, Proc. The 31st International Electric Vehicle Symposium and Exhibition and International Electric Vehicle Technology Conference (EVS31 and EVTeC2018), Paper ID: 20189181, pp.1 - 5, English

    [Refereed]

    International conference proceedings

  • High-Power Soft-Switching Three-Level DC-DC Converter for Railway Applications

    Yoshinobu Koji, Mishima Tomokazu

    JARI, Oct. 2018, Proc. The 31st International Electric Vehicle Symposium and Exhibition and International Electric Vehicle Technology Conference (EVS31 and EVTeC2018), Paper ID: 20189245, pp.1 - 6, English

    [Refereed]

    International conference proceedings

  • Mishima Tomokazu, Yasutaka Koga

    IEEE, Sep. 2018, Proc. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 6283 - 6290, English

    [Refereed]

    International conference proceedings

  • Yasutaka Koga, Mishima Tomokazu

    IEEE, Aug. 2018, Proc. 18th IEEE International Conference on Power Electronics and Motion Control (IEEE-PEMC), pp.58 - 65, English

    [Refereed]

    International conference proceedings

  • Mishima Tomokazu

    The Institute of Electrical Engineers of Japan, May 2018, Proc. 2018 Internationla Power Electronics Conference (IPEC-Niigata), pp.872 - 877, English

    [Refereed][Invited]

    International conference proceedings

  • Yoichiro Tabata, Mishima Tomokazu, Tatsuya Kido

    The Institute of Electrical Engineers of Japan, May 2018, Proc. 2018 International Power Electronics Conference (IPEC-Niigata), pp.329 - 336, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima

    A novel zero current soft-switching (ZCS) pulse width modulation (PWM)-controlled bidirectional DC-DC converter (BDC) with non-inverting polarity for the multi-mode voltage regulations is proposed in this paper. The multimode voltage regulations, i.e. buck, boost and buck-boost can be attained in the bidirectional power flows, thus energy utilization of DC voltage sources such as a battery can be improved significantly in renewable and sustainable electric power supplies. In addition, all the power devices can commutate by ZCS with the aid of single-auxiliary switch-based edge-resonant cells, thereby the switching power losses can be minimized. The effectiveness of the proposed BDC and its steady-state characteristics including the voltage conversion ratio and actual efficiency are verified experimentaly with a 500 W-50 kHz prototype.

    Institute of Electrical Engineers of Japan, 2018, IEEJ Transactions on Industry Applications, 138 (1), 11 - 21, Japanese

    [Refereed][Invited]

    Scientific journal

  • Tomokazu Mishima, Eitaro Morita

    This paper presents a comparative study on highfrequency active rectifier-based zero voltage soft-switching (ZVS) resonant DC-DC power converters with Gallium Nitride Heterojunction-Field-Effect-Transistor (GaN-HFET) for inductive power transfer (IPT) systems. The two types of active rectifiers, i.e. high-frequency bridgeless rectifier (BLREC) and totem-pole rectifier (TPREC) are adopted for the receivingside circuit topology in the proposed IPT ZVS converters. The performances of each prototype built on the a 600V GaN-HFET are investigated, and are compared by experiment from the viewpoints of efficiency, switching noises and power consumption.

    Institute of Electrical and Electronics Engineers Inc., 03 Nov. 2017, 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-, 2610 - 2617, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Souta Morinaga, Mutsuo Nakaoka

    This paper presents a novel prototype of a single-stage zero voltage soft-switching pulse-width modulation -controlled ac-ac converter with a silicon carbide (SiC)-MOSFET/SiC-SBD power module for high-frequency (HF) induction heating (IH) applications. The newly developed ac-ac converter can achieve higher efficiency than a Si-IGBT/Si-PN diode power module-based prototype due to a low ON-resistance of SiC-MOSFET and a low forward voltage of SiC-SBD under the condition of HF switching. The performances of the new prototype converter are evaluated by experiment with a single-phase IH utensil of ferromagnetic stainless metal, after which the high-efficiency and low switching noise characteristics due to the all SiC power module are actually demonstrated.

    WILEY, Nov. 2017, ELECTRICAL ENGINEERING IN JAPAN, 201 (3), 69 - 76, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Eitaro Morita

    This paper presents a novel zero-voltage soft-switching bridgeless active rectifier based multiresonant dc-dc power converter with high breakdown voltage gallium nitride heterojunction-field-effect transistor for inductive power transfer (IPT) systems. The excellent performances such as high efficiency, low switching noises, and normally-off operation are originally demonstrated in experiment of a 700-W prototype by comparing with a Si superjunction-mosfet-based prototype under the fair condition of voltage and current ratings. It is revealed from the experiment that the low resistance and high-speed operation of the GaN power transistor is effective for improving the power and energy conversions in IPT systems.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Nov. 2017, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 64 (11), 9155 - 9164, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Hiroto Mizutani, Mutsuo Nakaoka

    A five-element multiplex resonant (LLCLC) full-bridge DC-DC converter controlled by pulse frequency modulation (PFM) is proposed in this paper. The high frequency (HF)-link resonant DC-DC converter proposed herein can perform wide-range output power and voltage regulation with a narrow frequency range due to an antiresonant tank that works effectively as a wide-range variable inductor. The advantageous characteristics of the antiresonant tank provide overcurrent protection in the case of the short-circuited load condition as well as in the startup interval. Thus, the technical challenges of a conventional LLC DC-DC converter can be overcome, and the reliability of the relevant switch-mode power supplies can be improved. The operating principle of the LLCLC DC-DC converter is described, after which its performance is evaluated in an experimental setup based on the 2.5 kW prototype. Finally, the feasibility of the proposed DC-DC converter is discussed from a practical point of view.

    WILEY, Oct. 2017, ELECTRICAL ENGINEERING IN JAPAN, 201 (1), 66 - 80, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Shuichi Sakamoto, Chiaki Ide

    This paper presents a new single-stage utility frequency ac-high-frequency ac resonant power converter for high-frequency induction heating applications. The newly proposed ac-ac converter features a boost converter and a full-bridge resonant inverter integrated circuit with a source voltage sensorless control system. The experimental results of a 3.0 kW-40 kHz prototype are demonstrated on zero-voltage soft switching and steady-state characteristics, then, the validity of the proposed ac-ac converter is revealed from a practical viewpoint.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Mar. 2017, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 64 (3), 2054 - 2061, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Hiroto Mizutani, Mutsuo Nakaoka

    An LLC resonant circuit-based full-bridge dc-dc converter with an LC antiresonant tank for improving the performance of pulse frequency modulation (PFM) is proposed in this paper. The proposed resonant dc-dc converter, named as LLC-LC converter, can extend a voltage regulation area below the unity gain with a smaller frequency variation of PFM by the effect of the antiresonant tank. This advantageous property contributes for protecting overcurrent in the case of the short-circuit load condition as well as the start-up interval in the designed band of switching frequency. The circuit topology and operating principle of the proposed converter is described, after which the design procedure of the operating frequency and circuit parameters is presented. The performances on the soft switching and the steady-state PFM characteristics of the LLC-LC converter are evaluated under the open-loop control in experiment of a 2.5-kW prototype, and its actual efficiency is compared with an LLC converter prototype. For revealing the effectiveness of the LLC-LC resonant circuitry, voltages and currents of the series and antiresonant tanks are analyzed, respectively, with state-plane trajectories based on calculation and experiment, whereby the power and energy of each resonant tank are demonstrated. Finally, the feasibility of the proposed converter is evaluated from the practical point of view.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Jan. 2017, IEEE TRANSACTIONS ON POWER ELECTRONICS, 32 (1), 310 - 324, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Hiroto Mizutani, Mutsuo Nakaoka

    An LLC resonant circuit-based full-bridge dc-dc converter with an LC antiresonant tank for improving the performance of pulse frequency modulation (PFM) is proposed in this paper. The proposed resonant dc-dc converter, named as LLC-LC converter, can extend a voltage regulation area below the unity gain with a smaller frequency variation of PFM by the effect of the antiresonant tank. This advantageous property contributes for protecting overcurrent in the case of the short-circuit load condition as well as the start-up interval in the designed band of switching frequency. The circuit topology and operating principle of the proposed converter is described, after which the design procedure of the operating frequency and circuit parameters is presented. The performances on the soft switching and the steady-state PFM characteristics of the LLC-LC converter are evaluated under the open-loop control in experiment of a 2.5-kW prototype, and its actual efficiency is compared with an LLC converter prototype. For revealing the effectiveness of the LLC-LC resonant circuitry, voltages and currents of the series and antiresonant tanks are analyzed, respectively, with state-plane trajectories based on calculation and experiment, whereby the power and energy of each resonant tank are demonstrated. Finally, the feasibility of the proposed converter is evaluated from the practical point of view.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Jan. 2017, IEEE TRANSACTIONS ON POWER ELECTRONICS, 32 (1), 310 - 324, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Eitaro Morita

    This paper presents a novel prototype of a secondary-side BridgeLess Active Rectifier (BLREC)-applied soft-switching resonant dc-dc power converter with high breakdown-voltage Gallium Nitride Heterojunction-Field-Effect-Transistor (GaN-HFET) for inductive power transfer (IPT) applications. The excellent performances such as higher efficiency, low switching noises and normally-off operation are originally demonstrated in experiment of a 700W-85 kHz prototype with 600V enhancement-mode single-chip GaN-HFETs. The feasibility of the GaN-HFET zero voltage soft-switching (ZVS) resonant converter and its power control strategy for IPTs is discussed from a practical point of view.

    IEEE, 2017, 2017 THIRTY SECOND ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC), 3751 - 3758, English

    [Refereed]

    International conference proceedings

  • Kyohei Konishi, Tomokazu Mishima, Mutsuo Nakaoka

    This paper presents a novel prototype of a time-sharing frequency doubler principle-based current-fed zero current soft-switching (ZCS) high frequency resonant (HF-R) inverter for inductive power transfer (IPT) systems. The newly-proposed ZCS HF-R inverter is suitable for producing a higher frequency resonant current with switching power loss reduction by using a middle-class switching frequency insulated-gate-bipolar-power transistor (IGBT). In order to continuously regulate the output power, resonant current phasor control (RCPC) is newly applied. The performances of the newly-proposed IPT resonant power converter are demonstrated by experiment, after which the feasibility of the circuit topology and control method is discussed from a practical point of view.

    IEEE, 2016, APEC 2016 31ST ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, 2016 (APEC), 1780 - 1787, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Souta Morinaga, Mutsuo Nakaoka

    This paper presents a novel prototype of a single-stage zero voltage soft-switching (ZVS) pulse-width-mod ulation (PWM)-controlled AC-AC converter with a silicon carbide(SiC)-MOSFET/SiC-SBD power module for high frequency (HF) induction heating (IH) applications. The newly developed AC-AC converter can achieve higher efficiency than a Si-IGBT/Si-PNdiode power module-based prototype thanks to a low ON-resistance of SiC-MOSFET and a low forward voltage of SiC-SBD under the condition of high frequency switching. The performances of the new prototype converter are evaluated by experiment with a single-phase IH utensil of ferromagnetic stainless metal, after which the high-efficiency and low switching noise characteristics due to the all SiC power module are actually demonstrated.

    Institute of Electrical Engineers of Japan, 2016, IEEJ Transactions on Industry Applications, 136 (7), 464 - 470, Japanese

    [Refereed]

    Scientific journal

  • Shuichi Sakamoto, Tomokazu Mishima, Chiaki Ide

    This paper presents a new single-stage utility frequency ac (UFAC)-high frequency ac (HFAC) resonant power converter for high frequency induction heating(IH) applications. The newly-proposed ac-ac converter features a boost converter and full-bridge HF resonant inverter integrated circuit (Boost-Full-Bridge BFB) with a source voltage sensorless control scheme. The experimental results of a 3.0kW-40 kHz prototype are demonstrated on zero voltage soft switching (ZVS) operations and steady-state characteristics based on the phase shift pulse-width-modulation (PS-PWM) power regulation, then the validity of the proposed ac-ac converter is revealed from a practical point of view.

    IEEE, 2016, 2016 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2016 (ECCE), 7, English

    [Refereed]

    International conference proceedings

  • Eitaro Morita, Tomokazu Mishima

    This paper presents a novel prototype of a soft-switching resonant DC-DC power converter with high breakdownvoltage Gallium Nitride Heterojunction-Field-Effect-Transistor (GaN-HFET) for inductive power transfer (IPT) systems. The edge-resonant zero voltage soft-switching (ZVS) operation using lossless snubbing capacitors is essential for effective reduction of switching power losses and noises with low threshold voltage of the GaN-HFET. The excellent performances such as high efficiency, low switching noises and normally-off operation are originally demonstrated in experiment of a 950 W prototype by comparing with a super-junction (SJ)-MOSFET based prototype under the fair conditions of breakdown-voltage and current rating. The feasibility of GaN-HFET-applied IPT-ZVS converter is discussed from a practical point of view.

    Institute of Electrical Engineers of Japan, 2016, IEEJ Transactions on Electronics, Information and Systems, 136 (11), 1511 - 1518, Japanese

    [Refereed][Invited]

    Scientific journal

  • Sakamoto Shuichi, Mishima Tomokazu, Ide Chiaki

    This paper presents a new single-stage utility frequency ac-high frequency ac resonant power converter for high frequency induction heating applications.The newly-proposed ac-ac converter features a boost converter and full bridge resonant inverter integrated circuit with a source voltage sensorless control system.The experimental results of a 3.0kW-40kHz prototype are demonstrated on zero voltage soft switching(ZVS) operations and steady-state character-istics,then the validity of the proposed ac-ac converter is revealed from a practical point of view.

    The Japan Institute of Power Electronics, 2016, Journal of the Japan Institute of Power Electronics, 42, 67 - 73, Japanese

  • Mishima Tomokazu

    The Japan Institute of Power Electronics, 2016, Journal of the Japan Institute of Power Electronics, 42, 184 - 184, Japanese

  • Tomokazu Mishima, Mutsuo Nakaoka

    Performance evaluations of a secondary-side phase shift (SPS) pulse-width-modulation (PWM)-controlled zero-voltage soft-switching (ZVS) dc-dc converter with a zero current soft-switching (ZCS) active rectifier are presented in this paper. In the proposed dc-dc converter, soft-switching operations are achievable from full to null loads by utilizing the parasitic inductances of the high-frequency (HF) transformer. In addition, no circulating current emerges in either the primary- or secondary-side full-bridge circuits, and thus the related idling power losses can be minimized. In this paper, the soft-switching operations over the wide-range load variations are verified, and the characteristics of output power and voltage versus phase-shift angle regulations are demonstrated in an experiment based on a 1 kW to 50 kHz laboratory prototype of the proposed dc-dc converter. Furthermore, the converter power losses, which include the switching and conduction power losses, are analyzed, after which the effectiveness of the proposed dc-dc converter is evaluated from a practical point of view.

    WILEY-BLACKWELL, Jul. 2015, ELECTRICAL ENGINEERING IN JAPAN, 192 (1), 45 - 60, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Yuki Nakagawa, Mutsuo Nakaoka

    A new prototype of a zero voltage soft-switching (ZVS) utility frequency ac to high-frequency ac resonant power converter for induction heating (IH) applications is presented in this paper. The series resonant ac-ac converter proposed herein can process the frequency conversion without any diode bridge rectifier, thereby reducing the relevant conduction power losses. In addition, power factor correction (PFC) can be naturally achieved by the inductor-based boost half-bridge circuit with the non-smoothed dc-link. The operation principle together with an IH load power regulation scheme is described, and the converter performances including ZVS operations and PFC are demonstrated in an experiment with a 3.0-kW-30-kHz prototype by comparing it with the previously developed converter. Finally, the feasibility of the proposed ac-ac converter is evaluated from a practical point of view.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Jul. 2015, IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 51 (4), 3304 - 3315, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Yuki Nakagawa, Mutsuo Nakaoka

    A practical evaluation of a novel utility-frequency AC (UFAC) to high-frequency AC (HFAC) power converter, called a frequency converter, for induction heating (IH) applications is presented in this paper. The proposed frequency converter can process the UFAC to HFAC power conversion without any diode full-bridge rectifier (bridgeless), thereby reducing the number of semiconductor power devices and eliminating the associated conduction power losses. In addition, power factor correction (PFC) can be naturally achieved while boosting the UFAC source voltage to the nonsmoothed DC-link voltage. The operating principle of the proposed frequency converter together with its IH load power regulation scheme is described, and the circuit performance is demonstrated in an experiment based on its 3.0 kW-30 kHz laboratory prototype. Finally, the feasibility of the proposed frequency converter is evaluated from a practical point of view.

    Institute of Electrical Engineers of Japan, 2015, IEEJ Transactions on Industry Applications, 135 (1), 39 - 48, Japanese

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Hiroto Mizutani, Mutsuo Nakaoka

    A five element multiplex resonant (LLCLC) full-bridge DC-DC converter controlled by pulse-frequencymodulation (PFM) is proposed in this paper. The high frequency (HF)-link resonant DC-DC converter proposed herein can perform wide-range output power and voltage regulations with a narrow frequency range owing to an anti-resonant tank which works effectively as a wide-range variable inductor. The advantageous characteristics of the anti-resonant tank provide overcurrent protection in the case of the short-circuited load condition as well as the start-up interval, thus the technical challenges of the conventional LLC DC-DC converter can be overcome, and the reliability of the relevant switch-mode power supplies can be improved. The operating principle of the LLCLC DC-DC converter is described, after which its performance is evaluated in an experimental setup based on the 2.5 kW prototype. Finally, the feasibility of the proposed DC-DC converter is discussed from the practical point of view.

    Institute of Electrical Engineers of Japan, 2015, IEEJ Transactions on Industry Applications, 135 (1), 27 - 38, Japanese

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Yuki Nakagawa, Mutsuo Nakaoka

    Performances of a zero voltage soft-switching (ZVS) pulse-width-modulated (PWM) utility frequency ac (UFAC) to high-frequency ac (HFAC) resonant power converter for induction heating (IH) applications are presented in this paper. The series resonant ac-ac converter proposed herein can process the frequency conversion without any diode bridge rectifier (DBR), thereby reducing the relevant conduction power losses. Power factor correction (PFC) can be naturally achieved by the inductor-based boost half-bridge (BHB) circuit with the non-smoothed dc-link. The characteristics of the non-smoothed dc-link stage including PFC and voltage regulations are demonstrated in an experiment with a 3.0kW-30 kHz prototype. Finally, the feasibility of the proposed ac-ac converter is evaluated from a practical point of view.

    IEEE, 2015, 2015 THIRTIETH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC 2015), 2015-May (May), 1700 - 1706, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Yuki Nakagawa, Mutsuo Nakaoka

    Performances of a zero voltage soft-switching (ZVS) pulse-width-modulated (PWM) utility frequency ac (UFAC) to high-frequency ac (HFAC) resonant power converter for induction heating (IH) applications are presented in this paper. The series resonant ac-ac converter proposed herein can process the frequency conversion without any diode bridge rectifier (DBR), thereby reducing the relevant conduction power losses. Power factor correction (PFC) can be naturally achieved by the inductor-based boost half-bridge (BHB) circuit with the non-smoothed dc-link. The characteristics of the non-smoothed dc-link stage including PFC and voltage regulations are demonstrated in an experiment with a 3.0kW-30 kHz prototype. Finally, the feasibility of the proposed ac-ac converter is evaluated from a practical point of view.

    IEEE, 2015, 2015 THIRTIETH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC 2015), 2015-May (May), 1700 - 1706, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Kyohei Konishi, Mutsuo Nakaoka

    A new prototype of a time-sharing operation-based current-source (CS) zero current soft-switching (ZCS) highfrequency resonant (HF-R) inverter suitable for induction heating (IH) and inductive power transfer (IPT) systems is presented in this paper. In order to effectively generate a high-frequency resonant current under a minimized switching loss of power devices, a HF load current which has twice or multiple times as much as the switching frequency can be produced by twoor multi-phase CS inverter under the ZCS condition. The performance of the proposed HF-R inverter is evaluated from experimental results, after which the feasibility is discussed from a practical point of view.

    IEEE, 2015, 2015 IEEE 11TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS (PEDS 2015), 2015-August, 598 - 603, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Kyohei Konishi, Mutsuo Nakaoka

    This paper presents a novel prototype of a time-sharing frequency doubler principle-based current-fed zero current soft-switching (ZCS) high frequency resonant (HF-R) inverter for inductive power transfer (IPT) systems. The newly proposed ZCS HF-R inverter is suitable for producing a higher frequency resonant current with switching power loss reduction by using a middle-class switching frequency insulated gate-bipolar-power transistor (IGBT) for the IPT systems. In this paper, the performances of the newly-proposed ZCS HF-R inverter are demonstrated in experiment, after which the feasibility of the high frequency-link IPT power conversion circuit is discussed from a practical point of view.

    IEEE, 2015, 2015 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2027 - 2033, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Mutsuo Nakaoka

    This paper presents a novel zero current soft switching (ZCS) pulse width modulation (PWM) bidirectional dc-dc converter (BDC) under the high frequency(HF) switching condition. In the proposed soft-switching BDC, all the power devices operate by ZCS commutation modes with aid of the edge resonant switching cells, whereby the switching power losses can be minimized. The buck and boost voltage regulation without the polarity inverting is the prominent advantage and unique feature of the proposed soft-switching BDC. The converter performances including the soft-switching operations and output power regulation characteristics are demonstrated in experiment with a 500 W-50 kHz prototype, then its effectiveness is evaluated from a practical point of view.

    IEEE, 2015, 2015 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 1406 - 1412, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Souta Morinaga, Mutsuo Nakaoka

    This paper presents a new prototype of a singlestage ac-ac converter with Silicon-Carbide (SiC)-MOSFET/SiC-SBD integrated power module for induction heating (IH) applications. Switching and conduction power losses are effectively reduced by virtue of the 1.2kV-120A All-SiC power module under the condition of zero voltage soft-switching (ZVS), as compared to the counterpart solution using a Si-IGBT/Si-PNDiode power module. The performances of the new prototype are evaluated by experiment, thereby demonstrating the advantageous properties such as high-efficiency and low switching noise due to the wide band-gap power module.

    IEEE, 2015, IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 4211 - 4216, English

    [Refereed][Invited]

    International conference proceedings

  • Tomokazu Mishima, Shinya Masuda, Mutsuo Nakaoka

    A new zero current soft-switching (ZCS)-pulse width modulation (PWM) bidirectional dc-dc converter is proposed in this paper. The proposed bidirectional dc-dc converter is assisted by a single auxiliary switch-applied two-terminal edge-resonant cell, the topology of which is simple and practical as compared to a variety of previously-developed soft-switching PWM cells. The performances of the proposed bidirectional dc-dc converter are demonstrated by experiment using its 2.2 kW- 50 kHz prototype circuit, after which the feasibility is evaluated from a practical point of view.

    Institute of Electrical and Electronics Engineers Inc., 11 Nov. 2014, 2014 IEEE Energy Conversion Congress and Exposition, ECCE 2014, 4043 - 4050, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Mutsuo Nakaoka

    A new prototype of an efficiency-improved zero voltage soft-switching (ZVS) high-frequency resonant (HF-R) inverter for induction heating (IH) applications is presented in this paper. By adopting the dual pulse modulation mode (DPMM) that incorporates a submode power regulation scheme such as pulse density modulation, pulse frequency modulation, and asymmetrical pulse width modulation into main one of the resonant current phase angle difference (theta) control, the IH load power can be widely regulated under the condition of ZVS, while significantly improving the efficiency in the low output power setting. The essential performances on the output power regulations and ZVS operations with the DPMM schemes are demonstrated in an experiment based on a 1 kW-60 kHz laboratory prototype of the ZVS HF-R inverter. The validity of each DPMM scheme is originally compared and evaluated from a practical point of view.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Aug. 2014, IEEE TRANSACTIONS ON POWER ELECTRONICS, 29 (8), 3864 - 3880, English

    [Refereed]

    Scientific journal

  • A High-Performance DC Micro-Grid Power System Based on High-Efficiency Power Converters with a Practical Energy Management and Power Flow Control Scheme

    Mishima Tomokazu

    The Institute of Systems, Control and Information Engineers, Jul. 2014, Proc. 2014 International Symposium on Flexible Automation (ISFA), pp.1 - 4, English

    [Refereed][Invited]

    International conference proceedings

  • Tomokazu Mishima, Chikanori Takami, Mutsuo Nakaoka

    A novel soft-switching high-frequency (HF) resonant (HF-R) inverter for induction heating (IH) applications is presented in this paper. By adopting the current phasor control of changing a phase shift (PS) angle between two half-bridge inverter units, the IH load resonant current can be regulated continuously under the condition of wide-range soft-switching operations. In addition to this, the dual-mode power regulation scheme-based PS angle control and asymmetrical pulsewidth modulation in one inverter unit is proposed for improving the efficiency in low output power settings. The essential performances on the output power regulation and soft-switching operations are demonstrated in an experiment using its 1-kW 60-kHz HF-R inverter prototype, and then, the topological validity is evaluated from a practical point of view.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, May 2014, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 61 (5), 2531 - 2545, English

    [Refereed]

    Scientific journal

  • A ZCS-PWM Bidirectional DC-DC Converter with a Two-Terminal Resonant Tank-based Auxiliary Switching Cell

    Tomokazu Mishima, Shinya Masuda, Mutsuo Nakaoka

    A new zero current soft-switching (ZCS)-pulse width modulation (PWM) bidirectional dc-dc converter is proposed in this paper. The proposed bidirectional dc-dc converter is assisted by a single auxiliary switch-applied two-terminal edge-resonant cell, the topology of which is simple and practical as compared to a variety of previously-developed soft-switching PWM cells. The performances of the proposed bidirectional dcdc converter are demonstrated by experiment using its 2.2kW-50 kHz prototype circuit, after which the feasibility is evaluated from a practical point of view.

    IEEE, 2014, 2014 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 4043 - 4050, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Chikanori Takami, Mutsuo Nakaoka

    A novel zero voltage soft-switching (ZVS) high-frequency resonant (HF-R) inverter using a reverse-conducting insulated gate bipolar transistor (RC-IGBT) for induction heating (IH) applications is presented in this paper. By utilizing the newly developed fixed-frequency phase angle difference (θ) control of two resonant currents, the IH load power can be continuously regulated in the proposed HF-R inverter over a wide range of output power setting under the conditions of ZVS while maintaining high efficiency. Its operating principle is described with theoretical analysis and simulation results, after which the wide-range power regulation and full-range ZVS operations are clarified by theory and analysis. Furthermore, the essential characteristics on the output power regulations, ZVS operations, and actual conversion efficiency are demonstrated in an experiment with a 1 kW-60 kHz laboratory prototype of the proposed HF-R inverter. Finally, its feasibility is evaluated from a practical point of view. © 2014 The Institute of Electrical Engineers of Japan.

    IEEJ, 2014, IEEJ Transactions on Industry Applications, 134 (1), 27 - 40, Japanese

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Mutsuo Nakaoka

    Performance evaluations of a secondary-side phase shift (SPS) pulse-width-modulation (PWM)-controlled zero voltage soft-switching (ZVS) DC-DC converter with a zero current soft-switching (ZCS) active rectifier are presented in this paper. In the proposed DC-DC converter, the soft-switching operations are achievable from full to null loads by utilizing the parasitic inductances of the high-frequency (HF) transformer. In addition, no circulating current emerges in either the primary- or secondary-side full-bridge circuits, and thus the related idling power losses can be minimized. In this paper, the soft-switching operations over the wide-range load variations are verified, and the characteristics of output power and voltage versus phase shift angle regulations are demonstrated in an experiment based on a 1 kW-50 kHz laboratory prototype of the proposed DC-DC converter. Furthermore, the converter power losses, which include the switching and conduction power losses, are analyzed, after which the effectiveness of the proposed DC-DC converter is evaluated from a practical point of view. © 2014 The Institute of Electrical Engineers of Japan.

    IEEJ, 2014, IEEJ Transactions on Industry Applications, 134 (1), 68 - 81, Japanese

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Chikanori Takami, Mutsuo Nakaoka

    Practical evaluations of an efficiency-improved zero voltage soft-switching (ZVS) high-frequency resonant (HF-R) inverter for induction heating (IH) applications are presented in this paper. By adopting a dual-mode power regulation method that consists of the phase angle difference (?) control and another effective control strategy such as pulse density modulation (PDM), pulse frequency modulation (PFM), and asymmetrical pulse width modulation (A-PWM), the IH load power can be widely regulated under the condition of ZVS while maintaining high efficiency even in a low-output power setting. The actual performances of the output power regulations and ZVS operations are obtained from an experiment based on the 1 kW-60 kHz laboratory prototype, after which the validity of each sub-mode power control scheme is evaluated from a practical point of view. © 2014 The Institute of Electrical Engineers of Japan.

    Institute of Electrical Engineers of Japan, 2014, IEEJ Transactions on Industry Applications, 134 (4), 4 - 411, Japanese

    [Refereed]

    Scientific journal

  • Tomoakzu Mishima, Yuki Nakagawa, Mutsuo Nakaoka

    A new prototype of a single-stage utility ac (UFAC) to high-frequency ac (HFAC) resonant power converter for domestic induction heating (IH) applications is presented in this paper. The high frequency resonant acac converter proposed herein can process UFAC to HFAC power conversion without any diode full-bridge rectifier stage, thereby reducing the number of semiconductor power devices and eliminating the relevant conduction power losses. In addition, power factor correction (PFC) can be achieved by the front-end inductor-based ac chopper operation with boosting the UFAC source voltage to a non-smoothed dc link voltage. The operation principle together with a IH load power regulation scheme is described, and the actual performances are demonstrated in an experiment with a 2.8 kW-30 kHz laboratory prototype. Finally, the feasibility of the proposed ac-ac converter is evaluated from a practical point of view.

    IEEE, 2014, 2014 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-HIROSHIMA 2014 - ECCE-ASIA), 2533 - 2540, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Ittetsu Taniguchi, Hisashi Tamaki, Youichi Kitagawa, Kouji Yutani, Kazuo Suekane

    The DC-microgrid power system in the Nushima Island consists of highly efficient power converters with a high performance power controller and energy management scheme for regulating power flows. In this paper, the power converter architecture of the newly-developed DC micro grid system is described with the relevant control scheme, and its practical effectiveness is discussed from the aspect of renewable and sustainable energy utilization. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

    ELSEVIER SCIENCE BV, 2014, INTERNATIONAL WORKSHOP ON INNOVATIONS IN INFORMATION AND COMMUNICATION SCIENCE AND TECHNOLOGY, IICST 2014, 18, 47 - 52, English

    [Refereed][Invited]

    International conference proceedings

  • Tomokazu Mishima, Kouhei Akamatsu, Mutsuo Nakaoka

    A new prototype of a secondary-side phase shift soft-switching PWM dc-dc converter suitable for electric vehicle battery charging systems is presented in this paper. Wide range soft-switching operations are achievable from full load to no load by effectively utilizing the parasitic inductances of the high frequency transformer in the proposed dc-dc converter. In addition, no circulating current occurs in both of the primary and secondary side full-bridge circuits; thereby, the related idling power can be minimized. As a result, high efficiency power conversion can be maintained owing to the full range soft-switching operation and wide range output power and voltage regulations. Its operating principle is presented on the basis of theoretical analysis and simulation results, and the design procedure of the circuit parameters of the proposed dc-dc converter is described. The essential performance and its effectiveness of the proposed dc-dc converter are originally demonstrated from a practical point of view in an experiment using a 1 kW-50 kHz laboratory prototype.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Dec. 2013, IEEE TRANSACTIONS ON POWER ELECTRONICS, 28 (12), 5758 - 5773, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Yujiro Takeuchi, Mutsuo Nakaoka

    This paper presents a soft-switching pulsewidth modulation (PWM) nonisolated boost dc-dc converter embedding an edge-resonant switched capacitor (ER-SWC) cell and its interleaved circuit topology. The conceptual boost dc-dc converter treated herein can achieve high-frequency zero-current soft-switching turn-on and zero-voltage soft-switching turn-off operations in the active switches and minimization of a reverse recovering current in the freewheeling diode under discontinuous conduction mode partially including critical conduction mode in the input current. Those advantageous properties enable a wide range of soft-switching operations together with a high-voltage step-up conversion ratio with a reduced current stress. Circuit design guideline based on the soft-switching range is introduced; then, a theoretical analysis is carried out for investigating the step-up voltage conversion ratio. For demonstrating the effectiveness of the ER-SWC soft-switching PWM boost dc-dc converter and its newly developed interleaved topology, laboratory prototypes are evaluated in experiments; then, their performances are discussed from a practical point of view.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Jul. 2013, IEEE TRANSACTIONS ON POWER ELECTRONICS, 28 (7), 3363 - 3378, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Mutsuo Nakaoka

    This paper presents the performance evaluations of a zero current soft-switching pulse width modulation (ZCS-PWM) boost dc-dc converter with a practical active edge-resonant cell (AERC). The AERC treated and discussed herein has auxiliary diodes for suppressing voltage surges and current ringings at the commutations of active switches in the dc-dc converters. The voltage surges together with the current ringings can be effectively eliminated in the AERC owing to the effect of the clamping diodes. Therefore, voltage ratings of the active switches can be considerably reduced as compared to the classical AERC without the clamping diodes, consequently the conversion efficiency can be improved in the ZCS-PWM boost dc-dc converter. The practical effectiveness of the clamping diode-assisted ZCS-PWM boost dc-dc converter is demonstrated in detail by means of experimental verifications based on a 1.6 kW-40 kHz laboratory prototype. In addition, an extended topological family of nonisolated ZCS-PWM dc-dc converters employing the practical AERC is originally described for demonstrating the high scalability of the AERC.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Jun. 2013, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 60 (6), 2225 - 2236, English

    [Refereed]

    Scientific journal

  • Kouhei Akamatsu, Tomokazu Mishima, Mutsuo Nakaoka

    A new prototype of a secondary-side phase shifted (SPS) soft-switching PWM dc-dc converter is presented in this paper. In the proposed dc-dc converter, soft-switching operations are achievable from full to no loads by utilizing the parasitic inductances of the high frequency (HF) transformer. Beside that, no circulating current occurs in both of the primary and secondary side full-bridge circuits, consequently the related idling power can be minimized. The wide-range soft-switching principle is described in details by actual performances oriented the circuit description. The essential performances, steady-state and switching characteristics of the proposed dc-dc converter are originally demonstrated in experiments by a 1 kW-50 kHz prototype, and its practical effectiveness is verified.

    IEEE, 2013, 2013 TWENTY-EIGHTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC 2013), 1 - 8, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Hiroto Mizutani, Mutsuo Nakaoka

    An LLC multi-resonant DC-DC converter with anti-resonant tank is presented in this paper. The five-element multi-resonant (LLC-LC) dc-dc converter can realize the wide range regulations of output voltage and power by pulse frequency modulation (PFM) under soft switching conditions. The resonant dc-dc converter proposed herein is suitable for renewable and sustainable energy applications such as battery chargers interfaced with a photovoltaic power generation system. In this paper, the design guideline of circuit parameters is originally described. Experiment results on the soft-switching performances and steady-state characteristics including the power loss analysis are demonstrated, thereby the effectiveness is verified from a practical point of view.

    IEEE, 2013, 2013 IEEE 10TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS (IEEE PEDS 2013), 147 - 152, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Chikanori Takami, Mutsuo Nakaoka

    A novel soft-switching high-frequency (HF) resonant (HF-R) inverter for induction heating (IH) applications is presented in this paper. By adopting the phase shift (PS)-based current phasor (CP)-controlled, the IH load resonant current can be continuously regulated under the wide-range soft-switching conditions. In order to improve the conversion efficiency in the light load region, the pulse-density-modulation (PDM) is employed for the CP-controlled HF-R inverter, thus creating PS & PDM dual mode CP-control scheme. The essential performances on the output power regulation and soft-switching operations are demonstrated in experiments using a 1 kW-60 kHz prototype, and then its topological validity is evaluated from the practical point of view.

    IEEE, 2013, 2013 IEEE 10TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS (IEEE PEDS 2013), 1033 - 1038, English

    [Refereed]

    International conference proceedings

  • Hiroto Mizutani, Tomokazu Mishima, Mutsuo Nakaoka

    A five-element multi-resonant(LLC LC) dc-dc converter can attain the wide range output power and voltage regulations by a practical-range pulse frequency modulation (PFM). It is a drawback, however, the power conversion efficiency deteriorates under the light load condition due to the conduction power loss in the LC anti-resonant circuit. As a solution to this technical problem, the pulse density modulation (PDM) is applied to the LLC-LC dc-dc converter as the submode power regulation scheme. In this paper, the essential performances of the new prototype of the PFM/PDM dual mode controlled LLC LC dc-dc converter are presented with the experimental verification. The comparison between the LLC LC dc-dc converter and the conventional LLC dc-dc converter is described in terms of efficiency as well as output voltage and power regulations characteristics, and the effectiveness of the LLC LC dc-dc converter is evaluated from a practical point of view. © 2013 IEEE.

    IEEE, 2013, 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, 4912 - 4919, English

    [Refereed]

    International conference proceedings

  • Chikanori Takami, Katsuya Hirachi, 三島 智和

    In this paper we propose a novel chopper circuit topology incorporating series connection of buck and boost choppers. This circuit topology shows various characteristics according to the combination method of operating modes. In these many combinations, we research all operation modes in which the two MOSFETs are on and off at different time. Experimental results show variety of circuit operations by various combinations of operating mode.

    The Japan Institute of Power Electronics, Mar. 2012, Journal of the Japan Institute of Power Electronics, Vol.37, pp.89-96, 89 - 96, Japanese

    [Refereed]

    Scientific journal

  • A New ZVS Phase Shift-Controlled Class D Full-Bridge High-Frequency Resonant Inverter for Induction Heating

    Chikanori Takami, Tomokazu Mishima, Mutsuo Nakaoka

    A new high-performance high-frequency (HF) soft switching inverter for induction heating (IH) applications is presented in this paper. By adjusting a phase difference angle between the two resonant currents based on the phase shift-control scheme, the IH load resonant current can be regulated continuously and flexibly under the full-load range soft switching conditions. The performances on the output power control and the soft switching operations are demonstrated in experiments using a 450 W-70kHz prototype, then its topological validity is evaluated from the practical point of view.

    IEEE, 2012, 2012 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2012), English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Chikanori Takami, Mutsuo Nakaoka

    A novel high-frequency resonant inverter operating under a complete zero current soft transition mode is originally proposed in this letter, which can be continuously controlled by regulating phase difference angle between two resonant currents under the fixed switching frequency. Its operating principle and unique features are described herein by simulation analysis for high-frequency low resistivity induction heating of metal vessels. Furthermore, its output power regulation vs. phase-shifted angle characteristics are demonstrated under the condition of complete ZCS operation. © 2012 The Institute of Electrical Engineers of Japan.

    2012, IEEJ Transactions on Industry Applications, 132 (4), 520 - 521, Japanese

    [Refereed]

    Scientific journal

  • Hiroto Mizutani, Tomokazu Mishima, Mutsuo Nakaoka

    A novel LLC multi-resonant DC-DC converter with an anti-resonant circuit is presented in this paper. The LLC DC-DC converter proposed herein can improve the sensitivity of voltage conversion ratio in the step-down area, and then achieve the excellent performance on the output voltage and power regulations by pulse frequency modulation (PFM) under soft switching conditions. The theoretical analysis and the experiment results on the essential switching and steady-state performances of the proposed DC-DC converter are described, and the practical effectiveness is verified. In addition, the performance comparison between the voltage doubler (VD) and full bridge (FB) diode rectifier applied for the proposed LLC DC-DC converter is discussed in terms of a conversion efficiency and soft switching performances. © 2012 IEEE.

    2012, Conference Proceedings - 2012 IEEE 7th International Power Electronics and Motion Control Conference - ECCE Asia, IPEMC 2012, 2, 1328 - 1335, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Kouhei Akamatsu, Mutsuo Nakaoka

    A new prototype of a secondary-side phase shifted (SPS) zero voltage and zero current soft switching PWM dc-dc converter with active rectifier is presented in this paper. The proposed dc-dc converter has no circulating current in the full-bridge circuits both of the primary and secondary sides, so that the related idling power can be minimized. Beside that, a wide-range soft switching can be attained from full load to no load by utilizing parasitic inductances of the high frequency (HF) transformer. The essential performance of a 1kW-50kHz prototype of the proposed dc-dc converter is originally demonstrated in experiments, and its effectiveness is discussed from the practical point of view.

    IEEE, 2012, 2012 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2544 - 2551, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Hiroto Mizutani, Mutsuo Nakaoka

    A novel LLC resonant dc-dc converter with an antiresonant circuit (ARC) is presented in this paper. The LLC dc-dc converter with ARC can improve the sensitivity of voltage conversion ratio in the dc voltage step-down area, then achieve the excellent performance on the output voltage and power regulations by pulse frequency modulation (PFM) under soft switching conditions. The theoretical analysis and the experiment results on the essential switching and steady-state performances including the power loss analysis of the proposed LLC dc-dc converter are demonstrated, and its practical effectiveness is described. Furthermore, the modified LLC dc-dc converter with ARC is newly introduced and its essential performances are demonstrated by a simulation analysis.

    IEEE, 2012, 2012 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 3533 - 3540, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Chikanori Takami, Mutsuo Nakaoka

    A novel high-frequency (HF) soft switching resonant inverter for induction heating (IH) applications is presented in this paper. By adopting the phase shift-controlled two-inverter mode and the asymmetrical PWM-based single-inverter mode, the IH load resonant current can be regulated continuously under the full-load range soft switching conditions with maintaining high efficiency. The essential performances on the output power control and soft switching operations are demonstrated in experiments using a 450 W-70 kHz prototype, then its topological validity is evaluated from the practical point of view.

    IEEE, 2012, 38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 38th Vol.4, 3256 - 3261, English

    [Refereed]

    International conference proceedings

  • A New ZVS Phase-Shifted High-Frequency Resonant Inverter Incorporating Asymmetrical PWM-based Unit Control for Induction Heating

    Tomokazu Mishima, Chikanori Takami, Mutsuo Nakaoka

    A novel high-frequency (HF) soft switching resonant inverter for induction heating (IH) applications is presented in this paper. By adopting the phase shift-controlled two-inverter mode and the asymmetrical PWM-based single-inverter mode, the IH load resonant current can be regulated continuously under the full-load range soft switching conditions with maintaining high efficiency. The essential performances on the output power control and soft switching operations are demonstrated in experiments using a 450 W-70 kHz prototype, then its topological validity is evaluated from the practical point of view.

    IEEE, 2012, 38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 3256 - 3261, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Kouhei Akamatsu, Mutsuo Nakaoka

    A new prototype of a secondary-side phase shifted (SPS) soft switching PWM dc-dc converter with an active rectifier is presented in this paper. In the proposed dc-dc converter, soft switching commutations are achievable from full load to no load by utilizing parasitic inductances of the high frequency (HF) transformer. Beside that, no circulating current exists in both of the primary and secondary side full-bridge circuits, consequently the related idling power can be minimized. The wide soft switching principle is described in details, and the circuit design guideline are introduced on the basis on the soft switching strategy. The essential performance and its practical effectiveness of the proposed dc-dc converter are originally demonstrated in experiments of a 1 kW-50kHz prototype.

    IEEE, 2012, 38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 38th Vol.1, 244 - 249, English

    [Refereed]

    International conference proceedings

  • Kouhei Akamatsu, Tomokazu Mishima, Mutsuo Nakaoka

    A new prototype of a secondary-side phase shifted (SPS) soft switching PWM dc-dc converter suitable for electric vehicle (EV) battery charging systems is presented in this paper. In the proposed dc-dc converter, soft switching commutations are achievable from full load to no load by utilizing parasitic inductances of the high frequency (HF) transformer. Beside that, no circulating current in both of the primary and secondary side full-bridge circuits, consequently the related idling power can be minimized. The wide soft switching principle is described in details. The essential performance and its practical effectiveness of the proposed dc-dc converter are originally demonstrated in experiments by a 1 kW-50 kHz prototype.

    IEEE, 2012, INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), English

    [Refereed]

    International conference proceedings

  • Hiroaki Itoh, Tomokazu Mishima, Mutsuo Nakaoka

    This paper presents a newly-developed soft switching PWM boost dc-dc converter in continuous conduction mode (CCM). The soft switching boost dc-dc converter consists of an edge-resonant switched capacitor (ER-SWC) cell, providing the wide-range soft commutations for all the switching power devices. The voltage stress inherent to the CCM scheme can be reduced by employing a lossless auxiliary circuit. The converter operation and performance are verified by experiments, and the effective reduction of the voltage stress and the efficiency improvement are originally demonstrated as well as its voltage conversion ratio.

    IEEE, 2012, INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), English

    [Refereed]

    International conference proceedings

  • Mizutani Hiroto, Mishima Tomokazu, Ooue Yasuyuki, Fukumoto Yoshiki, Nakaoka Mutsuo

    This paper presents a new LLC multi-resonant DC-DC converter with a reverse resonant LC filte.The proposed DC-DC convert ercircuit can improve the sensitivity of voltage conversion ratio in the step-down area,and then achieve the high performance on output voltage and power regulation by PFM under soft switching conditions.The proposed DC-DC converter can achieve a high frequency Zero Voltage and Zero Current Softswitching (ZVZCS) turn-on and Zero Voltage Soft switching (ZVS) turn-off operations.The theoretical analysis and simulation results of the proposed DC-DC converter are described.Then,the characteristics on the voltage conversion ratio and output power reguration of the conventional LLC resonant DC-DC converter and the proposed DC-DC converter are compared,and the advantageous features in the proposed DC-DC converter are clearly demonstrated.

    The Japan Institute of Power Electronics, 2012, Journal of the Japan Institute of Power Electronics, 37, 168 - 174, Japanese

  • Takeuchi Yujiro, Mishima Tomokazu, Nakaoka Mutsuo

    This paper presents a soft switching PWM non-isolated boost DC-DC converter embedding an edge-resonant switched capacitor (ER-SWC) modular. The DC-DC converter treated here can achieve a high frequency ZCS turn-on and ZVS turn-off operations in active switches and minimization of a reverse recovering current in the freewheeling diode under DCM including CRM operation of the input DC current. In this paper, the soft switching operating range is described in connection with the output power range as well as the practical design procedure for the circuit parameters.For demonstrating the soft switching operations in detail, a 1[kW]-44[kHz] laboratory prototype designed in accordance with the guideline is evaluated by experiments, then actual performances of the proposed DC-DC converter are discussed from the practical point of view.

    The Japan Institute of Power Electronics, 2012, Journal of the Japan Institute of Power Electronics, 37, 190 - 195, Japanese

  • Takami Chikanori, Mishima Tomokazu, Nakaoka Mutsuo

    The Japan Institute of Power Electronics, 2012, Journal of the Japan Institute of Power Electronics, 37, 245 - 245, Japanese

  • Mizutani Hiroto, Mishima Tomokazu, Ooue Yasuyuki, Fukumoto Yoshiki, Nakaoka Mutsuo

    The Japan Institute of Power Electronics, 2012, Journal of the Japan Institute of Power Electronics, 37, 247 - 247, Japanese

  • Takeuchi Yujiro, Mishima Tomokazu, Nakaoka Mutsuo

    This paper presents a new soft switchingPWMnon-isolated high step-up boost DC-DC converter embedding an edgeresonant switched capacitor (ER-SWC) modular. The DC-DC converter treated here can achieve a high frequency ZCS turn-on and ZVS turn-off operations in active switches and minimization of a reverse recovering current due to ZCS in the freewheeling diode under DCM including CRM operation of input inductor DC current. First of all, detailed operation characteristics and voltage step-up ratio of the proposed soft switching boost DC-DC converter are presented by means of theoretical analysis. For demonstrating the effectiveness of the converter and analysis, a 1[kW]-40[kHz] laboratory prototype is evaluated in experiments, then performances of the converter are discussed from a practical point of view.

    The Japan Institute of Power Electronics, 2012, Journal of the Japan Institute of Power Electronics, 37, 97 - 102, Japanese

  • Akamatsu Kouhei, Mishima Tomokazu, Nakaoka Mutsuo

    The Japan Institute of Power Electronics, 2012, Journal of the Japan Institute of Power Electronics, 37, 248 - 248, Japanese

  • Tomokazu Mishima, Mutsuo Nakaoka

    This paper presents a feasibility investigation of a zero-voltage switching (ZVS) pulsewidth modulation (PWM) dc-dc converter with secondary-side phase-shifting power control scheme. The ZVS-PWM dc-dc converter treated here can achieve soft commutation in all the power devices under the wide range of output power variation. By the phase-shifting control that is based on the secondary-side rectifier linked with a high-frequency planar transformer, the effective reduction of idling power in the primary-side inverter as well as snubber-less rectifications in the secondary-side rectifier can be actually attained. The essential experimental data obtained from a 100-kHz/2.5-kW prototype are described herein to validate the soft-switching circuit and control scheme, and then the effectiveness of the dc-dc converter is discussed and evaluated from a practical point of view.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Dec. 2011, IEEE TRANSACTIONS ON POWER ELECTRONICS, 26 (12), 3896 - 3907, English

    [Refereed]

    Scientific journal

  • Tomoakzu Mishima, Yujiro Takeuchi, Mutsuo Nakaoka

    This paper presents a new soft switching PWM non-isolated boost DC-DC converter embedding an edge resonant switched capacitor (ER-SWC) modular. The soft switching PWM boost DC-DC converter treated here can achieve a high frequency zero current switching (ZCS) turn-on and zero voltage switching (ZVS) turn-off operations in active switches and minimize a reverse recovering current in the freewheeling diode under DCM including CRM conditions in the input inductor current. Those advantageous properties enable a wide range of soft switching operations together with a high step-up voltage conversion ratio due to the edge resonance in the ER-SWC modular, which results in the high efficiency power conversion. For demonstrating the effectiveness of the new soft switching PWM boost DC-DC converter, a 1kW-40kHz laboratory prototype is evaluated in experiments, followed by the design guideline of the DC-DC converter and a theoretical analysis. Then, the performances of the proposed soft switching PWM boost DC-DC converter are discussed from a practical point of view.

    IEEE, 2011, PROCEEDINGS OF THE 2011-14TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE 2011), 846 - 853, English

    [Refereed]

    International conference proceedings

  • Tomoakzu Mishima, Yujiro Takeuchi, Mutsuo Nakaoka

    This paper presents a new soft switching PWM non-isolated boost DC-DC converter embedding an edge resonant switched capacitor (ER-SWC) modular. The soft switching PWM boost DC-DC converter treated here can achieve a high frequency zero current switching (ZCS) turn-on and zero voltage switching (ZVS) turn-off operations in active switches and minimize a reverse recovering current in the freewheeling diode under DCM including CRM conditions in the input inductor current. Those advantageous properties enable a wide range of soft switching operations together with a high step-up voltage conversion ratio due to the edge resonance in the ER-SWC modular, which results in the high efficiency power conversion. For demonstrating the effectiveness of the new soft switching PWM boost DC-DC converter, a 1kW-40kHz laboratory prototype is evaluated in experiments, followed by the design guideline of the DC-DC converter and a theoretical analysis. Then, the performances of the proposed soft switching PWM boost DC-DC converter are discussed from a practical point of view.

    IEEE, 2011, PROCEEDINGS OF THE 2011-14TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE 2011), 846 - 853, English

    [Refereed]

    International conference proceedings

  • A New High Step-Up Voltage Ratio Soft Switching PWM Boost DC-DC Power Converter with Edge Resonant Switched Capacitor Modular

    Tomoakzu Mishima, Yujiro Takeuchi, Mutsuo Nakaoka

    This paper presents a new soft switching PWM non-isolated boost DC-DC converter embedding an edge resonant switched capacitor (ER-SWC) modular. The soft switching PWM boost DC-DC converter treated here can achieve a high frequency zero current switching (ZCS) turn-on and zero voltage switching (ZVS) turn-off operations in active switches and minimize a reverse recovering current in the freewheeling diode under DCM including CRM conditions in the input inductor current. Those advantageous properties enable a wide range of soft switching operations together with a high step-up voltage conversion ratio due to the edge resonance in the ER-SWC modular, which results in the high efficiency power conversion. For demonstrating the effectiveness of the new soft switching PWM boost DC-DC converter, a 1kW-40kHz laboratory prototype is evaluated in experiments, followed by the design guideline of the DC-DC converter and a theoretical analysis. Then, the performances of the proposed soft switching PWM boost DC-DC converter are discussed from a practical point of view.

    IEEE, 2011, PROCEEDINGS OF THE 2011-14TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE 2011), vol.1, pp.1-6, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Yujiro Takeuchi, Mutsuo Nakaoka

    This paper presents performance evaluations of a novel prototype of a soft switching PWM non-isolated boost DC-DC converter embedding an edge-resonant switched capacitor (ER-SWC) modular. The conceptual DC-DC converter treated here can achieve a high frequency ZCS turn-on and ZVS turn-off operations in active switches and minimization of a reverse recovering current in the freewheeling diode under Discontinuous Conduction Mode (DCM) including Critical Conduction Mode (CRM) in the input current. Those advantageous properties enable a wide range of soft switching operations together with a high step-up voltage conversion ratio. For demonstrating the effectiveness of the proposed soft switching PWM boost DC-DC converter following to describing its circuit design procedure, a 1kW-40 kHz laboratory prototype is evaluated in experiments, then its performances are discussed from a practical point of view.

    IEEE, 2011, 2011 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2011 Vol.4, 3088 - 3095, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Yujiro Takeuchi, Mutsuo Nakaoka

    This paper presents a new prototype of a soft switching PWM non-isolated boost DC-DC converter embedding an edge-resonant switched capacitor (ER-SWC) modular. The conceptual DC-DC converter treated herein can achieve a high frequency ZCS turn-on and ZVS turn-off operations in active switches and minimization of a reverse recovering current in the freewheeling diode under Discontinuous Conduction Mode (DCM) partially including Critical Conduction Mode (CRM) in the input current. Those advantageous properties enable a wide range of soft switching operations together with a high step-up voltage conversion ratio. For demonstrating the effectiveness of the proposed soft switching PWM boost DC-DC converter following to describing its circuit design procedure, a 1 kW-40 kHz laboratory prototype is evaluated in experiments, then its performances are discussed from a practical point of view.

    IEEE, 2011, 2011 IEEE 33RD INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE (INTELEC), 33rd Vol.2, 988 - 996, English

    [Refereed]

    International conference proceedings

  • Yujiro Takeuchi, Tomokazu Mishima, Mutsuo Nakaoka

    This paper presents a new investigation for a soft commutation performance of a soft switching PWM non-isolated boost DC-DC converter embedding an ER-SWC (Edge Resonant SWitched Capacitor) modular. The conceptual DC-DC converter treated here can achieve a high frequency ZCS turn-on and ZVS turn-off commutations in active switches and minimization of a reverse recovering current in the freewheeling diode under DCM (Discontinuous Conduction Mode) including CRM (CRitical Mode) in the input current. Those advantageous enable a wide range of soft switching operations together with a high stepup voltage conversion ratio. For demonstrating the wide-range soft switching operation performed in the soft switching PWM boost DC-DC converter, a 1[kW]-44[kHz] laboratory prototype is evaluated in experiments, then its performances are discussed from a practical point of view. © 2011 IEEE.

    2011, Proceedings of the International Conference on Power Electronics and Drive Systems, 1172 - 1177, English

    [Refereed]

    International conference proceedings

  • 竹内 悠次郎, 三島 智和, 中岡 睦雄

    The Japan Institute of Power Electronics, 2011, パワーエレクトロニクス学会誌, 36, 207 - 207, Japanese

  • A New Family of ZCS-PWM DC-DC Converters with Clamping Diodes-assisted Active Edge-Resonant Cell

    Tomokazu Mishima, Mutsuo Nakaoka

    Oct. 2010, Proc. 13th International Conference on Electrical Machines and Systems (ICEMS 2010), pp.168-173, English

    [Refereed]

    Scientific journal

  • YOSHIMURA Yu, MISHIMA Tomokazu, SUMIYOSHI Shinichiro, NAKAOKA Mutsuo

    パワーエレクトロニクス学会, Mar. 2010, Journal of the Japan Institute of Power Electronics, 35, 146 - 153, Japanese

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Eiji Hiraki, Mutsuo Nakaoka

    This paper presents a bidirectional DC-DC converter suitable for low-voltage super capacitor-based electric energy storage systems. The DC-DC converter presented here consists of a full-bridge circuit and a current-fed push-pull circuit with a high frequency (HF) transformer-link. In order to reduce the device-conduction losses due to the large current of the super capacitor as well as unnecessary ringing, synchronous rectification is employed in the super capacitor-charging mode. A wide range of voltage regulation between the battery and the super capacitor can be realized by employing a Phase-Shifting (PS) Pulse Width Modulation (PWM) scheme in the full-bridge circuit for the super capacitor charging mode as well as the overlapping PWM scheme of the gate signals to the active power devices in the push-pull circuit for the super capacitor discharging mode. Essential performance of the bidirectional DC-DC converter is demonstrated with simulation and experiment results, and the practical effectiveness of the DC-DC converter is discussed.

    KOREAN INST POWER ELECTRONICS, Jan. 2010, JOURNAL OF POWER ELECTRONICS, 10 (1), 27 - 33, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Hisayuki Sugimura, Khairy Fathy Sayed, Soon Kurl Kwon, Mutsuo Nakaoka

    This paper is concerned with some experimental results and practical evaluations of a three-level phase shifted ZVS-PWM DC-DC converter with neutral point clamping diodes and flying capacitor for a variety of gas metal arc welding machines. This new DC-DC converter suitable for high power applications is implemented by modifying the high-frequency-linked half bridge soft switching PWM DC-DC converter with two active edge resonant cells (AERCs) in high side and low side DC rails, which is previously-developed put into practice by the authors. The operating principle of the three-level phase-shift ZVS-PWM DC-DC converter and its experimental and simulation results including power regulation characteristics vs. phase-shifted angle and power conversion efficiency characteristics in addition to power loss analysis are illustrated and evaluated comparatively from a practical point of view, along with the remarkable advantageous features as compared with previously-developed one.

    IEEE, 2010, 2010 TWENTY-FIFTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC), 1230 - 1237, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Shuji Miyake, Mutsuo Nakaoka

    This paper presents a feasibility study of a zero current switching (ZCS)-PWM boost DC-DC converter with active edge-resonant cell (AERC) employing Si-Insulated Gate Bipolar Transistor (Si-IGBT) and SiC Shottky Barrier Diode (SiC-SBD) hybrid power devices. In the ZCS-PWM DC-DC converter newly developed for a PV power interface, a lower voltage-rating switching power device can be used for the active switches in the AERC under high-frequency switching by the effect of a recovery-less transition of the anti-parallel with assist of clamping diodes, consequently high-efficiency power conversion can be attained. The essential performance including steady-state operating characteristics of the ZCS-PWM boost DC-DC converter is demonstrated with the experimental data obtained from a 40 kHz-1.6 kW prototype.

    The Institute of Engineering and Technology (IET, UK), 2010, IET Conference Publications, 2010 (563), pp.1 - 6, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Eiji Hiraki, Mutsuo Nakaoka

    The Republic of Korea This paper presents a novel Zero Current Switching (ZCS)-PWM controlled half-bridge DC-DC converter with High-Frequency (HF)-link. The newly-proposed soft switching DC-DC converter consists of a multi-resonant halfbridge HF-isolated inverter controlled by an asymmetrical PWM scheme and a center-tapped diode rectifier with a choke input filter. In order to attain the wide range of soft-commutation under the condition of constant switching frequency, the single Active Edge-Resonant Cell (AERC) that is composed of a lossless inductor and a switched resonant capacitor is originally employed for the half-bridge inverter arm, providing and assisting ZCS operations in the switching power devices. The ZCS-PWM DC-DC converter treated here is evaluated in experiments using the 800 W55 kHz prototype. The practical effectiveness of the proposed soft switching DC-DC converter is actually demonstrated and discussed with the experimental results under open loop and closed loop configurations. Finally, the feasibility of the DC-DC converter topology is discussed from the view points of the high efficiency and high power density. © 2010 The Institute of Electrical Engineers of Japan.

    2010, IEEJ Transactions on Industry Applications, 130 (5), 4 - 613, Japanese

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Mutsuo Nakaoka

    This paper is concerned with a family of soft switching Pulse Width Modulation(PWM) DC-DC converter employing a novel Zero Voltage and Zero Current Switching(ZVZCS) Active auxiliary Edge-Resonant Cell(AERC). The non-isolated DC-DC converters introduced here can achieve a high frequency ZVS and ZCS operations in a main and an auxiliary switch with minimizing the voltage and current stresses as well as circulating currents. For demonstrating the effectiveness of the new soft switching cell, the boost DC-DC converter is evaluated by simulations and experiments using its 100 kHz laboratory prototype. In addition to that, the one-switch dual boost DC-DC converter is newly demonstrated as the new AERC-applied high voltage step-up power converter. © 2010 IEEE.

    2010, 2010 International Power Electronics Conference - ECCE Asia -, IPEC 2010, 2804 - 2809, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Shuji Miyake, Mutsuo Nakaoka

    A practical ZCS-PWM active edge-resonant cell employing the parasitic oscillation-suppressed clamping diodes is presented in this letter. The improved active edge-resonant cell is quite effective for suppressing the surge voltages at the turn-off transitions of active power devices, thereby reduction of the voltage rating of the power devices and circuit components can be achieved. The practical effectiveness of the improved active edge-resonant cell is confirmed by the experiments on the newly-developed ZCS-PWM boost DC-DC converter, and furthermore its extended ZCS-PWM DC-DC converter topologies are originally proposed. © 2010 The Institute of Electrical Engineers of Japan.

    2010, IEEJ Transactions on Industry Applications, 130 (9), 1115 - 1116, Japanese

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Mutsuo Nakaoka

    This paper presents a novel soft-switching half-bridge dc-dc converter with high-frequency link. The newly proposed soft-switching dc-dc converter consists of a single-ended half-bridge inverter controlled by an asymmetrical pulsewidth-modulation scheme and a center-tapped diode rectifier. In order to attain the wide range of soft commutation under constant switching frequency, the single active edge-resonant snubber cell composed of a lossless inductor and a switched capacitor is employed for the half-bridge inverter leg, providing and assisting zero-current-switching operations in the switching power devices. The practical effectiveness of the proposed soft-switching dc-dc converter is demonstrated by the experimental results from an 800 W-55 kHz prototype. In addition, the feasibility of the dc-dc converter topology is proved from the viewpoints of the high efficiency and high power density.

    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, Aug. 2009, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 56 (8), 2961 - 2969, English

    [Refereed]

    Scientific journal

  • MISHIMA Tomokazu, MORIMOTO keiki, NAKAOKA Mutsuo

    A novel soft-switching Three-Level (TL) DC-DC converter with phase-shift PWM scheme is presented in this paper. This converter performs Zero Voltage and Zero Current Soft-Switching commutation (ZVZCS) with assist of the tapped inductor output filter in the secondary-side rectifier of the High-Frequency (HF) transformer. By employing the tapped-inductor, the circulating current which increases in the HF transformer in accordance with expansion of the phase-shift angle is drastically reduced, which ensures that the high conversion efficiency can be achieved for the wide range of load variation, compared to its counterpart of ZVS TL DC-DC converter. The operation characteristics and soft-swicthing operations in principle are verified by simulation results.

    The Japan Institute of Power Electronics, Mar. 2009, Journal of the Japan Institute of Power Electronics, Vol.34, pp.111-117, 111 - 119, Japanese

    [Refereed]

    Scientific journal

  • An Active Rectifier-Phase Shifted ZVS-PWM DC-DC Converter with HF Planar Transformer-Link for RF Plasma Power Generator

    Tomokazu Mishima, Yasuyuki Ooue, Yoshiki Fukumoto, Mutsuo Nakaoka

    This paper presents the zero voltage switching (ZVS) PWM Dual Full Bridge (DFB) DC-DC converter with secondary-side phase-shifting power control scheme. The soft-switching PWM DC-DC converter newly developed for a DC pre-regulator in a plasma radio frequency (RF) power generator can achieve soft commutation at all the power devices under the wide range of load power. By introducing the phase-shifting control scheme that is based on the secondary-side rectifier of the high-frequency (HF) planar transformer, it can attain the effective reduction of idling power in the primary-side inverter as well as the completely recovery-less diode commutations in the secondary-side rectifier. The experimental operating performance, power loss analysis and actual conversion efficiencies of the DC DC converter are described to verify the soft-switching circuit, and the feasibility is discussed from the practical point of view.

    IEEE, 2009, 2009 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1 AND 2, 697 - +, English

    [Refereed]

    International conference proceedings

  • Hisayuki Sugimura, Khairy Fathy, Sang-Pil Mun, Toshimitsu Doi, Tomokazu Mishima, Mutsuo Nakaoka

    This paper presents some experimental results and practical evaluations of neutral point clamping and flying capacitor hybrid three-level phase shifted soft switching PWM DC-DC high power converter with high frequency transformer and center-tapped rectifier. This new DC-DC converter developed for TIC, MIG and MAC arc welders is implemented by modifying the high-frequency-linked HB soft switching PWM DC-DC power converter with high side and low side two active edge resonant modular, which is proposed by the authors. The operating principle of the three-level soft-switching PWM DC-DC converter and its experimental and simulation results including phase-shifted angle vs. power regulation characteristics and power conversion efficiency characteristics in addition to power loss analysis are illustrated and discussed from a practical point of view, along with the remarkable advantageous points as compared with previously-developed soft switching PWM DC-DC converter. Finally, the improved three-level soft switching PWM converter version is also considered to suppress the circulating current due to phase shift pulse modulation principle. The PWM and PDM dual pulse modulation strategy is considered to extend its soft switching transition operation range.

    IEEE, 2009, 2009 IEEE 6TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-4, 265 - +, English

    [Refereed]

    International conference proceedings

  • A Push-Pull Converter Based Bidirectional DC-DC Interface for Energy Storage Systems

    Eiji Hiraki, Kazumasa Hirao, Toshihiko Tanaka, Tomokazu Mishima

    In recent years, power electronic energy storage systems using Super capacitor bank have been widely studied and developed for the electronic vehicles. In this paper, a full-bridge/centertapped push-pull circuit with active clamp-based soft switching bidirectional DC-DC converter and its control method are presented and discussed. From the results of basic experimental demonstration, the proposed system is able to perform adequate charging and discharging operation between low-voltage high-current super capacitor side and high-voltage low-current side with drive train and main battery. In addition, RCDi snubber losses appeared in the basic circuit topology are drastically reduced by ZCS/ZVS operation with the assistance of newly added active clump circuit, as well as ZVS operation with lossless snubber capacitor in high-voltage primary side.

    IEEE, 2009, EPE: 2009 13TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, VOLS 1-9, 5842 - 5851, English

    [Refereed]

    International conference proceedings

  • A High Frequency Planar Transformer-linked ZVS DC-DC Converter with Secondary-side Phase-Shifting PWM Rectifier

    Tomokazu Mishima, Yuji Yoshizako

    This paper presents a feasibility study of a zero voltage switching (ZVS) PWM full bridge (FB) DC-DC converter with high-frequency planar transformer-link. The soft-switching PWM FB DC-DC converter newly-developed for a switching power amplifier in a plasma generator can achieve soft commutations in switching power devices under the wide range of load power. Moreover, it can attain the effective reduction of idling power due to the phase-shift PWM scheme. In this paper, the essential experimental data obtained from a 100 kHz -8 kW prototype is described to demonstrate the practical effectiveness of the ZVS-PWM FB DC-DC converter.

    IEEE, 2009, EPE: 2009 13TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, VOLS 1-9, CD-ROM, pp.1-8, 1545 - +, English

    [Refereed]

    International conference proceedings

  • T. Mishima, S. Miyake, M. Nakaoka

    This paper presents the feasibility study of Zero Current Soft-switching (ZCS) PWM boost DC-DC converters with auxiliary lossless active edge-resonant cells. This type of soft-switching DC-DC boost converters is effective especially for IGBTs-based DC-DC converter due to its commutation process independent on the tail current transitions. The performances of ZCS-PWM DC-DC converter topologies are compared by experimental data, referring to the hard-switching one, and detailed investigation including loss analyses is described in order to demonstrate the practical feasibility of the active edge resonant cells.

    IEEE, 2009, INTELEC 09 - 31ST INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE, 31st Vol.2, 744 - 748, English

    [Refereed]

    International conference proceedings

  • Khairy F. A. Sayed, Tomokazu Mishima, Hisayuki Sugimura, Sang-Pil Mun, Soon-Kurl Kwon, Mutsuo Nakaoka

    This paper presents 2 active edge resonant cell interleaved boost DC-DC converter. It uses two feedback loops including similar to current mode control with one slow outer loop and the other for faster inner PWM control loop. To improve the transient response of the 2-cell assisted ZCS boost converter system, a coupled inductor of energy storage inductors is used on the basis of interleave architecture. This integrated magnetic design structure reduces size as well as weight and improves the converter performance due to both steady-state and transient. The effectiveness of the proposed converter and control scheme is demonstrated through PSIM simulations.

    IEEE, 2009, 2009 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-3, 1704 - +, English

    [Refereed]

    International conference proceedings

  • Bishwajit Saha, H. Sugimura, T. Mishima, S. Sumiyoshi, H. Omori, S. P. Mun, Mutsuo Nakaoka

    This paper presents a prototype of voltage-fed high-frequency Ill load resonant inverter with lossless snubbing capacitor and resonant switched, along with its unique features. This high frequency soft commutation resonant inverter using IGBT power modules is developed for consumer induction heated cooking heater, steamer and super heated steamer. The operating principle of the high frequency resonant inverter proposed here in is illustrated my using periodic switching mode equivalent circuit. The voltage and current waveforms are verified through comparative simulation and observed results. Furthermore, the operating performances including high-frequency AC regulation and power conversion efficiency on the basis of dual duty cycle PWM scheme are discussed in experiment. The cost effectiveness of the proposed high frequency resonant soft-switching inverter is verified from a practical point of view.

    IEEE, 2009, 2009 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-3, 1427 - +, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Yasuyuki Ooue, Yoshiki Fukumoto, Mutsu Nakaoka

    This paper presents a feasibility study of a zero voltage switching (ZVS) PWM Dual Full Bridge (DFB) DC-DC converter with secondary-side phase-shifting power control scheme. The soft-switching PWM DC-DC converter newly-developed for a DC pre-voltage regulator in a plasma radio frequency (RF) power generator can achieve soft commutation at all the power devices under the wide range of load power. By the phase-shifting control scheme that is based on the secondary-side rectifier of the high-frequency (HF) planar transformer, it can attain the effective reduction of idling power in the primary-side inverter stage. In this paper, the essential experimental data obtained from a 100 kHz -2.5 kW prototype is described to validate the soft-switching circuit scheme and discuss the practical effectiveness of the ZVS-PWM DFB DC-DC converter.

    IEEE, 2009, 2009 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-3, 1710 - +, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Yasuyuki Ooue, Yoshiki Fukumoto, Mutsuo Nakaoka

    This paper presents the zero voltage switching (ZVS) PWM Dual Full Bridge (DFB) DC-DC converter with secondary-side phase-shifting power control scheme. The softswitching PWM DC-DC converter newly developed for a DC pre-regulator in a plasma radio frequency (RF) power generator can achieve soft commutation at all the power devices under the wide range of load power. By introducing the phase-shifting control scheme that is based on the secondary-side rectifier of the high-frequency (HF) planar transformer, it can attain the effective reduction of idling power in the primary-side inverter as well as the completely recovery-less diode commutations in the secondary-side rectifier. The experimental operating performance, power loss analysis and actual conversion efficiencies of the DC-DC converter are described to verify the soft-switching circuit, and the feasibility is discussed from the practical point of view.

    2009, Proceedings of the International Conference on Power Electronics and Drive Systems, 712 - 717, English

    [Refereed]

    International conference proceedings

  • T. Mishima, M. Nakaoka

    A novel zero current soft switching (ZCS) pulse width modulation (PWM) half-bridge DC-DC converter is presented. ZCS commutation can be achieved for a wide load power setting with the asymmetrical PWM-based duty-cycle control scheme under a constant switching frequency. The effectiveness of the proposed converter topology and soft switching scheme are demonstrated with experimental results using the 0.8 kW - 55 kHz prototype.

    INST ENGINEERING TECHNOLOGY-IET, Jun. 2008, ELECTRONICS LETTERS, 44 (12), 769 - U160, English

    [Refereed]

    Scientific journal

  • DOI Toshimitsu, MORIMOTO keiki, MANABE Haruhiko, MISHIMA Tomokazu, NAKAOKA Mutsuo

    This paper presents a new DC-DC converter circuit topology using voltage source-fed soft-switching PWM high frequency inverter with half-bridge configuration. This type of DC-DC converter circuit has two semiconductor switching devices in series with high and low DC buslines, two lossless snubbing capacitors in parallel with two connected additional diode components. Under the newly proposed high frequency soft-switching PWM inverter link DC-DC converter circuit connected for utility ac 400V-rms input grid on the basis of divided smoothing capacitor type half bridge inverter. Its active power switches (IGBTs) can achieve ZCS turn-on commutation operation and ZVS turn-off commutation operation. Consequently, the total turn-off switching power losses of IGBTs can be significantly reduced for higher frequency. As a result, a high switching frequency operation for IGBTs used in this circuit can be actually implemented at a switching frequency more than about 20kHz. It is proved that the more the switching frequency of half bridge inverter increases, the more soft switching PWM DC-DC converters with a high frequency transformer have remarkable advantages for its power conversion efficiency and power density as compared with the conventional full-bridge type soft switching PWM DC-DC converter with DC rail side auxiliary edge resonant sunbbers that the authors have proposed previously. The practical effectiveness of these new converter topologies are substantially confirmed for low voltage and large current dc power supplies as high performance arc welding machine from a practical point of view.

    The Japan Institute of Power Electronics, Mar. 2008, Journal of the Japan Institute of Power Electronics, Vol. 33, No.4. pp.141 –147, 141 - 149, Japanese

    [Refereed]

    Scientific journal

  • MISHIMA TOMOKAZU, HIRAKI Eiji, NAKAOKA Mutsuo

    A novel prototype of a soft-switching PWM DC-DC converter is presented in this paper. This converter consists of a half-bridge circuit assisted with an active edge resonant snubber for Zero Current Soft-switching (ZCS) commutation, and a current doubles rectifier linked with a high-frequency transformer. With the ZCS scheme and the circuit topology proposed here, the soft switching operation can be achieved for the wide range of output power under a constant switching frequency. The converter operation and characteristics are demonstrated with simulation results, and its feasibility is verified with experimental results using its 1.2kW-35kHz prototype.

    The Japan Institute of Power Electronics, Mar. 2008, Journal of the Japan Institute of Power Electronics, Vol. 33, No.4. pp.157 –163, 157 - 163, Japanese

    [Refereed]

    Scientific journal

  • A New Soft-Switching PWM High Frequency Half-Bridge Inverter Linked DC-DC Converter with Diode-Clamped Active Edge Resonant Snubbers

    Hisayuki Sugimura, Tetsuya Etoh, Toshimitsu Doi, Keiki Morimoto, Bishwajit Saha, Sang Pil Mun, Eiji Hiraki, Mutsuo Nakaoka

    In this paper, the novel circuit topology of half-bridge soft switching PWM DC-DC power converter with a high frequency planar transformer link was presented. The operating principle and switching pattern of the half-bridge soft switching PWM DC-DC power converter described for 40 kHz, 36V and 400A output were illustrated and discussed for low voltage and large current output applications such as telecommunication and automotive applications. The power loss analysis of the proposed soft switching DC-DC power converter was discussed and evaluated as compared with hard switching PWM DC-DC power converter with a high frequency link. The practical effectiveness of the proposed DC-DC power converter operation under soft switching PWM scheme was actually proved from a practical point of view and the high efficiency and power density of this converter could be achieved on the basis of experimental results for low voltage and large current power supplies.

    IEEE, 2008, 2008 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, VOLS 1-5, pp.1-6, 2410 - +, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Eiji Hiraki, Toshihiko Tanaka, Mutsuo Nakaoka

    A novel zero current soft-switching (ZCS)-PWM cell-assisted half-bridge DC-DC converter topology with a high frequency link is proposed in this paper. The newly-proposed DC-DC converter consists of a PWM-controlled singleended half-bridge high frequency (HF) inverter and a current doubler rectifier linked with a HF transformer. In order to attain the wide range of ZCS-PWM operation in the primary-side HF inverter, an active edge resonant snubber cell composed by a switched capacitor and a lossless inductor is adopted in the half-bridge leg, providing ZCS commutation for a wide range of output power. The operation characteristics of the DC-DC converter proposed here are described, and its feasibility data is demonstrated and evaluated with simulation and experimental results. © 2008 The Institute of Electrical Engineers of Japan.

    2008, IEEJ Transactions on Industry Applications, 128 (4), 5 - 395, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Mutsuo Nakaoka

    A novel zero current soft-switching (ZCS)-PWM cell-assisted asymmetrical half-bridge (AHB) DC-DC converter topology with a high frequency (HF) link is proposed in this paper. The newly-proposed DC-DC converter consists of a PWM-controlled single-ended half-bridge HF inverter and a center-tapped rectifier linked with a HF transformer. In order to attain the wide range of ZCS commutation in the primary-side HF inverter, the active edge resonant snubber cell composed of a switched capacitor and a lossless inductor is adopted in the half-bridge leg, providing ZCS commutation for a wide range of output power under constant switching frequency. The operation characteristics of the DC-DC converter proposed here are described, and its feasibility data is demonstrated and evaluated with simulation and experimental results.

    IEEE, 2008, 2008 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-5, 628 - +, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Mutsuo Nakaoka

    A novel zero current soft-switching (ZCS)-PWM cell-assisted asymmetrical half-bridge (AHB) DC-DC converter topology with a high frequency (HF) link is proposed in this paper. The newly-proposed DC-DC converter consists of a PWM-controlled single-ended half-bridge HF inverter and a center-tapped rectifier linked with a HF transformer. In order to attain the wide range of ZCS commutation in the primary-side HF inverter, the active edge resonant snubber cell composed of a switched capacitor and a lossless inductor is adopted in the half-bridge leg, providing ZCS commutation for a wide range of output power under fixed (constant) switching frequency. The operation characteristics of the DC-DC converter proposed here are described, and its feasibility data is demonstrated and evaluated with simulation and experimental results.

    IEEE, 2008, 2008 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-10, 2008 Vol.5, 2177 - +, English

    [Refereed]

    International conference proceedings

  • Hisayuki Sugimura, Sang-Pil Mun, Soon-Kurl Kwon, Tomokazu Mishima, Mutsuo Nakaoka

    This paper deals with a novel type soft switching utility frequency AC- high frequency AC converter using asymmetrical PWM bidirectional active switches which can be defined as high frequency resonant matrix converter. This power frequency changer can directly convert utility frequency AC power to high frequency AC power ranging more than 20kHz up to 100kHz. Only one active edge resonant capacitor-assisted soft switching high frequency load resonant cyclo-converter is based on asymmetrical duty cycle PWM strategy. This high frequency cyclo-converter uses bidirectional IGBTs composed of anti-parallel one-chip reverse blocking IGBTs. This high frequency cyclo-converter has some remarkable features as electrolytic capacitorless DC busline link, unity power factor correction and sinewave line current shaping, simple configuration with minimum circuit components and low cost, high efficiency and downsizing. This series load resonant cyclo-converter incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances. Its operating principle is described by using equivalent circuits. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are discussed on the basis of simulation and experimental results.

    IEEE, 2008, 2008 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-10, 2008 Vol.9, 3960 - +, English

    [Refereed]

    International conference proceedings

  • Hisayuki Sugimura, Sang-Pil Mun, Soon-Kurl Kwon, Tomokazu Mishima, Mutsuo Nakaoka

    This paper deals with a novel type soft switching utility frequency AC- high frequency AC converter using asymmetrical PWM bidirectional active switches which can be defined as high frequency resonant matrix converter. This power frequency changer can directly convert utility frequency AC power to high frequency AC power ranging more than 20kHz up to 100kHz. Only one active edge resonant capacitor-assisted soft switching high frequency load resonant cyclo-converter is based on asymmetrical duty cycle PWM strategy. This high frequency cyclo-converter uses bidirectional IGBTs composed of anti-parallel one-chip reverse blocking IGBTs. This high frequency cyclo-converter has some remarkable features as electrolytic capacitorless DC busline link, unity power factor correction and sinewave line current shaping, simple configuration with minimum circuit components and low cost, high efficiency and downsizing. This series load resonant cyclo-converter incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances. Its operating principle is described by using equivalent circuits. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are discussed on the basis of simulation and experimental results.

    IEEE, 2008, 2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 971 - +, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Mutsuo Nakaoka, Eiji Hiraki

    A newly-developed zero current soft-switching (ZCS)-PWM cell-assisted asymmetrical half-bridge (AHB) DC-DC converter topology with a high frequency (HF) link is presented in this paper. The soft-switching half-bridge DC-DC converter consists of a PWM-controlled single-ended half-bridge HF inverter and a center-tapped rectifier linked by a HF transformer. In order to attain the wide range of ZCS commutation in the primary-side HF inverter, the active edge resonant snubber cell composed of a switched capacitor and a lossless inductor is adopted in the half-bridge leg, providing ZCS commutation for a wide range of output power under constant switching frequency. The operation characteristics of the proposed DC-DC converter are described, and its feasibility data is demonstrated and evaluated with simulation and experimental results.

    IEEE, 2008, 2008 13TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-5, 119 - +, English

    [Refereed]

    International conference proceedings

  • T. Mishima, E. Hiraki, T. Tanaka, M. Nakaoka

    A novel symmetrical zero current switching (ZCS)-pulse width modulation (PWM) cells-assisted high-frequency transformer link DC-DC converter using insulated gate bipolar transistor (IGBT) modules is presented. The proposed soft switching scheme is based on the switched-capacitor and inductive snubber in the high-voltage side inverter, assisted by active switching of MOSFET synchronous rectifier in the secondary-side low-voltage converter stage. By introducing the ZCS-PWM snubber cells, soft switching commutation which is less sensitive to the current level through the IGBTs can be achieved under the wide output power ranges. The converter circuit topology and the ZCS snubber cell operation are examined and evaluated with simulation results, and the feasibility of the converter topology is verified by experiments using a 1.0 kW - 25 kHz prototype system.

    INST ENGINEERING TECHNOLOGY-IET, Nov. 2007, IET ELECTRIC POWER APPLICATIONS, 1 (6), 907 - 914, English

    [Refereed]

    Scientific journal

  • Using Trench-Gate IGBTs in New Boost-active Clamp One-Stage Soft-Switching PWM High Frequency Inverter

    Frag. K. Abo-elusr, H. Ogiwara, SUGIMURA Hisayuki, MISHIMA Tomokazu, S.K. Kwon, NAKAOKA Mutsuo

    May 2007, Proc. International Exhibition & Conference for Power Electronics Intelligent Motion Power Quality (PCIM - Europe 2007), pp.1-6, English

    [Refereed]

    International conference proceedings

  • Soft-Switching Inverter Using Pulse Density Modulated High Frequency Technique for Induction-Heated Drum Rotor Working Coil Starter

    Frag. K. Abo-elusr, H. Ogiwara, SUGIMURA Hisayuki, MISHIMA Tomokazu, S.K. Kwon, NAKAOKA Mutsuo

    May 2007, Proc. International Exhibition & Conference for Power Electronics Intelligent Motion Power Quality (PCIM - Europe 2007), pp.1-6, English

    [Refereed]

    International conference proceedings

  • Design and Analysis of a Novel HF Link ZCS-PWM Half-Bridge DC-DC Converter with Asymmetrical Lossless Switched Capacitive Snubber

    MISHIMA Tomokazu, HIRAKI Eiji, K. Fathy, NAKAOKA Mutsuo

    May 2007, Proc. International Exhibition & Conference for Power Electronics Intelligent Motion Power Quality (PCIM - Europe 2007), pp.1-6, English

    [Refereed]

    International conference proceedings

  • A Phase-Shifted Dual Half-Bridge ZVS Bidirectional DC-DC Converter for Supercapacitor Interface

    MISHIMA Tomokazu, HIRAKI Eiji, NAKAOKA Mutsuo

    May 2007, Proc. International Exhibition & Conference for Power Electronics Intelligent Motion Power Quality (PCIM - Europe 2007), pp.1-6, English

    [Refereed]

    International conference proceedings

  • Selective dual duty cycle controlled high frequency inverter using a resonant capacitor in parallel with an auxiliary reverse blocking switch

    Bishwajit Saha, Ki-Young Suh, Soon-Kurl Kwon, Tomokazu Mishima, Mutsuo Nakaoka

    This paper presents a new ZCS-PWM high frequency inverter. Zero current switching operation is achieved in the whole load range by using a simple auxiliary reverse blocking switch in parallel with series resonant capacitor. Dual duty cycle control scheme is used to provide a wide range of high frequency AC output power regulation that is important in many high frequency inverter applications. It found that a complete soft switching operation can be achieved even for low power setting ranges by introducing high-frequency dual duty cycle control scheme. The proposed high frequency inverter is more suitable for consumer induction heating (IH) applications. The operation and control principle of the proposed high frequency inverter are described and verified through simulated results.

    KOREAN INST POWER ELECTRONICS, Apr. 2007, JOURNAL OF POWER ELECTRONICS, 7 (2), 118 - 123, English

    [Refereed]

    Scientific journal

  • MISHIMA Tomokazu, HIRAKI Eiji, NAKAOKA Mutsuo

    パワーエレクトロニクス学会, Mar. 2007, Journal of the Japan Institute of Power Electronics, Vol.32, pp.529-530, 113 - 121, Japanese

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Eiji Hiraki, Toshihiko Tanaka, Khairy Fathy, Mutsuo Nakaoka

    A novel zero current soft-swithing PWM half-bridge DC-DC converter topology is proposed in this paper. The newly proposed converter consists of a PWM-controlled half-bridge inverter and a current doubler rectifier linked with a high-frequency transformer. In order to attain the wide range of soft switching operation in the high voltage/low current primary side inverter, asymmetrical lossless snubbers composed by an actively-switched capacitor and lossless inductors are employed in the half-bridge arm, providing Zero Current Switching (ZCS) that is less sensitive to the magnitude of the input current. The operation characteristics of the proposed DC-DC converter are described, and its feasibility is demonstrated with simulation and preliminary experimental results.

    IEEE, 2007, 2007 POWER CONVERSION CONFERENCE - NAGOYA, VOLS 1-3, 573 - +, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Eiji Hiraki, Toshihiko Tanaka, Mutsuo Nakaoka

    A novel zero current soft-switching PWM half-bridge DC-DC converter topology is proposed in this paper. The newly proposed converter consists of a PWM-controlled half-bridge inverter and a current doubler rectifier linked with a high-frequency transformer. In order to attain the wide range of soft switching operation in the high voltage/low current primary side inverter, asymmetrical lossless snubbers composed by an actively-switched capacitor and lossless inductors are employed in the half-bridge arm, providing Zero Current Switching (ZCS) that is less sensitive to the magnitude of the input current. The operation characteristics of the proposed DC-DC converter are described, and its feasibility is demonstrated with simulation and experimental results.

    IEEE, ELECTRON DEVICES SOC & RELIABILITY GROUP, 2007, 2007 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-6, 2007 Vol.2, 748 - 753, English

    [Refereed]

    International conference proceedings

  • Eiji Hiraki, Koji Yamamoto, Toshihiko Tanaka, Tomokazu Mishima

    In recent years, power electronic energy storage systems using super capacitor bank have been widely studied and developed for the electronic vehicles. In this paper, a full-bridge/centertapped push-pull circuit with active clamp-based soft switching bidirectional DC-DC converter and its control method are presented and discussed. From the results of basic experimental demonstration, the proposed system is able to perform adequate charging and discharging operation between low-voltage high-current super capacitor side and high-voltage low-current side with drive train and main battery. In addition, RCDi snubber losses appeared in the basic circuit topology are drastically reduced by ZCS/ZVS operation with the assistance of newly added active clump circuit, as well as ZVS operation with lossless snubber capacitor in high-voltage primary side.

    IEEE, ELECTRON DEVICES SOC & RELIABILITY GROUP, 2007, 2007 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-6, 2007 Vol.1, 390 - 395, English

    [Refereed]

    International conference proceedings

  • Mutsuo Nakaoka, Bishwajit Saha, Sang Pil Min, Tomokazu Mishima, Soon Kurl Kwon

    The grid voltage of commercial utility power source in Japan and USA is 100rms, but in China and European countries, it is 200 Vrms. In recent years. in Japan 200Vrms out putted single phase three wire system begins to be used for high power applications. In 100 Vrms utility AC power applications and systems. all active voltage clamped quasi-resonant inverter circuit topology using IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped high-frequency inverter type AC-DC converter using which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. This zero voltage soft switching inverter can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant inverter using the IGBTs that has already been used for 100 Vrms utility AC power source. The operating performances of the voltage source single ended push pull type inverter are evaluated and discussed for consumer microwave oven. The harmonic line current components in the utility AC power side of the AC-DC power converter operating at ZVS-PWM strategy reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

    IEEE, 2007, IECON 2007: 33RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, CONFERENCE PROCEEDINGS, 33rd Vol.4, 1968 - +, English

    [Refereed]

    International conference proceedings

  • Hisayuki Sugimura, Bishwajit Saha, Hidekazu Muraoka, Sang Pil Mun, Tornokazu Mishima, Hideki Omori, Mutsuo Nakaoka

    The oscillation voltage (Ebm) is an important parameter of the characteristic constant of a high power microwave generator. When Ebm could be made high, it serves so as to improve the power conversion efficiency of a magnetron. Thus, the newly developed magnetron with 7% higher oscillation cut-off voltage than the present conventional one is manufactured by Matsushita Electric Industrial Co.Ltd, In addition to this, the utility AC power line current reduced harmonic type direct inverter AC-DC power converter suitable and acceptable for driving this magnetron is proposed in this paper. This direct high frequency inverter type soft switching PWM AC-DC converter has the voltage-boost function based on active clamp scheme with soft switching pulse modulation strategy topology. This paper describes a novel type active clamp AC-DC power converter circuit defined as direct high frequency inverter and the switching operation of this power converter is described and discussed on the basis of simulation and experimental results. The operating characteristics of this soft switching direct high frequency inverter type AC-DC power converter using IGBTs that incorporates the harmonic current improvement as well as power factor correction are evaluated and discussed from a practical point of view as compared with the conventional AC-DC power converter.

    IEEE, 2007, 2007 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1-4, 563 - +, English

    [Refereed]

    International conference proceedings

  • A Novel Switched-Capacitor and Lossless Inductor Quasi-Resonant Snubbers Assisted ZCS PWM Soft-Switching DC-DC Power Converter

    Khairy Sayed, Mishima Tomokazu, Eiji Hiraki, Mutsuo Nakaoka

    The Institute of Electrical Engineers of Japan (IEEJ) and IEEE, Nov. 2006, Proc. 2006 International Conference on Electric Machines and Systems (ICEMS), pp.1 - 6, English

    [Refereed]

    International conference proceedings

  • Generation Power Compensation System using Electric Double Layer Capacitor for Partially Shaded Series PV Modules

    MISHIMA Tomokazu, OHNISHI Tokuo

    日本太陽エネルギー学会, Jan. 2006, Journal of Japan Solar Energy Society, Vol.32, No.1, pp.61-67 (1), 61 - 67, English

    [Refereed]

    Scientific journal

  • Tomokazu Mishima, Eiji Hiraki, Kouji Yamamoto, Toshihiko Tanaka

    A bidirectional DC-DC converter for supercapacitor-based energy storage systems in advanced electric vehicles is proposed in this letter. This converter consists of a half-bridge and current-fed push-pull circuit linked with a high frequency transformer, which is well applicable to the low voltage/high current charge and discharge of the supercapacitor. The experimental results of the prototype system prove the effective properties of the proposed topology in terms of a low device-conduction loss and a low switching surge.

    2006, IEEJ Transactions on Industry Applications, 126 (4), 529 - 530, Japanese

    [Refereed]

    Scientific journal

  • Koji Yamamoto, Eiji Hiraki, Toshihiko Tanaka, Mutsuo Nakaoka, Tomokazu Mishima

    In recent years, energy storage systems assisted by super capacitor have been widely researched and developed to progress power systems for the electronic vehicles. In this paper, a full-bridge/push-pull circuit-based bidirectional DC-DC converter and its control methods are proposed. From the results of detailed experimental demonstration, the proposed system is able to perform adequate charge and discharge operation between low-voltage high-current super capacitor side and high-voltage low-current side with drive train and main battery. Furthermore, conduction losses and voltage/current surge are drastically reduced by ZVS operation with loss-less snubber capacitor in high voltage side as well as the synchronous rectification in low-voltage high-current super capacitor side.

    IEEE, 2006, 2006 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-7, 2006 Vol.5, 2340 - +, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Eiji Hiraki, Toshihiko Tanaka

    A new type of bidirectional DC-DC converter for electric power systems in advanced electric vehicles is proposed in this paper. This converter consists of half-bridge circuits with a high frequency transformer, which is well applicable as an interface between a high-voltage DC bus line and a low-voltage power source. In order to reduce the switching loss, newly developed ZCS loss-less snubber cells are applied to the primary side power stage. By the proposed topology, a soft switching operation can be achieved under the wide range of load current. The converter operation is demonstrated with simulation results, and the feasibility of the new topology is discussed as well as the converter design consideration.

    IEEE, 2006, 2006 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-7, 917 - 922, English

    [Refereed]

    International conference proceedings

  • Eiji Hiraki, Koji Yamamoto, Toshihiko Tanaka, Tomokazu Mishima, Mutsuo Nakaoka

    In recent years, power electronic energy storage systems using super capacitor bank have been widely studied and developed for the electronic vehicles. In this paper, a full-bridge/centertapped push-pull circuit-based bidirectional DC-DC converter and its control method are proposed and discussed. From the results of detailed experimental demonstration, the proposed system is able to perform adequate charging and discharging operation between low-voltage high-current super capacitor side and high-voltage low-current side with drive train and main battery. Furthermore, conduction losses and voltage/current urge are drastically reduced by ZVS operation with lossless snubber capacitor in high-voltage side as well as the synchronous rectification in low-voltage high-current super capacitor side.

    IEEE, 2006, 2006 12TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-4, 1025 - +, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Eiji Hiraki, Toshihiko Tanaka, Mutsuo Nakaoka

    A new type of soft switched bidirectional DC-DC converter for automotive electric power systems is presented in this paper. This converter consists of dual half-bridge circuits linked with a high frequency transformer, which is applicable as an interface between a high-voltage DC bus line and a low-voltage power source such as Supercapacitor. In order to reduce the switching losses and expand the soft switching range, a newly developed two-lossless switched capacitor snubber-assisted Zero Current Switching (ZCS) are applied to the primary side circuit. By using this ZCS scheme, the soft switching operation can be achieved for the wide range of output power. The converter operation is demonstrated with simulation results, and its feasibility is verified by experimental using its 1.0kW-25kHz prototype system.

    IEEE, 2006, 2006 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, 386 - +, English

    [Refereed]

    International conference proceedings

  • Khairy Fathy, Hyun Woo Lee, Tomokazu Mishima, Mutsuo Nakaoka

    This paper presents the implementation of 1 kW prototype high frequency link boost half bridge inverter-fed DC-DC power converter with bridge voltage-doublers suitable for small scale PEM fuel cell system and its associated control scheme. The operation principle of this converter is described using fuel cell modeling and some operating waveforms and the switching mode equivalent circuits based on simulation results and a detailed circuit operation analysis and soft-switching conditions.

    IEEE, 2006, FIRST INTERNATIONAL POWER & ENERGY CONFERENCE (PECON 2006), PROCEEDINGS, 426 - 431, English

    [Refereed]

    International conference proceedings

  • Mishima Tomokazu, Makoto Hiraoka, Toshihide Nomura

    IEEE, May 2005, Proc. 2005 IEEE International Electric Machines and Drive Conference (IEMDC), pp.1238 - 1242, English

    [Refereed]

    International conference proceedings

  • T Mishima, E Hiraki

    This paper explores a bidirectional DC-DC converter applied for a dual voltage power system using a battery and Supercapacitors. The presented converter consists of a MOSFET Full Bridge topology on the primary side of the high frequency transformer and a Current-fed Push-Pull topology on the secondary side. To reduce the device-conduction losses in the low voltage side of the converter, Synchronous Rectification is employed on both modes of charging and discharging the supercapacitors. In addition, a wide range of voltage regulation between the battery and supercapacitors is realized by the phase shift control of the full bridge and the cross ON-duty control of switches in the push-pull converter. Simulation results shows that the proposed circuit topology realizes the bidirectional power conversion with high efficiency.

    IEEE, 2005, 2005 IEEE 36th Power Electronic Specialists Conference (PESC), Vols 1-3, 36th (Vol.2), 1845 - 1850, English

    [Refereed]

    International conference proceedings

  • T Mishima, E Hiraki

    This paper explores a bidirectional DC-DC converter for Supercapacitor-based energy storage systems in automotive applications. The presented converter consists of a Half-Bridge converter and a Current-Fed Push-Pull inverter with a transformer-isolation. Owing to the isolation topology, the supercapacitor can be operated in the wide voltage range, which results in an increase in the utilization of supercapacitor-stored energy. In order to reduce the switching losses in the half-bridge converter, Zero Voltage Switching technology is employed in the half-bridge converter. In addition, Synchronous Rectification is employed in the push-pull inverter so that the device conduction losses in the low voltage side is reduced. The proposed converter operation is verified by the simulation and the system feasibility is discussed from the view point of the practical automotive electrical systems.

    IEEE, 2005, 2005 IEEE Vehicle Power and Propulsion Conference (VPPC), 731 - 736, English

    [Refereed]

    International conference proceedings

  • A power compensation and control system for a partially shaded PV array

    T Mishima, T Ohnishi

    The power-voltage and current-voltage characteristics of a PV array change with the variation of insolation and temperature. In particular, the output power of a PV-panel block consisting of series-PV modules inevitably goes down due to partial shading caused by peripheral obstacles. This results in a significant reduction of the total output power from the PV power generation system where a couple of PV blocks are parallel to the DC terminal of interactive inverter because of mismatch of the optimum operating voltages between the PV blocks. In this paper, we propose a power conversion system to compensate the output power of a partially shaded PV array. The proposed system can control the output power of the PV array on a PV block basis, which contributes to a more efficient and simpler implementation of the PV power compensation system than that by individual controls of PV modules using DC-DC converters. In addition, inverter DC voltage is appropriately controlled so that the maximum output power from the overall PV array can be obtained. Then, the feasibility of the system is investigated and verified from the simulation and experimental results. (C) 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 146(3): 74-82, 2004; Published online in Wiley InterScience (www. interscience.wiley.com). DOI 10.1002/eej.10203.

    SCRIPTA TECHNICA-JOHN WILEY & SONS, Feb. 2004, ELECTRICAL ENGINEERING IN JAPAN, 146 (3), 74 - 82, English

    [Refereed]

    Scientific journal

  • T Mishima, T Ohnishi

    This paper presents a novel power compensation system for a photovolataic (PV) array that is partially covered by a shade. The control strategy utilizes Electric Double Layer Capacitors (EDLC) as a energy storage device, which brings some advantages into the system configuration of both main and control system over using a battery or DC-DC converters. In addition, the energy flow of the EDLC can be simply controlled by a relay with only detecting the terminal voltage of the EDLC. The control characteristics of the proposed system are examined by the experimental analyses. And, the system feasibility is demonstrated and verified from the viewpoint of power compensation effect.

    IEEE, 2003, IECON'03: THE 29TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1 - 3, PROCEEDINGS, 29th (Vol.2), 1308 - 1313, English

    [Refereed]

    International conference proceedings

  • T Mishima, T Ohnishi

    This paper presents a novel power compensation system for a photovolataic (PV) array that is partially covered by a shade. The control strategy adopts Electric Double Layer Capacitors (EDLC) as a energy storage device, which brings advantages into the system configuration of both main and control system over using a battery or DC-DC converters. In addition, the energy flow of the EDLC can be simply controlled by a relay with only detecting the terminal voltage of the EDLC. The control characteristics of the proposed system are examined by simulation analyses. And, the system feasibility is demonstrated and verified from experimental results of the laboratory prototype system.

    IEEE, 2003, PEDS 2003 : FIFTH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2, 858 - 863, English

    [Refereed]

    International conference proceedings

  • Tomokazu Mishima, Tokuo Ohnishi

    The power-voltage and current-voltage characteristics of a PV array change with the variation of insolation and temperature. Especially, the output power of a PV-panel block consisting of series-PV modules inevitably goes down due to partial shading caused by peripheral obstacles. This results in the significant reduction of the total output power from the PV power generation system where a couple of PV blocks are parallel to the DC terminal of interactive inverter because of mismatch of the optimum operating voltages between the PV blocks. In this paper, we propose a power convertion system to compensate the output power of a partially shaded PV array. The proposed system can control the output power of the PV array on a PV block basis, which contributes to a more efficient and simpler implementation of the PV power compensation system than that by individual controls of PV modules using DC-DC converters. In addition to that, inverter DC voltage is appropriately controlled so that the maximum output power from the overall PV array can be obtained. And then, the feasibility of the system is investigated and verified from the simulation and experimental results. © 2002, The Institute of Electrical Engineers of Japan. All rights reserved.

    電気学会, 2002, IEEJ Transactions on Industry Applications, 122 (8), 799 - 806, English

    [Refereed]

    Scientific journal

  • T Mishima, T Ohnishi

    In this paper, the power compensation and control system for the partially shaded photovoltaic (PV) array is presented. The proposed system utilizes Electric Double Layer Capacitors (EDLCs), which has some advantages, e.g. the high density of output power, the long lifetime, compared with other energy storage devices. This system is constructed by the simple combination of EDLCs-bank and a relay. Comparing with the prevalent measures, the proposed system can realize more efficient usage of generation power from PV array. The feasibility of the system is investigated and verified from some simulation results.

    IEEE, 2002, IECON-2002: PROCEEDINGS OF THE 2002 28TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4, 28th (Vol.4), 3262 - 3267, English

    [Refereed]

    International conference proceedings

  • Nakagawa Yuki, Mishima Tomokazu, Nakaoka Mutsuo

    A practical evaluation of a new bridgeless boost half-bridge zero voltage switching (ZVS) pulse-widthmodulation(PWM)-controlled utility ac (UFAC) – high frequency ac (HFAC) converter for induction heating (IH) applications is presented in this paper. The non-smoothed dc link capacitors in the frequency converter have a great relevance with power factor correction (PFC) of the source side and voltage boost ratio in the IH load side as well as ZVS range of the active switches. Theoretical and experimental analyses on the dc-link stage are described in details and the effectiveness of the frequency converter is discussed.

    The Japan Institute of Power Electronics, 2014, Journal of the Japan Institute of Power Electronics, 40, 152 - 159, Japanese

  • 中林 編絹, 三島 智和, 中岡 睦雄

    パワーエレクトロニクス学会, 2014, パワーエレクトロニクス学会誌, 40, 215 - 215, Japanese

  • Yoshimura Yu, Mishima Tomokazu, Sumiyoshi Shinichiro, Nakaoka Mutsuo

    The Japan Institute of Power Electronics, 2008, Journal of the Japan Institute of Power Electronics, 34, 217 - 217

  • 藤岡 和輝, 三島 智和, 中岡 睦雄

    The Japan Institute of Power Electronics, 2008, パワーエレクトロニクス学会誌, 34, 221 - 221, Japanese

  • 新谷 謙治, 三島 智和, 中岡 睦雄

    The Japan Institute of Power Electronics, 2008, パワーエレクトロニクス学会誌, 34, 206 - 206, Japanese

  • MISHIMA Tomokazu

    The Japan Institute of Power Electronics, 2007, Journal of the Japan Institute of Power Electronics, 33, 241 - 241

  • 複合共振MHz駆動電流形スナバレスZCS高昇圧比DC-DCコンバータ

    三島智和, 宮崎竜成, 頼慶明

    Mar. 2023, 電気学会論文誌D(産業応用部門誌), 143 (3), 1 - 10, Japanese

    [Refereed]

MISC

  • Surge Voltage Suppressing Methodology and its Experimental Verification for Active Rectifier in GaN HFET-based ZVS Resonant DC-DC Converter for Inductive Power Transfer Applications

    森田 栄太郎, 三島 智和

    電気学会, 15 Nov. 2016, 電気学会研究会資料. EDD = The papers of technical meeting on electron devices, IEE Japan, 2016 (63), 7 - 12, Japanese

  • A ZVS Phase Shift-PWM Controlled Boost Full-Bridge AC-AC Converter for High-Frequency Induction Heating Applications

    森永 崇太, 坂本 修一, 三島 智和, 井出 千明, 中岡 睦雄

    電気学会, 22 Jan. 2016, 電気学会研究会資料. SPC = The papers of technical meeting on semiconductor power converter, IEE Japan, 2016 (9), 39 - 44, Japanese

  • A Time-Sharing Current-Fed ZCS High-Frequency Inverter Applying Resonant Current Phase Difference Control for Inductive Power Transfer

    小西 響平, 三島 智和, 中岡 睦雄

    電気学会, 22 Jan. 2016, 電気学会研究会資料. SPC = The papers of technical meeting on semiconductor power converter, IEE Japan, 2016 (9), 45 - 50, Japanese

  • A Time-Sharing Principle Current-Fed ZCS High Frequency-Resonant Inverter with a Si-IGBT/SiC-SBD Hybrid Module and Its Inductive Power Transfer Application

    小西 響平, 三島 智和, 中岡 睦雄

    電気学会, 29 Oct. 2015, 電気学会研究会資料. SPC = The papers of technical meeting on semiconductor power converter, IEE Japan, 2015 (146), 73 - 78, Japanese

  • A Study on GaN Gate Injection Transistor-applied Zero Voltage Soft-Switching Resonant DC-DC Converter for Inductive Power Transfer

    三島 智和, 森田 栄太郎

    電気学会, 29 Oct. 2015, 電気学会研究会資料. SPC = The papers of technical meeting on semiconductor power converter, IEE Japan, 2015 (146), 29 - 34, Japanese

  • A Time-Sharing Principle-based Frequency Doubler ZCS High Frequency-Resonant Inverter for Inductive Power Transfer : The First Report on the Experimental Evaluation

    小西 響平, 三島 智和, 中岡 睦雄

    電子情報通信学会, 06 Jul. 2015, 電子情報通信学会技術研究報告 = IEICE technical report : 信学技報, 115 (128), 33 - 38, Japanese

  • T. Mishima, S. Masuda, M. Nakaoka

    A novel zero current soft-switching (ZCS) pulse-width modulation (PWM) bidirectional dc-dc converter (BDC) with non-inverting polarity multi-mode voltage regulations is presented. In the proposed BDC, all the power devices commutate in ZCS with the aid of single-auxiliary switch-based edge-resonant cells; accordingly the switching power losses can be minimised. The effectiveness of the proposed BDC and its steady-state characteristics are verified in experiments with a 500 W-50 kHz prototype.

    Lead, INST ENGINEERING TECHNOLOGY-IET, Jul. 2015, ELECTRONICS LETTERS, 51 (15), 1191 - 1192, English

    [Refereed]

    Report scientific journal

  • A Single-Stage AC-AC Power Converter for High-Frequency Induction Heating Applications : Circuit Parameter Design Guideline with Non-Smoothed DC-Link and Its Evaluation

    中川 雄貴, 三島 智和, 中岡 睦雄

    電気学会, 23 Jan. 2015, 電気学会研究会資料. MD, 2015 (1), 59 - 64, Japanese

  • A Novel ZCS-PWM Bidirectional Buck/Boost DC-DC Converter with Si-IGBT/SiC-SBD Hybrid Resonant Switching Cells

    増田 真也, 三島 智和, 中岡 睦雄

    電気学会, 23 Jan. 2015, 電気学会研究会資料. MD, 2015 (1), 65 - 70, Japanese

  • A Time-sharing Multiplex-Controlled Current-Fed ZCS High-Frequency Resonant Inverter for Aluminum Utensil Induction Heating

    小西 響平, 三島 智和, 中岡 睦雄

    電気学会, 18 Dec. 2014, 電気学会研究会資料. VT, 2014 (38), 1 - 6, Japanese

  • Experimental Characteristics of A Phase-Shift PWM Controlled ZVS Three-Level Resonant DC-DC Converter(The First Report)

    MORINAGA Souta, MISHIMA Tomokazu

    This paper presents an evaluation on a zero voltage soft-switching (ZVS) three-level resonant DC-DC converter operating with a phase-shift pulse-width-modulation (PS-PWM) scheme. The three-level DC-DC converter treated herein has LC and LLC resonant modes under the constant switching frequency condition. In this paper, the converter performances including the soft-switching operations as well as output voltage and power regulation characteristics are demonstrated in a simulation analysis and experimental characteristics, after which the feasibility of the DC-DC converter is discussed from the practical point of view.

    The Institute of Electronics, Information and Communication Engineers, 18 Nov. 2014, Technical report of IEICE. Energy engineering in electronics and communications, 114 (309), 55 - 60, Japanese

  • Practical Evaluation of a New Bridgeless Boost Half-Bridge ZVS-PWM Single-Stage Utility Frequency AC-High Frequency AC Resonant Converter for Induction Heating

    三島 智和, 中川 雄貴, 中岡 睦雄

    電気学会, 25 Jan. 2014, 電気学会研究会資料. MD, 2014 (26), 83 - 88, Japanese

  • An LCLCL Multiplex Resonant Full-Bridge DC-DC Converter

    三島 智和, 水谷 大斗, 埴岡 正史

    電気学会, 25 Jan. 2014, 電気学会研究会資料. MD, 2014 (26), 77 - 82, Japanese

  • An Auxiliary Edge-resonant ZCS-PWM Cell-assisted Bidirectional DC-DC Converter

    増田 真也, 三島 智和, 中岡 睦雄

    電気学会, 25 Jan. 2014, 電気学会研究会資料. MD, 2014 (26), 49 - 52, Japanese

  • An Investigation of Voltage Conversion Ratio of a Primary-/Secondary-Side Dual Phase Shift PWM Controlled Bidirectional DC-DC Converter with High-Frequency Link

    中林 編絹, 三島 智和, 中岡 睦雄

    電気学会, 25 Jan. 2014, 電気学会研究会資料. MD, 2014 (26), 43 - 48, Japanese

  • A New Bridgeless Boost Half-Bridge ZVS-PWM High Frequency Resonant AC-AC Converter for Induction Heating

    中川 雄貴, 三島 智和, 中岡 睦雄

    電気学会, 19 Dec. 2013, 電気学会研究会資料. VT, 2013 (27), 47 - 52, Japanese

  • A New Bridgeless Boost Half-Bridge ZVS-PWM High Frequency Resonant AC-AC Converter for Induction Heating

    中川 雄貴, 三島 智和, 中岡 睦雄

    電気学会, 19 Dec. 2013, 電気学会研究会資料. HCA, 2013 (49), 47 - 52, Japanese

  • Experimental Evaluations of a Multi-Resonant DC-DC Converter with Synchronous Rectification for Low-Voltage Loads in DC Micro-Grid Power System

    HANIOKA Masashi, MISHIMA Tomokazu

    This paper presents the experimental characteristics of a multi-resonant LLC DC-DC converter for low-voltage loads in DC micro-grid power system. The converter performances including the soft-switching operations and output power regulations based on PFM are demonstrated from a practical point of view. Then, effectiveness of the converter treated herein is evaluated in an experiment using the designed LLC DC-DC converter prototype under the condition of synchronous rectification as compared to diode rectification.

    The Institute of Electronics, Information and Communication Engineers, 25 Jul. 2013, Technical report of IEICE. Energy engineering in electronics and communications, 113 (155), 79 - 84, Japanese

  • Experimental Verifications and Power Conversion Loss Analysis of Secondary-side Phase-Shifted PWM Zero Voltage and Zero Current Soft-Switching DC-DC Converter

    MISHIMA Tomokazu, AKAMATSU Kouhei, NAKAOKA Mutsuo

    25 Jan. 2013, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2013 (16), 151 - 156, Japanese

  • An Instantaneous Resonant Current Phasor-Controlled Soft-Switching High-Frequency Inverter : Experimental Evaluations of Power Regulation Methods and Higher Power Conversion Efficiency Characteristics

    MISHIMA Tomokazu, TAKAMI Chikanori, NAKAOKA Mutsuo

    25 Jan. 2013, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2013 (16), 163 - 168, Japanese

  • Experimental Evaluations of an Soft-Switching PWM Boost DC-DC Converter with Edge-Resonant Switched Capacitor Cell

    MISHIMA Tomokazu, ITOH Hiroaki, NAKAOKA Mutsuo

    25 Jan. 2013, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2013 (16), 169 - 174, Japanese

  • Power Loss Analysis of the Five-Element Multi-Resonant DC-DC Converter and Its Experimental Evaluations

    MIZUTANI Hiroto, MISHIMA Tomokazu, NAKAOKA Mutsuo

    The full-bridge inverter link LLC multi-resonant DC-DC converter with anti-resonant circuit (LLC-LC) can realize the output voltage and power regulations by pulse frequency modulation (PFM) under soft switching conditions. In this paper, power loss analysis of the proposed DC-DC converter with designed circuit parameters are described, then the practical effectiveness is verified.

    The Institute of Electronics, Information and Communication Engineers, 24 Jan. 2013, IEICE technical report. Component parts and materials, 112 (397), 71 - 74, Japanese

  • Experimental Evaluations of a Quasi-Resonant ZVS-PFM Single-Ended Forward DC-DC Converter Based on High-Voltage SiC Power Devices

    HANIOKA Masashi, MISHIMA Tomokazu

    This paper presents the experimental characteristics of a quasi-resonant zero voltage soft-switching (ZVS) pulse-frequency-modulation (PFM) single-ended forward dc-dc converter under the high switching frequency condition. The soft-switching dc-dc converter treated herein attains ZVS at the active switch in the primary side without an active clamp circuit, which could be advantageous for building the cost effective circuit structure. However, elimination of active clump circuit makes the single-ended forward DC-DC converter suffer from the high voltage stress on the active switch in the primary side and diodes in the secondary rectifier. As an practical solution to this technical problem, high-voltage SiC power devices is employed to the single-ended forward DC-DC converter i this research. The converter performances including the soft-switching operations and output power regulation characteristics are demonstrated in experiments, and then the practical effectiveness of the quasi-resonant ZVS-PFM forward DC-DC converter is discussed in terms of conversion efficiency.

    The Institute of Electronics, Information and Communication Engineers, 24 Jan. 2013, IEICE technical report. Component parts and materials, 112 (397), 75 - 80, Japanese

  • Analysis no Steady State Operation of Five-Element Multi-Resonant DC-DC Converter

    MIZUTANI Hiroto, MISHIMA Tomokazu, NAKAOKA Mutsuo

    The full-bridge inverter link LLC multi-resonant DC-DC converter with anti-resonant circuit (LLC-LC) can realize the output voltage and power regulations by pulse frequency modulation (PFM) under soft switching conditions. In this paper, circuit parameter design is proposed, then experiment results on the soft-switching performances and steady-state characteristics are described, and the practical effectiveness is verified.

    The Institute of Electronics, Information and Communication Engineers, 02 Nov. 2012, Technical report of IEICE. Energy engineering in electronics and communications, 112 (282), 31 - 36, Japanese

  • A New Prototype of a Secondary-Side Phase-shifted Soft Switching PWM DC-DC Converter for Low Output Voltage Applications

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    The primary-side phase shifted (PPS) PWM DC-DC converter suffers from severe power losses due to a circulating current and a narrow range of soft switching (S-SW) operation. As an effective solution to those technical problems, a secondary-side phase shifted (SPS) S-SW PWM DC-DC converter with a ZCS active rectifier controlled by phase shifted have been proposed and developed by the authors. In this paper, the secondary-side phase shifted S-SW PWM DC-DC converter with a ZCS center tap rectifier suitable for the application of low voltage and large current power, e.g., a battery charging system in Electric Vehicles is proposed, and its typical operations is theoretically analyzed. In addition to this, the design guideline of circuit parameters are denoted by the steady-state analysis.

    The Institute of Electronics, Information and Communication Engineers, 23 Jul. 2012, Technical report of IEICE. Energy engineering in electronics and communications, 112 (167), 9 - 14, Japanese

  • Experimental Characteristics of An Instantaneous Resonant Current Phasor Controlled High-Frequency Soft Switching Inverter for Induction Heating

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    This paper presents the primary experimental evaluation of a newly-proposed instantaneous resonant current phasor controlled high-frequency ZCS inverter for induction heating. By adjusting the phase difference angle between the two resonant current complex vectors with phase-shift control scheme, the IH load resonant current phasors can be regulated continuously and flexibly under the full-range soft switching conditions. In this paper, the performance on the output power regulation as well as the soft switching operations is evaluated with simulation data, and its topological validity is demonstrated in experiments of 1kW-100kHz prototype.

    The Institute of Electronics, Information and Communication Engineers, 18 May 2012, Technical report of IEICE. Energy engineering in electronics and communications, 112 (60), 35 - 40, Japanese

  • Performance Evaluation of SMD GaN-HFET based ZVS Resonant DC-DC Converter for Inductive Power Transfer Applications(the First Report)

    森田 栄太郎, 三島 智和

    電気学会, 27 Jan. 2017, 電気学会研究会資料. MD, 2017 (1), 13 - 17, Japanese

  • Experimental Verifications of a High Performance Secondary-side Phase-Shifted Soft-Switching PWM DC-DC Converter for EV Battery Chargers

    赤松 恒平, 三島 智和, 中岡 睦雄

    電気学会, 07 Dec. 2012, 電気学会研究会資料. HCA, 2012 (63), 1 - 6, Japanese

  • Experimental Evaluations of Instantaneous Resonant Current Phasor-Controlled HF Resonant Inverter with Unit Control for Induction Heating Applications

    高見 親法, 三島 智和, 中岡 睦雄

    電気学会, 06 Dec. 2012, 電気学会研究会資料. HCA, 2012 (54), 37 - 42, Japanese

  • Experiment Characteristics of a ZCS Phase Shifted Active Rectifier-assisted High Frequency-link Soft Switching DC-DC Converter with Circulating Current Reduction and Wide Soft Switching Range

    赤松 恒平, 三島 智和, 中岡 睦雄

    電気学会, 02 Dec. 2011, 電気学会研究会資料. MD, 2011 (46), 43 - 48, Japanese

  • Operation Analysis of Instantaneous Current Vector Controlled High-Frequency ZCS Resonant Inverter for Induction Heating

    高見 親法, 三島 智和, 中岡 睦雄

    電気学会, 02 Dec. 2011, 電気学会研究会資料. MD, 2011 (46), 7 - 12, Japanese

  • Experiment Characteristics of a LLC Resonant DC-DC Converter with a Reverse Resonant Filter (The First Report) Analysis of Voltage Conversion Ratio

    水谷 大斗, 三島 智和, 大上 泰幸

    電気学会, 02 Dec. 2011, 電気学会研究会資料. MD, 2011 (46), 37 - 42, Japanese

  • Experimental Performance Characteristics of Edge-Resonant ZVS-PFM Single-Ended Forward DC-DC Converter controlled Variable Switching Frequency

    HANIOKA Masashi, MISHIMA Tomokazu

    10 Nov. 2012, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2012 (151), 77 - 80, Japanese

  • エネルギー利用を想定した特徴的な電力変換回路

    寺園勝志, 入江寿一, 村上哲, 荻原弘之, 木船弘康, 平木英治, 三島智和, 斉藤亮治, 米森秀登

    2013, 電気学会産業応用部門大会(CD-ROM), 2013

  • Investigations on Output/Input Voltage Gain of Soft Switching PWM Boost DC-DC Converter with Switched Capatitor Snubber

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    The boost DC-DC converter with large voltage step-up ratio is gathering much attention in variety application fields such as renewable energy and automobiles. As a useful circuit configuration for realizing a large voltage step-up ratio as well as high efficiency, a soft switching boost DC-DC converter with a discontinuous conduction mode operation has been proposed by the authors. Since the proposed boost DC-DC converter consists of a switched capatitor snubber, soft comutations can be achieved for all of the active switches together with diodes. In this paper, detailed operation characteristics of the proposed boost DC-DC converter are presented by means of theoritical and simulation analysis, and the effectiveness of the circuit topology is clarified in terms of high voltage gain and switching loss minimization.

    The Institute of Electronics, Information and Communication Engineers, 22 Jul. 2010, IEICE technical report, 110 (151), 111 - 115, Japanese

  • Practical Evaluations of A ZCS-PWM Boost DC-DC Converter embedding Si-IGBT/SiC-SBD Co-Pack Devices

    MISHIMA Tomokazu, MIYAKE Shuji, NAKAOKA Mutsuo

    29 Jan. 2010, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2010 (1), 29 - 34, Japanese

  • Practical Evaluation of A High-Frequency Soft-Switching DC-DC Converter for Plasma Generating Power Supply

    MISHIMA Tomokazu, YOSHIZAKO Yuji, NAKAOKA Mutsuo

    30 Jul. 2009, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2009 (109), 25 - 30, Japanese

  • A Novel Constant Frequency Asymmetrical PWM-Controlled Soft-Switching Half-Bridge DC-DC Converter

    MISHIMA Tomokazu, HIRAKI Eiji, NAKAOKA Mutsuo

    23 Jan. 2009, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2009 (1), 49 - 55, Japanese

  • Experimental Evaluation and Discussions on ZCS-PWM Edge-Resonant Modular-based Boost-Type DC-DC Power Converter

    MISHIMA Tomokazu, HATTORI Masayuki, TSUKIYAMA Daisuke, MIYAKE Shyuji, NAKAOKA Mutsuo

    23 Jan. 2009, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2009 (1), 43 - 48, Japanese

  • Newly-Developed HB High Frequency Inverter using One Diode Conducting ZCS-AF-PFC FB Rectifier

    SUGIMURA Hisayuki, SUMIYOSHI Shinichiro, MUN Sang-Pil, MISHIMA Tomokazu, HIRAKI Eiji, NAKAOKA Mutsuo

    23 Jan. 2009, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2009 (1), 57 - 62, Japanese

  • Bidirectional DC-DC Converter for Supercapacitor-Based Energy Storage Systems

    MISHIMA Tomokazu, HIRAKI Eiji

    A directional DC-DC converter for supercapacitor-based electric energy storage systems is presented in this paper. The proposed converter is an isolation-type one, where primary side of the high frequency transformer consists of a half-bridge converter and the secondary side is constructed by a push-pull inverter. For the switching loss and surge voltage reduction, Zero Voltage Switching is employed in the half-bridge circuit. In addition, Synchronous Rectification is applied in the push-pull circuit in order to reduce the device-conduction loss due to the low voltage/high current operation of the supercapacitor.

    The Institute of Electronics, Information and Communication Engineers, 09 Sep. 2005, Technical report of IEICE. Energy engineering in electronics and communications, 105 (269), 19 - 24, Japanese

  • A Study of the Half-Bridge type Bidirectional DC-DC Converter for a Supercapacitor-linked Power Interface

    MISHIMA Tomokazu, HIRAKI Eiji, YAMAMOTO Kouji, TANAKA Toshihiko

    28 Jan. 2006, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2006 (36), 25 - 28, Japanese

  • A New Proposal for Continuous Conduction Mode Edge-Resonant Soft Switching PWM Boost DC-DC Converter with Residual Inductive Energy Regenerating Auxiliary Circuit

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    27 Jan. 2012, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2012 (1), 121 - 126, Japanese

  • A Fundamental Characteristics of a Novel Dual Resonant Type Secondary-side Phase-shifted Soft Switching PWM DC-DC Converter with HF-link

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    27 Jan. 2012, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2012 (1), 127 - 132, Japanese

  • An Investigation of Rectifier Circuit Topologies for a Novel LLC Resonant DC-DC Converter with a Reverse Resonant Filter

    MIZUTANI Hiroto, MISHIMA Tomokazu, OOUE Yasuyuki, FUKUMOTO Yoshiki, NAKAOKA Mutsuo

    27 Jan. 2012, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2012 (1), 133 - 138, Japanese

  • Operation Analysis of an Instantaneous Resonant Current Phasor Controlled High-Frequency ZCS Inverter for Induction Heating : Verification of the proposed power regulation method based on its equivalent circuit

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    27 Jan. 2012, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2012 (1), 139 - 144, Japanese

  • A Novel Soft-Switching Phase-Shifted PWM Three-Level DC-DC Converter with Primary-Side Circulating Current Reduction Scheme

    MISHIMA Tomokazu, MORIMOTO Keiki, MUN Sang Pil, NAKAOKA Mutsuo

    26 Sep. 2008, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2008 (115), 1 - 6, English

  • High Frequency Isolated Three-Level Soft Switching DC-DC Converter with Phase Shift PWM Scheme

    SUGIMURA H., MISHIMA T., MUN S. P., KWON S. K., DOI T., YAMAGUCHI K., MORIMOTO K., NAKAOKA M.

    24 Jul. 2008, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2008 (92), 101 - 106, Japanese

  • Advanced Power Electronics Circuit Technology for High Power Density Automotive Power Converters

    MISHIMA Tomokazu, NAKAOKA Mutsuo

    電気学会, 01 Feb. 2008, The Papers of Technical Meeting on Vehicle Technology, IEE Japan, 2008 (1), 25 - 30, Japanese

  • Operation Charactersitics of an Asymmetrical Auxiliary Edge-Resonant Snubber-assisted ZCS-PWM DC-DC Converter

    MISHIMA Tomokazu, HIRAKI Eiji, TANAKA Toshihiko, NAKAOKA Mutsuo

    In recent years, research and development on a low voltage / high current output-type DC-DC converter have been attracting special interests in telecommunication and information power supplies as well as automotive electric power systems. For reducing switching losses and EMI levels in those electric power applications, several soft switching DC-DC converter topologies have been discussed with their control schemes. In this study, a novel high-frequcny transformer linked ZCS-PWM DC-DC converter that is constructed with an asymmetrical auxiliary resonant snubber-assisted half-bridge inverter and a current doubler rectifier is proposed. By investigating the operation and characteristics of this DC-DC converter, the ZCS scheme with the auxiliary snubber is verified to be effective, and design considerations of the resonant circuit parameters including the high- frequency transformer is described in this paper.

    The Institute of Electronics, Information and Communication Engineers, 18 Jan. 2007, IEICE technical report, 106 (494), 7 - 12, Japanese

  • Experimental Evaluations of A Soft Switching PWM Boost DC-DC Converter Operating under DCM with Active Edge-Resonant Switching Cell

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    21 Jan. 2011, 電気学会研究会資料. SPC, 半導体電力変換研究会, 2011 (25), 107 - 113, Japanese

  • An Isolated Bi-directional DC-DC Soft Switching Converter for Super Capacitor Based Energy Storage Systems

    YAMAMOTO Koji, HIRAKI Eiji, TANAKA Toshihiko, MISHIMA Tomokazu

    In recent years, power electronic energy storage systems using super capacitor bank have been widely studied and developed for the electronic vehicles. In this paper, a full-bridge/centertapped push-pull with active clamp circuit based soft switching bidirectional DC-DC converter and its control method are presented and discussed. From the results of basic experimental demonstration, switching losses in the active switches are drastically reduced by ZCS/ZVS operation with the assistance of newly added active clump circuit, as well as ZVS operation with lossless snubber capacitor in high-voltage primary side.

    The Institute of Electronics, Information and Communication Engineers, 12 Jul. 2007, IEICE technical report, 107 (149), 21 - 26, Japanese

  • A novel prototype of active auxiliary edge-resonant snubber-assisted ZCS-PWM DC-DC converter: evaluation on operation characteristics

    三島 智和, 平木 英治, 中岡 睦雄

    パワーエレクトロニクス学会, 2007, パワーエレクトロニクス学会誌, 33, 157 - 163, Japanese

  • アクティブ部分共振スナバZCS-PWM DC-DCコンバータの検討

    三島智和, 福間輝, 平木英治

    2007, 電気・情報関連学会中国支部連合大会講演論文集(CD-ROM), 58th

  • ロスレススイッチト・キャパシタスナバ方式ZCSハーフブリッジDC-DCコンバータの検討

    三島智和, FATHY Khairy, 平木英治, 中岡睦雄

    2006, 電気関係学会関西支部連合大会講演論文集(CD-ROM), 2006

  • フルブリッジ-プッシュプル構成の電気自動車用双方向DC-DCコンバータに関する検討

    山本剛司, 平木英治, 三島智和, 田中俊彦

    2006, 電気・情報関連学会中国支部連合大会講演論文集(CD-ROM), 57th

  • フルブリッジ-プッシュプル構成の電気自動車用双方向DC-DCコンバータに関する検討

    山本剛司, 平木英治, 三島智和, 田中俊彦

    2006, 電気学会全国大会講演論文集, 2006 (4)

  • アクティブ補助共振ロスレススナバ方式ZCS双方向DC-DCコンバータの検討

    三島智和, 平木英治, 田中俊彦

    2006, 電気学会全国大会講演論文集, 2006 (4)

  • Study on the Magnetic Wave Communication and WPT System in Seawater : Proposal of a remote control system for the submersible robot

    河野 實則, 三島 智和

    電子情報通信学会, 06 Oct. 2016, 電子情報通信学会技術研究報告 = IEICE technical report : 信学技報, 116 (238), 7 - 12, Japanese

  • The State-of-The Art Trends on Soft Switching Technology and Its Practical Applications

    平地克也, 岩本英雄, 夫馬弘雄, 加藤義人, 金春峰, 谷口勝則, 舩曳繁之, 松井景樹, 茂木進一, 入江寿一, 弦田幸憲, 中岡睦雄, 中村萬太郎, 二宮保, 平木英治, 渡辺修治, 石川裕記, 荻原弘之, 木船弘康, 米森秀登, 渡辺博巳, 石田宗秋, 笠展幸, 北條昌秀, 道平雅一, 岸本圭司, 小新博昭, 庄司浩幸, 安井健治, 宇敷修一, モイセエフ セルゲイ, 渡辺晴夫, 東聖, 岩倉哲史, 栗尾信広, 三浦友史, 山田健二, 木村友則, 篠原貞夫, 三島智和

    2008, 電気学会技術報告, (1119)

  • アクティブZVS-PWM整流器方式高周波絶縁形ソフトスイッチングDC-DCコンバータとその特性評価

    三島智和

    2008, 平成20年度電気学会産業応用部門大会講演論文集, 1, 327 - 329

Books etc

  • エネルギー問題に対応する最新の高周波電力変換技術

    Contributor, 電気学会, Mar. 2020

  • 地球環境問題に対する最新のパワー半導体スイッチング回路技術

    Mishima Tomokazu

    Joint work, 電気学会, Jan. 2012, Japanese

    Report

  • 自動車用電源統合システム技術

    Mishima Tomokazu

    Joint work, 電気学会, Oct. 2010, Japanese

    Report

  • Management Technology of Automotive Electric Power Supply Systems

    MISHIMA Tomokazu, NAKAOKA Mutsuo

    Joint work, The Institute of Electrical Engineering of Japan, Jul. 2008, Japanese

    Report

  • ソフトスイッチング技術とその実用化最新動向

    MISHIMA Tomokazu, KIMURA Tomonori, SHINOHARA Sadao

    Joint work, The Institute of Electrical Engineering of Japan, Jun. 2008, Japanese

    Report

Presentations

  • 超音波振動を利用した医療用非接触給電システムにおける高周波インバータの設計に関する検討

    横井翔, 三島智和

    電子情報通信学会電子通信エネルギー研究会技術報告書EE2020-35, Jan. 2021, Japanese

    Oral presentation

  • 高調波成分を考慮した電流形スナバレスZCS昇圧DC-DCコンバータの周波数特性解析

    宮崎竜成, 三島智和

    電子情報通信学会電子通信エネルギー研究会技術報告書EE2020-36, Jan. 2021, Japanese

    Oral presentation

  • Stability Analysis of Double LCC Resonant Tanks for Three Level HF-Inverter based Inductively Coupled Wireless Power Transfer

    羅 天, 三島智和, 賴 慶明

    電気学会研究会資料(半導体電力変換/モータドライブ合同研究会)SPC-21-045~060,SPC-21-052, Jan. 2021, Japanese

    Oral presentation

  • 1MHz駆動GaN-HEFT電流形スナバレスZCS高昇圧DC-DCコンバータ -第1報-

    宮崎竜成, 三島智和, 賴 慶明

    令和2年電気関係学会関西連合大会講演論文集, Nov. 2020, Japanese

    Oral presentation

  • 強力超音波振動を利用した非接触力伝送システムに関する基礎的実験検証

    横井翔, 三島智和

    電子情報通信学会電子通信エネルギー研究会技術報告書EE2020-11, Oct. 2020, Japanese

  • A Single-Phase Double LCC Resonant Inductive Wireless Power Transfer Featuring a SiC Three-Level High-Frequency Inverter

    Tian Luo, Mishima Tomokazu, Kobe, U, ity, Ching-Ming Lai, National Chung, Hsing, University, Taiw

    電気学会研究会 半導体電力変換・家電民生・自動車 合同研究会, 01 Sep. 2020, English

    Oral presentation

  • カップルドインダクタを適用した高周波リンク電流形直流昇圧コンバータ

    宮崎竜成・三島智和

    パワーエレクトロニクス学会論文誌(第231回定例研究会講演資料), Mar. 2020, Japanese

  • 共振形Solid-State-Transformerを適用した単相AC-DCコンバータ

    細井飛呂・三島智和

    パワーエレクトロニクス学会論文誌(第231回定例研究会講演資料), Mar. 2020, Japanese

  • カップルドインダクタ方式電流形スナバレスZCS直流昇圧コンバータの実機検証

    宮崎竜成・三島智和

    令和2年電気学会全国大会講演論文集, Mar. 2020, Japanese

  • 強力超音波応用非接触給電システム(UWPT)における送受電BLT等価回路の検討

    菊田捷仁・三島智和

    令和2年電気学会全国大会講演論文集, Mar. 2020, Japanese

    Oral presentation

  • 高周波IH応用複合共振系 三相-単相ダイレクトAC-ACコンバータ

    河嶋亮輔・三島智和・井出千明

    電気学会半導体電力変換/モータドライブ合同研究会, 25 Jan. 2020

  • シングルステージ高周波変換Phase-Modular 三相LLC AC-DCコンバータの出力制御手法に関する検討

    三井翔也・三島智和

    電気学会・半導体電力変換/モータードライブ合同研究会, 24 Jan. 2020, Japanese

    Oral presentation

  • 共振周波数追従Δ-Σ変換PDM を適用した非接触給電D級ZVS コンバータ

    木戸達也・三島智和

    電気学会半導体電力変換/モータドライブ合同研究会, 24 Jan. 2020

  • 「高調波成分を考慮した電流形スナバレスZCS昇圧DC-DCコンバータの周波数特性解析

    宮崎竜成, 三島智和

    電子情報通信学会電子通信エネルギー研究会技術報告書, Jan. 2020, Japanese

    Oral presentation

  • Δ-Σ変換に基づくパルス密度変調制御を適用した非接触給 電D 級ZVS 共振形コンバータ

    木戸達也・三島智和

    令和元年度電気関係学会関西連合大会, 30 Nov. 2019, Japanese

    Oral presentation

  • シングルステージ周波数変換方式Phase-Modular三相複合共振AC-DC コンバータ

    三井翔也・三島智和

    電子情報通信学会・電子通信エネルギー技術研究会, Nov. 2019, Japanese

    Oral presentation

  • 超音波振動子を用いた非接触給電システムの結合係数に関する検討と実機評価 A Study on Coupling Co-Efficient of Contactless Power Transfer System Using Ultrasonic Transducer andExperimental Verification

    菊田捷仁・三島智和

    令和元年度電子情報通信学会ソサエティ大会, 13 Sep. 2019, Japanese

    Oral presentation

  • 三相ー単相ダイレクト周波数変換回路を適用した産業用高周波誘導加熱電源

    河嶋亮輔・三島智和・井出千明

    パワーエレクトロニクス学会第228回定例研究会, 29 Jun. 2019, Japanese

    Oral presentation

  • 非接触給電D級ZVS共振形コンバータにおける共振周波数追従制御法の一検討

    Kido Tatsuya, Mishima Tomokazu

    平成31年電気学会全国大会, Mar. 2019, Japanese, 北海道科学大学, Domestic conference

    Oral presentation

  • 高周波誘導加熱応用三相―単相ダイレクトAC-ACコンバータの実証評価 -第一報-

    Kawashima Ryosuke, Mishima Tomokazu, Ide Chiaki

    平成31年電気学会全国大会, Mar. 2019, Japanese, 北海道科学大学, Domestic conference

    Oral presentation

  • 強力超音波ボルト締め型ランジュバン振動子を用いた非接触給電システムの検討

    Kikuta Katsuihito, Mishima Tomokazu

    平成31年電気学会全国大会, Mar. 2019, Japanese, 北海道科学大学, Domestic conference

    Oral presentation

  • シングルステージ周波数変換Phase-Modular方式三相AC-DCコンバータの実機検証

    Mistui Shoya, Mishima Tomokazu

    平成31年電気学会全国大会, Mar. 2019, Japanese, 北海道科学大学, Domestic conference

    Oral presentation

  • 可変周波数位相差シフト変調によるCLLC共振形双方向DC-DCコンバータの力率改善

    Koga Yasutaka, Mishima Tomokazu

    電気学会半導体電力変換/モータドライブ合同研究会, Jan. 2019, Japanese, 学校法人 奈良学園, Domestic conference

    Oral presentation

  • パルス密度変調制御を適用した電流・電圧形デュアルモード非絶縁E2級DC-DCコンバータの検討

    Fuji Kenta, Mishima Tomokazu

    電子情報通信学会 電子通信エネルギー研究会(EE), Jan. 2019, Japanese, 熊本, Domestic conference

    Oral presentation

  • ISOP方式インターリーブLLC共振形コンバータの高効率化設計と電力損失分析

    Hanauchi Masaki, Mishima Tomokazu

    電気学会半導体電力変換/モータドライブ合同研究会, Jan. 2019, Japanese, 学校法人 奈良学園, Domestic conference

    Oral presentation

  • 高周波誘導加熱用シングルステージAC-ACコンバータにおける共振周波数追従制御の基礎検討

    Hosokawa Seiya, Mishima Tomokazu

    パワーエレクトロニクス学会第226回定例研究会, Dec. 2018, Japanese, 神戸大学深江キャンパス, Domestic conference

    Poster presentation

  • シングルステージ周波数変換Phase Modular方式三相AC-DCコンバータの基礎検討

    Shoya Mitsui, Mishima Tomokazu

    平成30年電気関係学会関西連合大会, Dec. 2018, Japanese, 大阪工業大学, Domestic conference

    Oral presentation

  • ISOP方式LLC共振形コンバータにおけるインターリーブ動作特性と実験検証

    Masaki Hanauchi, Mishima Tomokazu

    電子情報通信学会通信エネルギー研究会/無線電力伝送研究会, Oct. 2018, Japanese, 京都大学 宇治キャンパス, Domestic conference

    Oral presentation

  • 鉄道車両用ZVS-PWM制御3レベルDC/DCコンバータの実験検証

    Yoshinobu Koji, Mishima Tomokazu

    平成30年度電気学会産業応用部門大会講演論文集, Aug. 2018, Japanese, 横浜国立大学, Domestic conference

    Oral presentation

  • 高周波誘導加熱応用三相―単相ダイレクトAC-ACコンバータの提案

    Ryosuke Kawashima, Mishima Tomokazu

    平成30年度電気学会産業応用部門大会講演論文集, Aug. 2018, Japanese, 横浜国立大学, Domestic conference

    Oral presentation

  • ボルト締めランジュバン振動子による強力超音波発生用高周波インバータの基礎検討

    Katsuhito Kikuta, Mishima Tomokazu

    平成30年度電気学会産業応用部門大会講演論文集, Aug. 2018, Japanese, 横浜国立大学, Domestic conference

    Poster presentation

  • 大容量ソフトスイッチング3レベルDC-DCコンバータの鉄道車両用電源への応用

    Yoshinobu Kouji, Mishima Tomokazu

    平成30年度電気学会産業応用部門大会講演論文集, Mar. 2018, Japanese, Domestic conference

    Oral presentation

  • 2MHz GaNパワートランジスタ E級高周波インバータの寄生容量非線形特性に関する一考察

    Kenta Fujii, Mishima Tomokazu

    平成30年電気学会全国大会講演論文集, Mar. 2018, Japanese, Domestic conference

    Oral presentation

  • 寄生振動抑制PDM 制御を導入した非接触給電ZVSD級コンバータ

    Yoichiro Tabata, Mishima Tomokazu

    電気学会半導体電力変換/ モータドライブ合同研究会, Jan. 2018, Japanese, Domestic conference

    Oral presentation

  • 可変周波数位相差制御を適用したCLLC共振形双方向DC-DCコンバータの一考察

    Yasutaka Koga, Mishima Tomokazu

    電気学会半導体電力変換/モータドライブ合同研究会, Jan. 2018, Japanese, Domestic conference

    Oral presentation

  • 非接触給電D級ZVS 共振形コンバータの実機検証

    Yoichiro Tabata, Mishima Tomokazu

    平成29 年度電気関係学会関西連合大会講演論文集, Nov. 2017, Japanese, Domestic conference

    Oral presentation

  • 多巻線高周波トランスを導入した時分割駆動ZCS直並列共振形コンバータ

    Masanori Hanauchi, Mishima Tomokazu

    平成29年度電気関係学会関西連合大会講演論文集, Nov. 2017, Japanese, Domestic conference

    Oral presentation

  • 高周波IH 応用SiC-MOSFET シングルステージACACコンバータの検討

    Shuichi Sakamoto, Mishima Tomokazu, Chiaki Ide

    平成29 年電気関係学会関西連合大会講演論文集, Nov. 2017, Japanese, Domestic conference

    Nominated symposium

  • 非接触給電応用1MHz E 級高周波インバータの設計指針と実験検証

    Kenta Fujii, Mishima Tomokazu

    平成29年度電気学会産業応用部門大会講演論文集, Aug. 2017, Japanese, Domestic conference

    Oral presentation

  • 時分割方式電流形ZCS高周波インバータを応用した昇圧DC-DCコンバータ -第一報-」,平成29年度電気学会産業応用部門大会講演論文集

    Masaki Hanauchi, Mishima Tomokazu

    平成29年度電気学会産業応用部門大会講演論文集, Aug. 2017, Japanese, Domestic conference

    Oral presentation

  • 共振形ZVS双方向DC-DCコンバータの電力制御方式に関する一検討

    Yasutaka Koga, Mishima Tomokazu

    平成29年度電気学会産業応用部門大会/ヤングポスターセッション, Aug. 2017, Japanese, Domestic conference

    Poster presentation

  • PDM 制御非接触給電共振形ZVS コンバータ過渡現象に関する一考察

    Yoichiro Tabata, Mishima Tomokazu

    平成29 年度電気学会産業応用部門大会講演論文集, Aug. 2017, Japanese, Domestic conference

    Oral presentation

  • PDM制御DE級ZVS高周波インバータを応用した非接触給電共振形コンバータ -第一報-

    田畑 洋一郎, Mishima Tomokazu

    平成29年電気学会全国大会講演論文集, Mar. 2017, Japanese, 富山大学五福キャンパス, Domestic conference

    Oral presentation

  • 2次側位相シフト制御ZVZCS-PWMインターリーブDC-DCコンバータの提案

    中山 和思, Mishima Tomokazu

    平成29年電気学会全国大会講演論文集, Mar. 2017, Japanese, 富山大学五福キャンパス, Domestic conference

    Oral presentation

  • 1高周波IH応用シングルステージZVS-PWM AC-ACコンバータにおける共振周波数追従制御法の一検討

    坂本 修一, Mishima Tomokazu

    平成29年電気学会全国大会講演論文集, Mar. 2017, Japanese, 富山大学五福キャンパス, Domestic conference

    Oral presentation

  • 表面実装GaN-HFETを導入した非接触給電ZVS共振形コンバータの性能評価

    森田 栄太郎, Mishima Tomokazu

    電気学会電子半導体電力変換/モータドライブ合同研究会, Jan. 2017, Japanese, 大阪 ダイキン工業(株), Domestic conference

    Oral presentation

  • 高周波IH金属熱処理応用シングルステージAC-ACコンバータのZVS動作の検証

    坂本 修一, Mishima Tomokazu, 井出 千明

    平成28年電気関係学会関西連合大会講演論文集, Nov. 2016, Japanese, 大阪府立大学, Domestic conference

    Oral presentation

  • GaN-HFET適用非接触給電ZVSコンバータのアクティブ整流回路におけるサージ電圧抑制法とその実機検証

    森田 栄太郎, Mishima Tomokazu

    電気学会電子デバイス/半導体電力変換合同研究会, Nov. 2016, Japanese, 九州工業大学 戸畑キャンパス, Domestic conference

    Oral presentation

  • GaN-HFETを適用した同期整流方式非接触給電ZVS共振形コンバータの検討

    森田 栄太郎, Mishima Tomokazu

    平成28年電気関係学会関西連合大会講演論文集, Nov. 2016, Japanese, 大阪府立大学, Domestic conference

    Poster presentation

  • 非接触エネルギー伝送応用二相ZVS Class-D 高周波インバータの検討

    田畑 洋一郎, Mishima Tomokazu

    平成28年電気学会産業応用部門大会講演論文集, Aug. 2016, Japanese, 群馬大学, Domestic conference

    Oral presentation

  • 材料・新構造パワー半導体デバイスを適用した高周波スイッチング電力変換回路の要素技術

    Mishima Tomokazu

    28年電気学会電子・情報・システム部門大会講演論文集, Aug. 2016, English, 神戸大学工学部, Domestic conference

    [Invited]

    Invited oral presentation

  • ブリッジレスアクティブ整流回路を適用した非接触給電GaN-HFET 共振形コンバータの実験評価

    森田 栄太郎, Mishima Tomokazu

    平成28年電気学会電子・情報・システム部門大会講演論文集, Aug. 2016, Japanese, Domestic conference

    [Invited]

    Invited oral presentation

  • 高周波IH金属熱処理応用シングルステージAC-ACコンバータの検討

    坂本 修一, Mishima Tomokazu, 井出 千明

    第213回パワーエレクトロニクス学会定例研究会, Jun. 2016, Japanese, 神戸大学六甲台第2キャンパス, Domestic conference

    Oral presentation

  • GaN-HFET を適用した非接触給電 ZVS 共振形 コンバータの実測効率特性 – SJ-MOSFET 適用との相互比較 –

    Eitaro Morita, Mishima Tomokazu

    平成28年電気学会全国大会, Mar. 2016, Japanese, 東北大学 川内北キャンパス, Domestic conference

    Oral presentation

  • 高周波誘導加熱用位相シフトPWM制御ZVSブーストフルブリッジAC-ACコンバータ

    Souta Morinaga, Shuuichi Nakamoto, Tomokazu Mishima, Chiaki Ide, Mutsuo Nakaoka

    電気学会半導体電力変換/モータドライブ合同研究会, Jan. 2016, Japanese, 立命館大学 草津キャンパス, Domestic conference

    Oral presentation

  • 共振電流位相差制御を適用した非接触給電応用時分割電流形ZCS高周波インバータ

    Kyohei Konishi, Mishima Tomokazu, Mutsuo Nakaoka

    電気学会半導体電力変換/モータドライブ合同研究会, Jan. 2016, Japanese, 立命館大学草津キャンパス, Domestic conference

    Oral presentation

  • 高周波誘導加熱用シングルステージブーストフルブリッジ(BFB) ZVS-PWM AC-ACコンバータの提案

    Souta Morinaga, Tomokazu Mishima, Mutsuo Nakaoka

    平成27年度電気関係学会関西連合大会, Nov. 2015, Japanese, 摂南大学寝屋川キャンパス, Domestic conference

    Oral presentation

  • Si-IGBT/SiC-SBDハイブリッドパワーデバイスを適用した非接触給電ZCS高周波共振形DC-DCコンバータ

    Kyohei Konishi, Mishima Tomokazu, Mutsuo Nakaoka

    平成27年度電気関係学会関西連合大会, Nov. 2015, Japanese, 摂南大学寝屋川キャンパス, Domestic conference

    Oral presentation

  • GaN-Gate Injection Transistor を適用した非接触給電ZVS共振形DC-DCコンバータの実験評価

    Eitaro Morita, Mishima Tomokazu

    27年度電気関係学会関西連合大会, Nov. 2015, English, 摂南大学寝屋川キャンパス, Domestic conference

    Oral presentation

  • Si-IGBT/SiC-SBDパワーモジュールを適用した時分割電流形ZCS高周波インバータとその非接触給電応用

    Kyohei Konishi, Mishima Tomokazu, Mutsuo Nakaoka

    電気学会電子デバイス/半導体電力変換合同研究会, Oct. 2015, Japanese, 長崎市, Domestic conference

    Oral presentation

  • GaN Gate-Injection-Transistor を適用した非接触給電ZVS共振形DC-DCコンバータの検討

    Mishima Tomokazu, Eitaro Morita

    電気学会半導体電力変換/電子デバイス合同研究会, Oct. 2015, Japanese, 長崎市, Domestic conference

    Oral presentation

  • 非接触給電用1次側/2次側FB直列共振形ソフトスイッチングDC-DCコンバータの電力損失分析

    Eitaro Morita, Mishima Tomokazu, Mutsuo Nakaoka

    平成27年度電気学会産業応用部門大会, Sep. 2015, Japanese, 大分大学工学部, Domestic conference

    Oral presentation

  • オールSiCパワーモジュールを用いた高周波誘導加熱用シングルステージZVS-PWM AC-ACコンバータ -実証評価 第一報-

    Souta Morinaga, Mishima Tomokazu, Mutsuo Nakaoka

    平成27年度電気学会産業応用部門大会, Sep. 2015, Japanese, 大分大学工学部, Domestic conference

    Oral presentation

  • 時分割倍周波電流形ZCS高周波インバータに非接触給電装置への応用 -実証評価第一報-

    Kyohei Konishi, Mishima Tomokazu, Mutsuo Nakaoka

    電子情報通信学会電子通信エネルギー研究会/無線電力伝送研究会, Jul. 2015, Japanese, Domestic conference

    Oral presentation

  • 電磁誘導方式非接触給電用共振形フルブリッジDC-DCコンバータの定常特性解析

    MORITA Eitaro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    パワーエレクトロニクス学会 第207回定例研究会, Apr. 2015, Japanese, Domestic conference

    Oral presentation

  • 時分割方式倍周波電流形ZCS高周波インバータ

    MISHIMSA Tomokazu, KONISHI Kyohei, NAKAOKA Mutsuo

    平成27年電気学会全国大会, Mar. 2015, Japanese, Domestic conference

    Oral presentation

  • 高周波誘導加熱用シングルステージZVS-PWM3レベルAC-ACコンバータ

    MISHIMA Tomokazu, MORINAGA Souta, NAKAOKA Mutsuo

    平成27年電気学会全国大会, Mar. 2015, Japanese, Domestic conference

    Oral presentation

  • 高周波誘導加熱用シングルステージZVS-PWM AC-ACコンバータ --非平滑DCリンク特性を考慮した回路設計と評価--

    NAKAGAWA Yuki, MISHIMA Tomokazu, NAKAOKA Mustuo

    電気学会半導体電力変換/モータドライブ合同研究会, Jan. 2015, Japanese, Domestic conference

    Oral presentation

  • Si-IGBT SiC-SBDハイブリッド共振セルを適用したZCS-PWM昇降圧形双方向DC-DCコンバータ

    MASUDA Shinya, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電気学会半導体電力変換/モータドライブ合同研究会, Jan. 2015, Japanese, Domestic conference

    Oral presentation

  • 位相シフトPWM制御共振形双方向DC-DCコンバータのバッテリ充放電模擬実験特性」

    NAKABAYASHI Akinu, MISHIMA Tomokazu, NAKAOKA Mutsuo

    パワーエレクトロニクス学会 第206回定例研究会, Dec. 2014, Japanese, Domestic conference

    Poster presentation

  • アルミニウム調理器誘導加熱用時分割多重制御電流形ZCS高周波インバータ

    KONISHI Kyohei, MISHIMSA Tomokazu, NAKAOKA Mutsuo

    電気学会半導体電力変換/家電・民生/自動車合同研究会, Dec. 2014, Japanese, Domestic conference

    Oral presentation

  • 誘導加熱用時分割多重制御電流形ZCS高周波共振形インバータの動作特性

    KONISHI Kyohei, MISHIMSA Tomokazu, NAKAOKA Mutsuo

    平成26年度電気関係学会関西連合大会, Nov. 2014, Japanese, Domestic conference

    Poster presentation

  • 部分共振ZCS-PWM制御双方向昇降圧形DC-DCコンバータの実験特性 –第1報–

    MASUDA Shinya, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成26年度電気関係学会関西連合大会, Nov. 2014, Japanese, Domestic conference

    Poster presentation

  • 高性能直流マイクログリッドシステムの開発

    MIURA Hisanori, KITAGAWA Yoichi, FUKUI Wataru, MISHIMA Tomokazu, MATSUMOTO Takuya, YUTANI Koji, SUEKANE Kazuo

    計測自動制御学会 システム・情報部門 学術講演会 2014 (SSI2014), Nov. 2014, Japanese, Domestic conference

    Oral presentation

  • 高周波誘導加熱用ブリッジレスBHB ZVS-PWM共振形AC-ACコンバータの電力損失分析

    NAKAGAWA Yuki, MISHIMA Tomokazu, NAKAOKA Mustuo

    平成26年度電気関係学会関西連合大会, Nov. 2014, Japanese, Domestic conference

    Nominated symposium

  • 位相シフトPWM制御ZVS3レベル共振形DC-DCコンバータの動作特性

    MORINAGA Souta, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成26年度電気関係学会関西連合大会, Nov. 2014, Japanese, Domestic conference

    Poster presentation

  • 位相シフトPWM制御ZVS3レベル共振形DC-DCコンバータの実験特性 –第1報–

    MORINAGA Souta, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電子情報通信学会 電子通信技術エネルギー/無線電力伝送研究会, Nov. 2014, Japanese, Domestic conference

    Oral presentation

  • 高周波誘導加熱用ブリッジレスBHB周波数変換器における非平滑DCリンク特性の検証

    NAKAGAWA Yuki, MISHIMA Tomokazu, NAKAOKA Mustuo

    パワーエレクトロニクス学会 第205回定例研究会, Oct. 2014, Japanese, Domestic conference

    Oral presentation

  • 最新の高周波電力変換技術で切り開く誘導加熱応用」,第1回関西ものづくり技術シーズ発表会

    MISHIMA Tomokazu

    第1回関西ものづくり技術シーズ発表会(経済産業省 近畿経済局主催), Sep. 2014, Japanese, Domestic conference

    Public discourse

  • 誘導加熱用時分割多重制御電流形ZCS高周波インバータ

    KONISHI Kyohei, MISHIMSA Tomokazu, NAKAOKA Mutsuo

    平成26年度電気学会産業応用部門大会, Aug. 2014, Japanese, Domestic conference

    Oral presentation

  • 誘導加熱用ブリッジレスBHB ZVS-PWM複合共振形AC-ACコンバータの実験特性

    NAKAGAWA Yuki, MISHIMA Tomokazu, NAKAOKA Mustuo

    平成26年度電気学会産業応用部門大会, Aug. 2014, Japanese, Domestic conference

    Oral presentation

  • 新方式部分共振ZCS-PWM双方向昇降圧形DC-DCコンバータ

    MASUDA Shinya, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成26年度電気学会産業応用部門大会, Aug. 2014, Japanese, Domestic conference

    Oral presentation

  • 家庭内に新たな位置付けを得る省エネ・節電・配電機器システム技術

    Omori Hideki, Kishimoto Keiki, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成26年度電気学会産業応用部門大会, Aug. 2014, Japanese, Domestic conference

    Nominated symposium

  • 位相シフトPWM制御ZVS 3レベル共振形DC-DCコンバータ

    MORINAGA Souta, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成26年度電気学会産業応用部門大会, Aug. 2014, Japanese, Domestic conference

    Oral presentation

  • 1次側・2次側デュアル位相シフトPWM制御直列共振形双方向DC-DCコンバータの電力制御特性に関する一考察

    NAKABAYASHI Akinu, MISHIMA TOMOKAZU, NAKAOKA Mutsuo

    平成26年電気学会全国大会, Mar. 2014, Japanese, 愛媛大学工学部, Domestic conference

    Oral presentation

  • 誘導加熱用ブリッジレスBHB ZVSPWM高周波共振形AC–AC コンバータの実証評価

    NAKAGAWA Yuki, MISHIMA TOMOKAZU, NAKAOKA Mustuo

    電気学会半導体電力変換/モータドライブ合同研究会, Jan. 2014, Japanese, 神戸大学工学部, Domestic conference

    Oral presentation

  • 補助部分共振ZCS-PWMセル双方向DC-DCコンバータの検討

    MASUDA Shinya, MISHIMA TOMOKAZU, NAKAOKA Mutsuo

    電気学会半導体電力変換/モータドライブ合同研究会, Jan. 2014, Japanese, 神戸大学工学部, Domestic conference

    Oral presentation

  • LCLCL多重共振形フルブリッジDC-DCコンバータ

    MISHIMA TOMOKAZU, MIZUTANI Hiroto, NAKAOKA Mutsuo

    電気学会半導体電力変換/モータドライブ合同研究会, Jan. 2014, Japanese, 神戸大学工学部, Domestic conference

    Oral presentation

  • 1次側・2次側デュアル位相シフトPWM制御高周波リンク双方向DC-DCコンバータにおける入出力電圧変換比の考察

    NAKABAYASHI Akinu, MISHIMA TOMOKAZU, NAKAOKA Mutsuo

    平成26年度半導体電力変換・モータドライブ合同研究会, Jan. 2014, Japanese, 神戸大学工学部, Domestic conference

    Oral presentation

  • 誘導加熱用ブリッジレスBHB ZVSPWM高周波共振形AC–AC コンバータ

    NAKAGAWA Yuki, MISHIMA TOMOKAZU, NAKAOKA Mustuo

    電気学会半導体電力変換・自動車・家電民生研究会, Dec. 2013, Japanese, 東京理科大学, Domestic conference

    Oral presentation

  • 改良形3端子ZCS-PWMセルアシスト双方向DC-DCコンバータ

    MASUDA Shinya, MISHIMA TOMOKAZU, NAKAOKA Mutsuo

    パワーエレクトロニクス学会第201回定例研究会, Dec. 2013, Japanese, 大阪工業工業大学 工学部, Domestic conference

    Poster presentation

  • 1次側・2次側位相シフト制御複合共振形ZVS-PWM双方向DC-DCコンバータ-電力制御原理とその実験評価-

    NAKABAYASHI Akinu, MISHIMA Tomokazu, NAKAOKA Mutsuo

    パワーエレクトロニクス学会第200回定例研究会, Oct. 2013, Japanese, Domestic conference

    Oral presentation

  • エネルギー利用を想定した特徴的な電力変換回路

    TERAZONO KATUSI, IRIE TOSHIKAZU, MURAKAMI TORU, OGIWARA HIROYUKI, KIFUNE HIROYASU, HIRAKI EIJI, MISHIMA TOMOKAZU, SAITOU RYOJI, YONEMORI HIDETO

    電気学会産業応用部門大会, Aug. 2013, Japanese, 山口大学, Domestic conference

    Public symposium

  • 位相シフトPWM・PFMデュアルモード制御LLC共振形DC-DCコンバータの電圧変換比特性とソフトスイッチング領域の考察

    MIZUTANI Hiroto, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成25年電気学会全国大会, Mar. 2013, Japanese, Domestic conference

    Oral presentation

  • 複合共振形ソフトスイッチング双方向DC-DCコンバータにおける高周波トランス等価回路パラメータの検証

    NAKABAYASHI Akinu, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成25年電気学会全国大会, 2013, Japanese, Domestic conference

    Oral presentation

  • 部分共振スイッチトキャパシタセルを用いたソフトスイッチングPWM昇圧形DC-DCコンバータの実験評価

    ITO Hiroaki, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電気学会半導体電力変換研究会, 2013, Japanese, Domestic conference

    Oral presentation

  • 同期整流方式複合共振形DC-DCコンバータの電力損失分析

    HANIOKA Masashi, MISHIMA Tomokazu

    平成25年電気関係学会関西連合大会, 2013, Japanese, Domestic conference

    Poster presentation

  • 昇圧レギュレーション機能をもつ誘導加熱用単相商用周波AC-高周波ACコンバータの動作特性

    NAKAGAWA Yuki, MISHIMA Tomokazu, NAKAOKA Mustuo

    平成25年度電気学会産業応用部門大会, 2013, Japanese, Domestic conference

    Oral presentation

  • 準共振ZVS-PFM1石フォワードDC-DCコンバータの高周波トランス寄生成分の考察

    HANIOKA Masashi, MISHIMA Tomokazu

    平成25年電気学会全国大会, 2013, Japanese, Domestic conference

    Oral presentation

  • 瞬時共振電流フェーザ制御ソフトスイッチング高周波インバータ -電力制御手法と高効率電力変換特性の実証評価-

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電気学会半導体電力変換研究会, 2013, Japanese, Domestic conference

    Oral presentation

  • 高周波フルブリッジインバータタイプ複合共振形DC-DCコンバータの出力制御手法の比較とその実験評価

    MIZUTANI Hiroto, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成25年度電気学会産業応用部門大会, 2013, Japanese, Domestic conference

    Oral presentation

  • 高圧側位相シフトPWM制御ソフトスイッチング双方向DC-DCコンバータの動作特性

    NAKABAYASHI Akinu, MISHIMA Tomokazu

    平成25年電気学会産業応用部門大会, 2013, Japanese, Domestic conference

    Oral presentation

  • 寄生振動抑制クランピングダイオードアシスト3端子ZCS-PWMセル部分共振形双方向DC-DCコンバータと実験特性

    MASUDA Shinya, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成25年電気関係学会関西連合大会, 2013, Japanese, Domestic conference

    Poster presentation

  • ブリッジレスB-HB直列共振形インバータと動作原理

    NAKAGAWA Yuki, MISHIMA Tomokazu, NAKAOKA Mustuo

    平成25年電気関係学会関西連合大会, 2013, Japanese, Domestic conference

    Poster presentation

  • SiCパワーデバイスを適用した準共振ZVS-PFM1石フォワードDC-DCコンバータの実動作特性

    HANIOKA Masashi, MISHIMA Tomokazu

    電子情報通信学会技術研究会, 2013, Japanese, Domestic conference

    Oral presentation

  • DCマイクログリッド低圧負荷給電用複合共振形DC-DCコンバータの実験特性-第1報-

    HANIOKA Masashi, MISHIMA Tomokazu

    平成25年度電気学会産業応用部門大会, 2013, Japanese, Domestic conference

    Oral presentation

  • DCマイクログリッド低圧負荷給電用同期整流方式複合共振形DC-DCコンバータの実験評価

    HANIOKA Masashi, MISHIMA Tomokazu

    電子情報通信学会技術研究会, 2013, Japanese, Domestic conference

    Oral presentation

  • 5エレメント複合共振形DC-DCコンバータの電力損失分析と実験評価

    MIZUTANI Hiroto, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電子通信エネルギー技術研究会, 2013, Japanese, Domestic conference

    Oral presentation

  • 3端子ZCS-PWMセルアシスト部分共振形双方向非絶縁DC-DCコンバータの実験特性

    MASUDA Shinya, MISHIMA Tomokazu

    平成25年電気学会産業応用部門大会, 2013, Japanese, Domestic conference

    Oral presentation

  • 2次側位相シフト制御ZVZCS PWM DC-DCコンバータ-損失分析と実証評価

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電気学会半導体電力変換研究会, 2013, Japanese, Domestic conference

    Oral presentation

  • 1次側・2次側位相シフト制御PWM制御複合共振形双方向DC-DCコンバータの実験特性-第一報-

    NAKABAYASHI Akinu, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成25年電気関係学会関西連合大会, 2013, Japanese, Domestic conference

    Poster presentation

  • 誘導加熱用瞬時共振複素電圧ベクトル制御高周波ソフトスイッチングインバータの動作特性

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24年電気学会全国大会, 2012, Japanese, Domestic conference

    Oral presentation

  • 誘導加熱用瞬時共振電流フェーザ制御高周波ソフトスイッチングインバータの出力電力制御特性

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24 年度電気学会産業応用部門大会, 2012, Japanese, Domestic conference

    Oral presentation

  • 誘導加熱用瞬時共振電流フェーザ制御高周波ソフトスイッチングインバータの実験特性–第1報–

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電子通信エネルギー技術研究会, 2012, Japanese, Domestic conference

    Oral presentation

  • 誘導加熱用高周波インバータの動作周波数及び力率補償用コンデンサ設計の一手法

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24年電気関係学会関西連合大会, 2012, Japanese, Domestic conference

    Poster presentation

  • 複合共振形ソフトスイッチング双方向DC-DCコンバータの動作解析

    NAKABAYASHI Akinu, MISHIMA Tomokazu

    パワーエレクトロニクス学会第196回定例研究会, 2012, Japanese, Domestic conference

    Poster presentation

  • 部分共振ソフトスイッチング1石フォワードDC-DCコンバータの高周波スイッチング特性

    HANIOKA Masashi, MISHIMA Tomokazu

    平成24 年度電気学会産業応用部門大会, 2012, Japanese, Domestic conference

    Poster presentation

  • 反共振回路適用LLC共振形DC–DCコンバータの実験動作特性と電力損失分析

    MIZUTANI Hiroto, MISHIMA Tomokazu, FUKUMOTO Yoshiki, NAKAOKA Mutsuo

    平成24 年度電気学会産業応用部門大会, 2012, Japanese, Domestic conference

    Oral presentation

  • 反共振フィルタ適用LLC共振形DC-DCコンバータにおける整流回路方式の実証比較

    MIZUTANI Hiroto, MISHIMA Tomokazu, OOUE Yasuyuki, FUKUMOTO Yoshiki, NAKAOKA Mutsuo

    平成24年電気学会全国大会, 2012, Japanese, Domestic conference

    Oral presentation

  • 反共振タンク適用LLC共振形DC-DCコンバータのDCM/CCM動作における定常解析

    MIZUTANI Hiroto, MISHIMA Tomokazu, FUKUMOTO Yoshiki, NAKAOKA Mutsuo

    平成24年電気関係学会関西連合大会, 2012, Japanese, Domestic conference

    Poster presentation

  • 低電圧出力に対応した2次側位相シフトPWM高周波リンクソフトスイッチングDC-DCコンバータ

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24年度半導体電力変換・電子情報通信学会合同研究会, 2012, Japanese, Domestic conference

    Oral presentation

  • 多相化した連続モード部分共振ソフトスイッチングPWM 昇圧形DC-DC コンバータの動作特性

    ITO Hiroaki, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24 年度電気学会産業応用部門大会, 2012, Japanese, Domestic conference

    Oral presentation

  • 多相化した連続モード部分共振ソフトスイッチングPWM 昇圧形DC-DC コンバータの動作特性

    ITO Hiroaki, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24年電気関係学会関西連合大会, 2012, Japanese, Domestic conference

    Poster presentation

  • 可変周波数PWM制御を用いた部分共振1石フォワードDC-DCコンバータの実動作特性

    HANIOKA Masashi, MISHIMA Tomokazu

    半導体電力変換 モータードライブ合同研究会, 2012, Japanese, Domestic conference

    Oral presentation

  • 可変周波数PWM制御を用いた部分共振ソフトスイッチング1石フォワードDC-DCコンバータの動作特性の検証

    HANIOKA Masashi, MISHIMA Tomokazu

    平成24年電気関係学会関西連合大会, 2012, Japanese, Domestic conference

    Poster presentation

  • IH用瞬時共振電流フェーザ制御高周波インバータにおける台数制御導入効果の実験評価

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24年半導体電力変換,自動車,家電・民生合同研究会, 2012, Japanese, Domestic conference

    Oral presentation

  • EV バッテリ充電用2次側位相シフト制御ソフトスイッチングPWM DC-DC コンバータの検討

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24年半導体電力変換,自動車,家電・民生合同研究会, 2012, Japanese, Domestic conference

    Oral presentation

  • 5エレメント複合共振形DC–DCコンバータの定常動作解析

    MIZUTANI Hiroto, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電子通信エネルギー技術研究会, 2012, Japanese, Domestic conference

    Oral presentation

  • 2次側位相シフト制御ソフトスイッチングPWM DC-DCコンバータにおける初期位相差角の検証

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24年電気学会全国大会, 2012, Japanese, Domestic conference

    Oral presentation

  • 2次側位相シフト制御ZVZCS-PWM DC-DC コンバータにおけるソフトスイッチング特性の検証

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24年電気関係学会関西連合大会, 2012, Japanese, Domestic conference

    Poster presentation

  • 2次側ZCS位相シフトPWMソフトスイッチングDC-DCコンバータの閉ループ出力制御特性

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成24 年度電気学会産業応用部門大会, 2012, Japanese, Domestic conference

    Oral presentation

  • 誘導加熱用瞬時共振電流ベクトル制御高周波ZCS共振形インバータの動作解析

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    モータドライブ合同研究会, 2011, Japanese, Domestic conference

    Oral presentation

  • 誘導加熱用瞬時共振電流フェーザ制御高周波ZCSインバータの動作解析 –等価回路に基づく提案電力制御手法の検討–

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電気学会半導体電力変換研究会, 2011, Japanese, Domestic conference

    Oral presentation

  • 部分共振方式ソフトスイッチングPWM昇圧形DC-DCコンバータの動作領域とその実証評価

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    パワーエレクトロニクス学会第190回定例研究会, 2011, Japanese, Domestic conference

    Oral presentation

  • 部分共振ソフトスイッチング昇圧形DC-DCコンバータの電圧比特性とその実験評価

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    パワーエレクトロニクス学会第188回定例研究会, 2011, Japanese, Domestic conference

    Oral presentation

  • 部分共振ソフトスイッチングPWM昇圧形DC-DCコンバータの実験動作特性と電力損失分析

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成23年電気関係学会関西連合大会, 2011, Japanese, Domestic conference

    Poster presentation

  • 不連続モード部分共振ソフトスイッチングPWM昇圧形DC-DCコンバータの回路パラメータ設計と実証評価

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成23年度電気学会産業応用部門大会, 2011, Japanese, Domestic conference

    Oral presentation

  • 反共振フィルタ適用LLC共振形DC-DCコンバータの整流回路方式の検討

    MIZUTANI Hiroto, MISHIMA Tomokazu, OOUE Yasuyuki, FUKUMOTO Yoshiki, NAKAOKA Mutsuo

    電気学会半導体電力変換研究会, 2011, Japanese, Domestic conference

    Oral presentation

  • 反共振フィルタを併用したLLC共振形DC-DCコンバータの電圧変換比特性に関する基礎検討

    MIZUTANI Hiroto, MISHIMA Tomokazu, OOUE Yasuyuki, FUKUMOTO Yoshiki, NAKAOKA Mutsuo

    パワーエレクトロニクス学会第190回定例研究会, 2011, Japanese, Domestic conference

    Oral presentation

  • 反共振フィルタを付加したLLC共振形DC-DCコンバータの実験特性(第一報)-電圧変換比の検証-

    MIZUTANI Hiroto, MISHIMA Tomokazu, OOUE Yasuyuki, FUKUMOTO Yoshiki, NAKAOKA Mutsuo

    電気学会半導体電力変換/モータドライブ合同研究会, 2011, Japanese, Domestic conference

    Oral presentation

  • 入力電圧変動に対するERSC方式ソフトスイッチングPWM昇圧DC-DCコンバータの効率評価

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成23年電気学会全国大会, 2011, Japanese, Domestic conference

    Oral presentation

  • 昇降圧感度を改善した新方式フルブリッジLLC複合共振形DC-DCコンバータの動作解析

    MIZUTANI Hiroto, MISHIMA Tomokazu, OOUE Yasuyuki, FUKUMOTO Yoshiki, NAKAOKA Mutsuo

    パワーエレクトロニクス学会第191回定例研究会, 2011, Japanese, Domestic conference

    Poster presentation

  • 瞬時値電流ベクトル制御高周波共振形ZCSインバータの電力制御特性

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    パワーエレクトロニクス学会第191回定例研究会, 2011, Japanese, Domestic conference

    Poster presentation

  • 高感度昇降圧特性をもつ新方式LLC複合共振形DC-DCコンバータ

    MIZUTANI Hiroto, MISHIMA Tomokazu, OOUE Yasuyuki, FUKUMOTO Yoshiki, NAKAOKA Mutsuo

    平成23年電気関係学会関西連合大会, 2011, Japanese, Domestic conference

    Poster presentation

  • 位相シフトZCSアクティブ整流器方式高周波リンクソフトスイッチングDC-DCコンバータの実験特性

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    モータドライブ合同研究会, 2011, Japanese, Domestic conference

    Oral presentation

  • 位相シフトZCS-PWMアクティブ整流器を持つ高周波リンクソフトスイッチング DC-DCコンバータの実動作特性 -第一報-

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成23年電気関係学会関西連合大会, 2011, Japanese, Domestic conference

    Poster presentation

  • 位相シフトPWM&PDMハイブリッド制御誘導加熱用高周波インバータの検討

    TAKAMI Chikanori, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成23年度電気学会産業応用部門大会, 2011, Japanese, Domestic conference

    Poster presentation

  • デュアル共振形2次側位相シフト制御高周波リンクソフトスイッチングPWM DC-DCコンバータの基礎特性

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電気学会半導体電力変換研究会, 2011, Japanese, Domestic conference

    Oral presentation

  • デュアル共振モードを適用した2次側位相シフト制御ソフトスイッチングPWM DC-DCコンバータの基礎検討

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    パワーエレクトロニクス学会第191回定例研究会, 2011, Japanese, Domestic conference

    Poster presentation

  • アクティブ部分共振セルを用いた不連続モードソフトスイッチングPWM昇圧形DC-DCコンバータの実験評価

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電気学会半導体電力変換研究会, 2011, Japanese, Domestic conference

    Oral presentation

  • ZCS-PWMアクティブ整流方式高周波絶縁形ソフトスイッチングDC-DCコンバータ

    AKAMATSU Kouhei, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成23年度電気学会産業応用部門大会, 2011, Japanese, Domestic conference

    Poster presentation

  • PAM/PFMデュアルモード制御LLC共振形DC-DCコンバータの検討

    MIZUTANI Hiroto, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成23年度電気学会産業応用部門大会, 2011, Japanese, Domestic conference

    Poster presentation

  • 連続/不連続モード部分共振ソフトスイッチング昇圧形DC-DCコンバータの動作特性

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成22年電気関係学会関西連合大会, 2010, Japanese, Domestic conference

    Poster presentation

  • 共振スイッチトキャパシタを用いたソフトスイッチング昇圧形DC-DCコンバータの実験動作特性

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    パワーエレクトロニクス学会第186回定例研究会, 2010, Japanese, Domestic conference

    Oral presentation

  • スイッチト・キャパシタスナバソフトスイッチングPWM昇圧形DC-DCコンバータの動作特性

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    平成22年電気学会産業応用部門大会, 2010, Japanese, Domestic conference

    Oral presentation

  • スイッチトキャパシタスナバ方式ソフトスイッチングPWM昇圧形DC-DCコンバータの電圧ゲインの考察

    TAKEUCHI Yujiro, MISHIMA Tomokazu, NAKAOKA Mutsuo

    電子情報通信学会, 2010, Japanese, Domestic conference

    Oral presentation

Association Memberships

  • 日本マリンエンジニアリング学会

  • 電気設備学会

  • 電子情報通信学会

  • IEEE

  • パワーエレクトロニクス学会

  • 電気学会

  • 日本マリンエンジニアリング学会(正員)

  • 電気設備学会(正員)

  • 電子情報通信学会(正員)

  • IEEE (Senior Member)

  • パワーエレクトロニクス学会(正員)

  • 電気学会(上級会員)

Research Projects

  • 三島 智和

    科学研究費補助金/基盤研究(B), Apr. 2018 - Mar. 2021, Principal investigator

    Competitive research funding

  • 金属熱処理加工を目的とした高周波誘導加熱用三相-単相シングルステージ電力変換装置の開発

    三島 智和

    研究成果展開事業(マッチングプランナー プログラム), 2016, Principal investigator

    Competitive research funding

  • 三島 智和

    学術研究助成基金助成金/基盤研究(C), Apr. 2015 - Mar. 2018, Principal investigator

    Competitive research funding

  • マッチングプランナー「金属熱処理加工を目的とした高周波誘導加熱用三相—単相シングルステージ電力変換装置の開発」

    三島 智和

    科学技術振興機構, 研究成果展開事業 マッチングプランナープログラム 探索試験, 2015, Principal investigator

    Competitive research funding

  • 三島 智和

    学術研究助成基金助成金/若手研究(B), Apr. 2013 - Mar. 2015, Principal investigator

    Competitive research funding

  • A-STEP「中容量から大容量(3kW~100kW)に展開できる高効率・高性能多相多重直流昇圧コンバータの開発」

    三島 智和

    研究成果最適展開支援プログラム フィージビリティスタディステージ 探索タイプ, 2012, Principal investigator

    Competitive research funding

  • A-STEP「中容量から大容量(3kW~100kW)に展開できる高効率・高性能多相多重直流昇圧コンバータの開発」

    三島 智和

    研究成果最適展開支援プログラム フィージビリティスタディステージ 探索タイプ, 2011, Principal investigator

    Competitive research funding

  • 電気二重層キャパシタ用電流双方向型DC-DCコンバータ

    Competitive research funding

  • 次世代型自動車用電源システム

    Competitive research funding

  • スーパーキャパシタインターフェース双方向DC-DCコンバータ

    Competitive research funding

  • Biderectional DC-DC Converter for Automotive Electrical Systems

    Competitive research funding

Industrial Property Rights

  • DC-DCコンバータの補助回路及びその補助回路を用いた双方向昇降圧DC-DCコンバータ

    Mishima Tomokazu, 増田 真也

    特願2014-151277, 24 Jul. 2014, 大学長, 特許6452226, 21 Dec. 2018

    Patent right

  • 誘導加熱用商用周波-高周波コンバータおよびその制御方法

    Mishima Tomokazu, 中川 雄貴

    特願2014-113311, 30 May 2014, 大学長, 特許6278331, 26 Jan. 2018

    Patent right

  • 誘導加熱用高周波インバータ

    Mishima Tomokazu, 小西 響平

    特願2014-039700, 28 Feb. 2014, 大学長, 特許6225407, 20 Oct. 2017

    Patent right

  • 誘導加熱用高周波インバータとその制御方法

    Mishima Tomokazu

    特願2011-263151, 30 Nov. 2011, 大学長, 特許5846426, 04 Dec. 2015

    Patent right