Directory of Researchers

YAGUCHI Takaharu
Graduate School of System Informatics / Department of Computational Science
Associate Professor
Engineering / Other Field
Last Updated :2022/04/15

Researcher Profile and Settings

Affiliation

  • <Faculty / Graduate School / Others>

    Graduate School of System Informatics / Department of Computational Science
  • <Related Faculty / Graduate School / Others>

    Faculty of Engineering / Department of Computer Science and Systems Engineering, Center for Mathematical and Data Sciences, Center for Computational Social Science (CCSS)

Teaching

  • Graduate School of System Informatics, 2021, Mathematical Modeling and Analysis
  • Graduate School of System Informatics / Department of Computational Science, 2021, Fundamental Theory of Computational Science
  • Faculty of Engineering / Department of Computer Science and Systems Engineering, 2021, First Year Seminar
  • Faculty of Engineering / Department of Computer Science and Systems Engineering, 2021, Interdisciplinary Experiment A1
  • Faculty of Engineering / Department of Computer Science and Systems Engineering, 2021, Interdisciplinary Experiment A1
  • Faculty of Engineering / Department of Computer Science and Systems Engineering, 2021, Applied Mathematical Analysis
  • Faculty of Engineering / Department of Computer Science and Systems Engineering, 2021, Interdisciplinary Practice B1
  • Faculty of Engineering / Department of Computer Science and Systems Engineering, 2021, Interdisciplinary Experiment B1
  • Faculty of Engineering / Department of Computer Science and Systems Engineering, 2021, Interdisciplinary Experiment B1
  • Faculty of Engineering / Department of Computer Science and Systems Engineering, 2021, Interdisciplinary Practice B1
  • Faculty of Engineering / Department of Computer Science and Systems Engineering, 2021, Interdisciplinary Practice B2
  • Faculty of Engineering / Department of Computer Science and Systems Engineering, 2021, Interdisciplinary Practice B2

Research at Kobe

  • 18 Dec. 2020, Artificial Intelligence that can run a simulation faithful to physical laws

Research Activities

Research Interests

  • Machine Learning
  • 社会ネットワーク解析
  • 数理モデリング
  • Morphological Computing
  • Geometric Mechanics
  • Numerical Analysis

Research Areas

  • Natural sciences / Applied mathematics and statistics

Committee Memberships

  • Apr. 2021 - Present, MDPI Mathematics, Topic Editor
  • Oct. 2019 - Present, 日本数学会応用数学分科会委員会委員
  • Apr. 2018 - Mar. 2021, 日本応用数理学会, JSIAM Letters 幹事編集委員長
  • Sep. 2015 - Mar. 2018, 日本応用数理学会, JSIAM Letters 副編集委員長
  • May 2015 - Present, 日本学術会議, 計算音響学小委員会 委員
  • Apr. 2015 - Mar. 2017, 日本応用数理学会, 若手の会 幹事
  • 28th International Conference on Artificial Neural Networks, Programme Committee

Awards

  • Sep. 2017 日本応用数理学会, 日本応用数理学会論文賞(理論部門), ハミルトン方程式に対する離散勾配法のRiemann構造不変性

    ISHIKAWA AI, YAGUCHI TAKAHARU

    Official journal

  • Jun. 2016 日本応用数理学会, 日本応用数理学会研究部会連合発表会優秀講演賞, 第12回日本応用数理学会研究部会連合発表会における講演「自動離散微分とその応用」

    YAGUCHI TAKAHARU

    Japan society

  • Sep. 2014 日本応用数理学会, 日本応用数理学会論文賞(理論部門), コンパクト差分に基づく離散変分導関数法

    金澤 宏紀, 松尾 宇泰, 谷口 隆晴

  • Aug. 2012 日本応用数理学会, 日本応用数理学会若手優秀講演賞, ホロノミック系に対するラグランジュ力学的離散勾配法

    谷口 隆晴

  • Jul. 2011 SciCADE 2011 (the International Conference on Scientific Computation And Differential Equations 2011), SciCADE 2011 New Talent Award, A Lagrangian Approach to Deriving Energy-Preserving Numerical Schemes for the Euler-Lagrange Partial Differential Equations and Its Applications

    Takaharu Yaguchi

Published Papers

  • KAM Theory Meets Statistical Learning Theory: Hamiltonian Neural Networks with Non-Zero Training Loss

    Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi

    Last, Feb. 2022, Thirty-Sixth AAAI Conference on Artificial Intelligence, English

    [Refereed]

    International conference proceedings

  • Secrete Communication Systems Using Chaotic Wave Equations with Neural Network Boundary Conditions

    Yuhan Chen, Hideki Sano, Masashi Wakaiki, Takaharu Yaguchi

    16 Jul. 2021, Entropy, 23 (7), 904, English

    [Refereed]

    Scientific journal

  • Identification method for polynomially parametrized LTI systems based on exhaustive modelling with algebraic elimination

    Mizuka Komatsu, Takaharu Yaguchi, Kenji Kamada, Gen Izumisawa

    01 Jul. 2021, Nonlinear Theory and Its Applications, IEICE, 12 (3), 295 - 308, English

    [Refereed][Invited]

    Scientific journal

  • Secure Communication Systems Using Distributed Parameter Chaotic Synchronization

    Hideki Sano, Masashi Wakaiki, Takaharu Yaguchi

    19 Feb. 2021, Transactions of the Society of Instrument and Control Engineers, 57 (2), 78 - 85, Japanese

    [Refereed]

    Scientific journal

  • Takuto Jikyo, Tomio Kamada, Chikara Ohta, Takaharu Yaguchi, Kenji Oyama, Takenao Ohkawa, Ryo Nishide

    IEEE, 09 Jan. 2021, Proceedings of 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), 1 - 4, English

    [Refereed]

    International conference proceedings

  • Simplecticity of Coupled System of the Wave Equation and the Elastic Equation

    Shunpei Terakawa, Takaharu Yaguchi

    25 Dec. 2020, Transactions of the Japan Society for Industrial and Applied Mathematics, 30 (4), 269 - 289, Japanese

    [Refereed]

    Scientific journal

  • Deep Energy-Based Modeling of Discrete-Time Physics

    Takashi Matsubara, Ai Ishikawa, Takaharu Yaguchi

    08 Dec. 2020, Advances in Neural Information Processing Systems (NeurIPS), 33, 13100 - 13111, English

    [Refereed]

    International conference proceedings

  • Parameter estimation for dynamical systems via structural realization

    Mizuka Komatsu, Takaharu Yaguchi, Kenji Kamada, Gen Izumisawa

    16 Nov. 2020, Proceedings of the 2020 International Symposium on Nonlinear Theory and its Applications (NOLTA2020), 204 - 207, English

    [Refereed]

    International conference proceedings

  • Mizuka Komatsu, Takaharu Yaguchi, Kohei Nakajima

    Recently, soft robots that consist of soft and deformable materials have received much attention for their adaptability to uncertain environments. Although these robots are difficult to control with a conventional control theory owing to their complex body dynamics, research from different perspectives attempts to actively exploit these body dynamics as an asset rather than a drawback. This approach is called morphological computation, in which the soft materials are used for computation that includes a new kind of control strategy. In this article, we propose a novel approach to analyze the computational properties of soft materials based on an algebraic method, called the input–output equation used in systems analysis, particularly in systems biology. We mainly focus on the two scenarios relevant to soft robotics, that is, analysis of the computational capabilities of soft materials and design of the input force to soft devices to generate the target behaviors. The input–output equation directly describes the relationship between inputs and outputs of a system, and hence by using this equation, important properties, such as the echo state property that guarantees reproducible responses against the same input stream, can be investigated for soft structures. Several application scenarios of our proposed method are demonstrated using typical soft robotic settings in detail, including linear/nonlinear models and hydrogels driven by chemical reactions.

    SAGE Publications, 20 Mar. 2020, The International Journal of Robotics Research, 027836492091229 - 027836492091229, English

    [Refereed]

    Scientific journal

  • Mizuka Komatsu, Shunpei Terakawa, Takaharu Yaguchi

    In this paper, we propose a method for deriving energetic-property-preserving numerical schemes for coupled systems of two given natural systems. We consider the case where the two systems are interconnected by the action–reaction law. Although the derived schemes are based on the discrete gradient method, in the case under consideration, the equation of motion is not of the usual form represented by using the skew-symmetric matrix. Hence, the energetic-property-preserving schemes cannot be obtained by straightforwardly using the discrete gradient method. We show numerical results for two coupled systems as examples; the first system is a combination of the wave equation and the elastic equation, and the second is of the mass–spring system and the elastic equation.

    MDPI AG, 14 Feb. 2020, Mathematics, 8 (2), 249 - 249, English

    [Refereed][Invited]

    Scientific journal

  • Differential Algebraic Method for Direct Evaluation of Computational Capabilities of Physical Reservoirs

    KOMATSU Mizuka, YAGUCHI Takaharu, NAKAJIMA Kohei

    Dec. 2019, Proceedings of the 2019 International Symposium on Nonlinear Theory and its Applications (NOLTA2019), 187 - 190, English

    [Refereed]

    International conference proceedings

  • On the equivalence of the norms of the discrete diffrential forms in discrete exterior calculus

    Satoh Tomohisa, Yaguchi Takaharu

    Jan. 2019, Japan Journal of Industrial and Applied Mathematics, 36, 3 - -24, English

    [Refereed]

    Scientific journal

  • Geometric-integration tools for the simulation of musical sounds

    ISHIKAWA AI, Michels L. Dominik, YAGUCHI TAKAHARU

    Jan. 2018, Japan Journal of Industrial and Applied Mathematics, English

    [Refereed]

    Scientific journal

  • Mass-Spring Damper Array as a Mechanical Medium for Computation

    Yamanaka Yuki, Yaguchi Takaharu, Nakajima Kohei, Hauser Helmut

    2018, Lecture Notes in Computer Science: International Conference on Artificial Neural Networks (ICANN2018), 11141, 781 - 794, English

    [Refereed]

    International conference proceedings

  • Husbyらの実験データに対するアレルギー発症メカニズムの解析に向けた抗原・抗体の体内動態モデルの構築

    KOMATSU MIZUKA, YAGUCHI TAKAHARU

    2018, 日本応用数理学会論文誌, 28, 162 - 204, Japanese

    [Refereed]

    Scientific journal

  • Kouhei Masumoto, Takaharu Yaguchi, Hiroshi Matsuda, Hideaki Tani, Keisuke Tozuka, Narihiko Kondo, Shuichi Okada

    Aim: A number of interventions have been undertaken to develop and promote social networks among community dwelling older adults. However it has been difficult to examine the effects of these interventions, because of problems in assessing interactions. The present study was designed to quantitatively measure and visualize face-to-face interactions among elderly participants in an exercise program. We also examined relationships among interactional variables, personality and interest in community involvement, including interactions with the local community. Methods: Older adults living in the same community were recruited to participate in an exercise program that consisted of tour sessions. We collected data on face-to-face interactions of the participants by using a wearable sensor technology device. Results: Network analysis identified the communication networks of participants in the exercise program, as well as changes in these networks. Additionally, there were significant correlations between the number of people involved in face-to-face interactions and changes in both interest in community involvement and interactions with local community residents, as well as personality traits, including agreeableness. Conclusions: Social networks in the community are essential for solving problems caused by the aging society. We showed the possible applications of face-to-face interactional data for identifying core participants having many interactions, and isolated participants having only a few interactions within the community. Such data would be useful for carrying out efficient interventions for increasing participants' involvement with their community.

    WILEY, Oct. 2017, GERIATRICS & GERONTOLOGY INTERNATIONAL, 17 (10), 1752 - 1758, English

    [Refereed]

    Scientific journal

  • 河崎 素乃美, YAGUCHI TAKAHARU, MASUMOTO KOUHEI, KONDO NARIHIKO, OKADA SHUICHI

    Mar. 2017, 応用数理, 27, 13 - 20, Japanese

    [Refereed][Invited]

    Scientific journal

  • 河崎 素乃美, YAGUCHI TAKAHARU, MASUMOTO KOUHEI, KONDO NARIHIKO, OKADA SHUICHI

    Mar. 2017, 応用数理, 27, 13 - 20, Japanese

    [Refereed][Invited]

    Scientific journal

  • Geometric-mechanics-inspired model of stochastic dynamical systems

    YAGUCHI TAKAHARU

    Mar. 2017, MI Lecture Notes of IMI, 74, 31 - 33, English

    International conference proceedings

  • Energy-preserving Discrete Gradient Schemes for the Hamilton Equation Based on the Variational Principle

    ISHIKAWA AI, YAGUCHI TAKAHARU

    Mar. 2017, MI Lecture Notes of IMI, 74, 63 - 68, English

    International conference proceedings

  • ISHIKAWA AI, YAGUCHI TAKAHARU

    Dec. 2016, 日本応用数理学会論文誌, 26 (4), 381 - 415, Japanese

    [Refereed]

    Scientific journal

  • ネットワークにおける複数頂点組の力学的重要性に関する数値的検証

    IRIE RIN, KOBAYASHI TERUYOSHI, YAGUCHI TAKAHARU

    Nov. 2016, 國民經濟雜誌, 214 (5), 39 - 50, Japanese

    Scientific journal

  • ISHIKAWA AI, YAGUCHI TAKAHARU

    Sep. 2016, JSIAM Letters, 8, 53 - 56, English

    [Refereed]

    Scientific journal

  • 地域コミュニティの構造変化に対する検定理論

    KAWASAKI SONOMI, YAGUCHI TAKAHARU, MASUMOTO KOUHEI, KONDO NARIHIKO, OKADA SHUICHI

    Dec. 2015, 2015年度応用数学合同研究集会予稿集, 394 - 401, Japanese

    Symposium

  • ISHIKAWA Ai, YAGUCHI Takaharu

    Jan. 2015, JSIAM Letters, 7, 17 - 20, English

    [Refereed]

    Scientific journal

  • Ai Ishikawa, Takaharu Yaguchi

    We consider invariance of schemes derived by using the discrete gradient method for the Webster equation under change of Riemannian structures. In our previous research we expected that Furihata's discrete gradient method for the Webster equation has invariance under change of Riemannian structures. In this paper we prove this conjecture.

    AMER INST PHYSICS, 2015, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 1648, English

    [Refereed]

    International conference proceedings

  • Takaharu Yaguchi

    As it is widely accepted, for differential equations that reflect some physical properties it is preferable to use numerical schemes that inherit these properties. Many of such schemes are designed for Hamiltonian equations and are derived by using the Hamiltonian structures of the equations. In this paper, we formulate Hamiltonian structures for a class of wave-type equations that are compatible with the finite element exterior calculus. The finite element exterior calculus is a unified approach to designing finite element schemes for discretizing the scalar Laplacian and the vector Laplacian. In this theory, the stability result is obtained by using the Hodge theory and the Poincare inequality. We provide Hamiltonian structures for the wave-type equations for which the schemes derived with the help of the finite element exterior calculus can be employed and thereby make combinations of structure-preserving methods and the finite element exterior calculus possible.

    AMER INST PHYSICS, 2015, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 1648, English

    [Refereed]

    International conference proceedings

  • Takaharu Yaguchi

    We propose a Lagrangian approach to deriving energy-preserving finite difference schemes for the Euler-Lagrange partial differential equations. Noether's theorem states that the symmetry of time translation of Lagrangians yields the energy conservation law. We introduce a unique viewpoint on this theorem: "the symmetry of time translation of Lagrangians derives the Euler-Lagrange equation and the energy conservation law, simultaneously." The proposed method is a combination of a discrete counter part of this statement and the discrete gradient method. It is also shown that the symmetry of space translation derives momentum-preserving schemes. Finally, we discuss the existence of discrete local conservation laws.

    EDP SCIENCES S A, Sep. 2013, ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 47 (5), 1493 - 1513, English

    [Refereed]

    Scientific journal

  • コンパクト差分に基づく離散変分導関数法

    金澤 宏紀, 松尾 宇泰, YAGUCHI TAKAHARU

    Jun. 2013, 日本応用数理学会論文誌, 23, 203 - 232, Japanese

    [Refereed]

    Scientific journal

  • Lagrange 力学に基づく局所エネルギー保存型数値解法導出法と線形波動方程式に対する無反射境界条件への応用

    YAGUCHI TAKAHARU

    Sep. 2012, 日本応用数理学会論文誌, 22, 143 - 169, Japanese

    [Refereed]

    Scientific journal

  • Takaharu Yaguchi, Takayasu Matsuo, Masaaki Sugihara

    As is well known, for PDEs that enjoy a conservation or dissipation property, numerical schemes that inherit this property are often advantageous in that the schemes are fairly stable and give qualitatively better numerical solutions in practice. Lately, Furihata and Matsuo have developed the so-called "discrete variational derivative method'' that automatically constructs energy preserving or dissipative finite difference schemes. Although this method was originally developed on uniform meshes, the use of non-uniform meshes is of importance for multi-dimensional problems. On the other hand, the theories of discrete differential forms have received much attention recently. These theories provide a discrete analogue of the vector calculus on general meshes. In this paper, we show that the discrete variational derivative method and the discrete differential forms by Bochev and Hyman can be combined. Applications to the Cahn-Hilliard equation and the Klein-Gordon equation on triangular meshes are provided as demonstrations. We also show that the schemes for these equations are H-1-stable under some assumptions. In particular, one for the nonlinear Klein-Gordon equation is obtained by combination of the energy conservation property and the discrete Poincare inequality, which are the temporal and spacial structures that are preserved by the above methods. (C) 2012 Elsevier Inc. All rights reserved.

    ACADEMIC PRESS INC ELSEVIER SCIENCE, May 2012, JOURNAL OF COMPUTATIONAL PHYSICS, 231 (10), 3963 - 3986, English

    [Refereed]

    Scientific journal

  • Yuto Miyatake, Takaharu Yaguchi, Takayasu Matsuo

    We consider structure preserving numerical schemes for the Ostrovsky equation, which describes gravity waves under the influence of Coriolis force. This equation has two associated invariants: an energy function and the L-2 norm. It is widely accepted that structure preserving methods such as invariants-preserving and multi-symplectic integrators generally yield qualitatively better numerical results. In this paper we propose five geometric integrators for this equation: energy-preserving and norm-preserving finite difference and Galerkin schemes, and a multi-symplectic integrator based on a newly found multi-symplectic formulation. A numerical comparison of these schemes is provided, which indicates that the energy-preserving finite difference schemes are more advantageous than the other schemes. (C) 2012 Elsevier Inc. All rights reserved.

    ACADEMIC PRESS INC ELSEVIER SCIENCE, May 2012, JOURNAL OF COMPUTATIONAL PHYSICS, 231 (14), 4542 - 4559, English

    [Refereed]

    Scientific journal

  • Hiroki Kanazawa, Takayasu Matsuo, Takaharu Yaguchi

    Mar. 2012, JSIAM Letters, vol. 4, 5-8.

    [Refereed]

    Scientific journal

  • Morten Dahlby, Brynjulf Owren, Takaharu Yaguchi

    We consider systems of ordinary differential equations with known first integrals. The notion of a discrete tangent space is introduced as the orthogonal complement of an arbitrary set of discrete gradients. Integrators which exactly conserve all the first integrals simultaneously are then defined. In both cases we start from an arbitrary method of a prescribed order (say, a Runge-Kutta scheme) and modify it using two approaches: one is based on projection and the other on local coordinates. The methods are tested on the Kepler problem.

    IOP PUBLISHING LTD, Jul. 2011, JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 44 (30), English

    [Refereed]

    Scientific journal

  • Yuto Miyatake, Takaharu Yaguchi, Takayasu Matsuo

    Jun. 2011, JSIAM Letters, vol. 3, 41-44.

    [Refereed]

    Scientific journal

  • Takaharu Yaguchi

    In this paper, we consider a random field, which is a generalization of Voronoi diagrams to probabilistic metric spaces. This random field is defined at each point of the space as a random variable that represents the nearest generator. As an application, relation to the post office problem for fuzzy point sets that was posed by Aurenhammer-Stockl-Welzl is investigated. This problem is also considered on digital pictures and an efficient numerical method to compute the probabilities is provided. The proposed method gives the probabilities of the random field in O (M-2 + MN) time, where M is the number of pixels in the input pictures and N is the number of generators, while a straightforward calculation takes O ((MN2)-N-3) time.

    KINOKUNIYA CO LTD, Dec. 2010, JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 27 (3), 425 - 441, English

    [Refereed]

    Scientific journal

  • Takaharu Yaguchi, Takayasu Matsuo, Masaaki Sugihara

    The Ostrovsky equation describes gravity waves under the influence of Coriolis force. It is known that solutions of this equation conserve the L(2) norm and an energy function that is determined non-locally. In this paper we propose four conservative numerical schemes for this equation: a finite difference scheme and a pseudospectral scheme that conserve the norm, and the same types of schemes that conserve the energy. A numerical comparison of these schemes is also provided, which indicates that the energy conservative schemes perform better than the norm conservative schemes. (C) 2009 Elsevier B.V. All rights reserved.

    ELSEVIER SCIENCE BV, Jun. 2010, JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 234 (4), 1036 - 1048, English

    [Refereed]

    Scientific journal

  • Takaharu Yaguchi, Takayasu Matsuo, Masaaki Sugihara

    The discrete variational method is a method used to derive finite difference schemes that inherit the conservation/dissipation property of the original equations. Although this method has mainly been developed for uniform grids, we extend this method to multidimensional nonuniform meshes. (C) 2010 Elsevier Inc. All rights reserved.

    ACADEMIC PRESS INC ELSEVIER SCIENCE, Jun. 2010, JOURNAL OF COMPUTATIONAL PHYSICS, 229 (11), 4382 - 4423, English

    [Refereed]

    Scientific journal

  • An Energy Conservative Numerical Scheme on Mixed Meshes for the Nonlinear Schrodinger Equation

    Takaharu Yaguchi, Takayasu Matsuo, Masaaki Sugihara

    As is well known, for PDEs that enjoy conservation properties, numerical schemes that inherit the properties are advantageous in that the schemes give qualitatively better solutions in practice. Lately Furihata and Matsuo have developed "the discrete variational method" that automatically constructs conservative finite difference schemes on uniform meshes for a class of PDEs with certain variational structures. We extend this method to mixed meshes and derive a numerical scheme that conserves the energy and the density for the nonlinear Schrodinger equation on such meshes.

    AMER INST PHYSICS, 2009, NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 1168, 892 - 895, English

    [Refereed]

    International conference proceedings

  • 離散変分法の非一様格子への拡張

    谷口 隆晴, 松尾 宇泰

    2009, 応用数理学会論文誌,, 371-431, Japanese

    [Refereed]

    Scientific journal

  • Shunpei Terakawa, Takaharu Yaguchi

    The Japan Society for Industrial and Applied Mathematics, Mar. 2022, JSIAM Letters, 14, 37 - 40, English

    [Refereed]

    Scientific journal

  • Imbalance-Aware Learning for Deep Physics Modeling

    Takahito Yoshida, Takaharu Yaguchi, Takashi Matsubara

    2022, ICLR2022 Workshop on AI for Earth and Space Science (ai4earth), English

    [Refereed]

    International conference proceedings

  • Neural Symplectic Form: Learning Hamiltonian Equations on General Coordinate Systems

    Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi

    Dec. 2021, Advances in Neural Information Processing Systems (NeurIPS), 34, English

    [Refereed]

    International conference proceedings

  • Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory

    Takashi Matsubara, Yuto Miyatake, Takaharu Yaguchi

    Dec. 2021, Advances in Neural Information Processing Systems (NeurIPS), 34, English

    [Refereed]

    International conference proceedings

  • Deep Discrete- Time Lagrangian Mechanics

    Takehiro Aoshima, Takashi Matsubara, Takaharu Yaguchi

    May 2021, ICLR2021 Workshop on Deep Learning for Simulation (SimDL),, English

    [Refereed]

    International conference proceedings

MISC

  • 微分方程式モデルによる楽器シミュレーション

    YAGUCHI TAKAHARU, ISHIKAWA AI

    Jun. 2016, シミュレーション, 35 (2), Japanese

    [Invited]

    Introduction scientific journal

  • Webster方程式に対する離散勾配法とその力学的不変性について (新時代の科学技術を牽引する数値解析学)

    石川 歩惟, 谷口 隆晴

    京都大学, Jul. 2015, 数理解析研究所講究録, 1957, 14 - 26, Japanese

  • 書評 D. Furihata and T. Matsuo : Discrete Variational Derivative Method : A Structure-Preserving Numerical Method for Partial Differential Equations

    谷口 隆晴

    日本数学会, 2014, 数学, 66 (1), 107 - 111, Japanese

  • ある半離散スキームによるソリトンシミュレーションについて (科学技術計算における理論と応用の新展開)

    谷口 隆晴, 谷口 隆晴, 降旗 大介

    京都大学, Apr. 2012, 数理解析研究所講究録, 1791, 87 - 96, Japanese

Presentations

  • ⼀般座標系におけるエネルギーベース物理モデル

    陳 鈺涵, 松原 崇, 谷口 隆晴

    第26回計算工学講演会, 26 May 2021, Japanese

    Oral presentation

  • 深層学習を用いたエネルギーベースのモデリング・シ ミュレーションフレームワーク

    谷口 隆晴

    明治大学共同利用・共同研究拠点研究集会「高度な自動運転を実現するための数理の現状と課題」, 09 Mar. 2021, Japanese, オンライン, Domestic conference

    [Invited]

    Oral presentation

  • Koopman 作用素を利用した発展型ネットワーク予測の試み

    徐 百歌, 谷口 隆晴

    日本応用数理学会第17回研究部会連合発表会, 04 Mar. 2021, Japanese, オンライン, Domestic conference

    Oral presentation

  • アトラクターのトポロジーに着目した因果推定手法について

    板東 弘晃, 鍛冶 静雄, 谷口 隆晴

    日本応用数理学会第17回研究部会連合発表会, 04 Mar. 2021, Japanese, オンライン, Domestic conference

    Oral presentation

  • 非線形状態空間システム解析における代数的マトロイドの応用について

    小松 瑞果, 谷口 隆晴

    日本応用数理学会第17回研究部会連合発表会, 04 Mar. 2021, Japanese, オンライン, Domestic conference

    Oral presentation

  • 深層学習によるエネルギーベース物理モデル, その2

    谷口 隆晴

    Workshop: シミュレーションとモデリングのための計算代数 2021, 13 Feb. 2021, Japanese, オンライン, Domestic conference

    [Invited]

    Oral presentation

  • 深層学習によるエネルギーベース物理モデル, その1

    谷口 隆晴

    Workshop: シミュレーションとモデリングのための計算代数 2021, 13 Feb. 2021, Japanese, オンライン, Domestic conference

    [Invited]

    Oral presentation

  • Deep Energy-Based Modeling of Discrete-Time Physics

    谷口 隆晴

    日本ディープラーニング協会主催 NeurIPS 2020 技術報告会, 20 Jan. 2021, Japanese, オンライン, Domestic conference

    [Invited]

    Oral presentation

  • DGNet: エネルギー保存・散逸則を保つ深層物理モデリングとそれに関する理論・応用

    谷口 隆晴

    数値解析セミナー, 12 Jan. 2021, Japanese, オンライン, Domestic conference

    [Invited]

    Oral presentation

  • 潜在変数をもつニューラル微分方程式に対する代数的考察

    小松 瑞果, 谷口 隆晴

    2020年度応用数学合同研究集会, 20 Dec. 2020, Japanese, オンライン, Domestic conference

    Oral presentation

  • 深層フェーズフィールドモデリング

    松原 崇, 谷口隆晴

    2020年度応用数学合同研究集会, 20 Dec. 2020, Japanese, オンライン, Domestic conference

    Oral presentation

  • 自然系の連成とシンプレクティック形式

    谷口 隆晴

    日本応用数理学会環瀬戸内応用数理研究部会第24回シンポジウム, 13 Dec. 2020, Japanese, オンライン, Domestic conference

    Oral presentation

  • The Error Analysis of Numerical Integrators for Deep Neural Network Modeling of Differential Equations

    Shunpei Terakawa, Takashi Matsubara, Takaharu Yaguchi

    NeurIPS2020 Workshop on Machine Learning and the Physical Sciences (ML4PS), 11 Dec. 2020, English, オンライン, Domestic conference

    Poster presentation

  • The parameter variety of unidentifiable state-space models and its applications to analysis of biological systems

    Mizuka Komatsu, Takaharu Yaguchi

    Establishing International Research Network of Mathematical Oncology (Fusion of Mathematics and Biology), 26 Oct. 2020, English, Osaka, Domestic conference

    Oral presentation

  • 分布系のカオス同期化とニューラルネットワークを用いた秘匿通信システム

    陳 鈺涵, 佐野 英樹, 若生 将史, 谷口 隆晴

    日本応用数理学会2020年度年会, 08 Sep. 2020, Japanese, オンライン, Domestic conference

    Oral presentation

  • 常微分方程式モデルの学習における離散化手法の影響について

    寺川 峻平, 松原 崇, 谷口隆晴

    日本応用数理学会2020年度年会, 08 Sep. 2020, Japanese, オンライン, Domestic conference

    Oral presentation

  • ピアノの弦と駒の連成シミュレーションによるエネルギー移動の可視化

    寺川峻平,小松瑞果,谷口隆晴,鎌田健二,和泉沢玄

    第25回計算工学講演会, 10 Jun. 2020, Japanese, オンライン, Domestic conference

    Oral presentation

  • 波動方程式と弾性方程式からなる連成系のシンプレクティッ ク性について

    Ai Ishikawa, Takaharu Yaguchi

    日本応用数理学会第16回研究部会連合発表会, 04 Mar. 2020, 東京, Domestic conference

    Oral presentation

  • 時間方向対称性を利用した2つのエネルギー保存数値解法の等価条件について

    石川歩惟, 谷口隆晴

    日本応用数理学会第16回研究部会連合発表会, 04 Mar. 2020, 東京, Domestic conference

    Oral presentation

  • 微分代数の応用に向けた多項式常微分方程式モデルの簡約

    Mizuka Komatsu, Takaharu Yaguchi

    日本応用数理学会第16回研究部会連合発表会, 04 Mar. 2020, 東京, Domestic conference

    Oral presentation

  • 微分代数に基づく数理モデリングアプローチ

    小松 瑞果, YAGUCHI TAKAHARU

    Workshop: シミュレーションとモデリングのための計算代数 2020, 31 Jan. 2020, 神戸, Domestic conference

    Oral presentation

  • 幾何学的離散力学と対称性 II

    Yaguchi Takaharu

    Workshop: シミュレーションとモデリングのための計算代数 2020, 31 Jan. 2020, 神戸, Domestic conference

    [Invited]

    Oral presentation

  • 幾何学的離散力学と対称性 I

    板東 弘晃, YAGUCHI TAKAHARU, 鍛冶 静雄

    Workshop: シミュレーションとモデリングのための計算代数 2020, 31 Jan. 2020, 神戸, Domestic conference

    [Invited]

    Oral presentation

  • 指数型分布族の定める多様体上の離散力学に基づく時系列モデルとネットワーク解析への応用

    谷口隆晴, 小松瑞果, 大川剛直

    日本応用数理学会環瀬戸内応用数理研究部会第23回シンポジウム, 14 Dec. 2019, 神戸, Domestic conference

    Oral presentation

  • 高頻度データに対する再帰型ニューラルネットモデルとその比較

    Takaharu Yaguchi, Mizuka Komatsu

    日本応用数理学会環瀬戸内応用数理研究部会第23回シンポジウム, 14 Dec. 2019, 神戸, Domestic conference

    Oral presentation

  • 波動方程式と弾性方程式の構造保存型連成数値計算

    Mizuka Komatsu, Takaharu Yaguchi

    日本応用数理学会環瀬戸内応用数理研究部会第23回シンポジウム, 14 Dec. 2019, 神戸, Domestic conference

    Oral presentation

  • 同定不可能モデルに対するパラメータ多様体による解析とその近似導出について

    小松 瑞果, 中務 佑治, 谷口 隆晴

    2019 年度応用数学合同研究集会, 12 Dec. 2019, 滋賀, Domestic conference

    Oral presentation

  • 自動微分による離散力学とアルゴリズム的数値解析

    谷口隆晴, 寺川峻平

    2019 年度応用数学合同研究集会, 12 Dec. 2019, 滋賀, Domestic conference

    Oral presentation

  • 微分代数方程式モデルのモデルパラメータと解に関するグレブナー基底を用いた解析

    小松 瑞果, YAGUCHI TAKAHARU

    日本応用数理学会環瀬戸内応用数理研究部会第22回シンポジウム, Dec. 2018, Japanese, 香川, Domestic conference

    Oral presentation

  • 波動型偏微分方程式に対する幾何学的弱形式

    YAGUCHI TAKAHARU

    日本応用数理学会環瀬戸内応用数理研究部会第22回シンポジウム, Dec. 2018, Japanese, 香川, Domestic conference

    Oral presentation

  • アレルギー疾患の個別化医療に向けた抗原・抗体の体内動態シミュレーション

    小松 瑞果, YAGUCHI TAKAHARU

    RIMS研究集会, Nov. 2018, Japanese, 京都, Domestic conference

    Oral presentation

  • Modeling and simulations of the kinetics of antigens and antibodies towards personalized medicine for allergies

    Komatsu Mizuka, Yaguchi Takaharu

    情報計算科学生物学会2018年大会, Oct. 2018, Japanese, 東京, Domestic conference

    Oral presentation

  • 統計多様体上の状態空間モデルを用いた発展型ネットワーク解析

    小松 瑞果, YAGUCHI TAKAHARU, OHKAWA TAKENAO

    日本応用数理学会2018年度年会, Sep. 2018, Japanese, 愛知, Domestic conference

    Oral presentation

  • 抗原・抗体の体内動態の定量的解析に向けたモデルパラメータの多様性に対する考察

    小松 瑞果, YAGUCHI TAKAHARU

    日本応用数理学会2018年度年会, Sep. 2018, Japanese, 愛知, Domestic conference

    Oral presentation

  • アンケートデータを用いた交流ネットワーク推定手法

    佐藤 智久, YAGUCHI TAKAHARU, MASUMOTO Kouhei, KONDO NARIHIKO, OKADA SHUICHI

    日本応用数理学会2018年度年会, Sep. 2018, Japanese, 愛知, Domestic conference

    Oral presentation

  • 情報幾何学を用いた発展型ネットワークモデルに基づく相転移に着目した異常検知の試み

    Yaguchi Takaharu, Komatsu Mizuka

    MIMS現象数理学研究拠点共同研究集会「幾何的解析と形状表現の数理」, Aug. 2018, Japanese, 東京, Domestic conference

    Oral presentation

  • Parameters of Models using Dynamical Systems with Conservation Laws

    Yaguchi Takaharu, Komatsu Mizuka

    SIAM Conference on the Life Science (LS18), Aug. 2018, English, Minneapolis, Domestic conference

    Oral presentation

  • Modeling the Kinetics of Antigens and Antibodies for Analysis of the Mechanism of Allergy

    Komatsu Mizuka, Takaharu Yaguchi

    SIAM Conference on the Life Science (LS18), Aug. 2018, English, Minneapolis, Domestic conference

    Oral presentation

  • Parameter estimation for compartment models of biological systems

    Komatsu Mizuka, Yaguchi Takaharu

    Data Science, Statistics & Visualisation (DSSV 2018), Jul. 2018, English, Wien, Domestic conference

    Oral presentation

  • Autoregressive models on statistical Riemannian manifolds for analysis of evolutionary networks

    Yaguchi Takaharu, Komatsu Mizuka

    Data Science, Statistics & Visualisation (DSSV 2018), Jul. 2018, English, Wien, Domestic conference

    Oral presentation

  • Application of Hamiltonian Flows to Exploring Parameters of Mathematical Models in Situations with Insufficient Data

    Komatsu Mizuka, Yaguchi Takaharu

    The 13th World Congress in Computational Mechanics, Jul. 2018, English, New York, Domestic conference

    Oral presentation

  • 体内動態に対するコンパートメントモデルのモデルパラメータ推定手法について

    小松 瑞果, YAGUCHI TAKAHARU

    第47回数値解析シンポジウム, Jun. 2018, Japanese, 福井, Domestic conference

    Oral presentation

  • 潜在変数ネットワークモデルを用いた放牧牛の交流ネットワーク解析

    小松 瑞果, YAGUCHI TAKAHARU, OHKAWA TAKENAO

    第47回数値解析シンポジウム, Jun. 2018, Japanese, 福井, Domestic conference

    Oral presentation

  • あるテーマパークにおける地形的集客効果の感度分析

    大川 航平, YAGUCHI TAKAHARU

    第47回数値解析シンポジウム, Jun. 2018, Japanese, 福井, Domestic conference

    Oral presentation

  • 有限要素外積解析に対するRRGMRES法

    佐藤 智久, 谷口 隆晴

    日本応用数理学会第14回研究部会連合発表会, Mar. 2018, Japanese, Domestic conference

    Oral presentation

  • 変分原理に基づくエネルギー保存数値解法の Lie 群上への拡張

    石川 歩惟, 谷口 隆晴

    日本数学会2018年度年会, Mar. 2018, Japanese, Domestic conference

    Oral presentation

  • 統計多様体上のARモデルを用いた発展型ネットワーク解析

    谷口 隆晴, 小松 瑞果

    日本応用数理学会環瀬戸内応用数理研究部会第21回シンポジウム, Mar. 2018, Japanese, Domestic conference

    Oral presentation

  • 質点ばね系を用いたレザバーコンピューティングの数値実験

    山中 悠希, 谷口 隆晴, 中嶋 浩平

    応用数理 学生・若手研究者のための研究交流会, Mar. 2018, Japanese, Domestic conference

    Oral presentation

  • アレルギー発症メカニズムの解析に向けた抗原・抗体の体内動態モデルの構築, 及び, Husbyらの実験データに対するパラメータ推定とその考察

    小松 瑞果, 谷口 隆晴

    日本応用数理学会第14回研究部会連合発表会, Mar. 2018, Japanese, Domestic conference

    Oral presentation

  • アレルギー発症シミュレーションに向けた生理学的薬物動態モデルの応用

    小松 瑞果, 谷口 隆晴

    日本応用数理学会環瀬戸内応用数理研究部会第21回シンポジウム, Mar. 2018, Japanese, Domestic conference

    Oral presentation

  • Energy-Preserving Parareal Algorithm for the Hamilton Equation

    Ishikawa Ai, Yaguchi Takaharu, Yokokawa Mitsuo

    SIAM Conference on Parallel Processing for Scientific Computing, Mar. 2018, English, International conference

    Nominated symposium

  • 離散偏導関数法と数値積分の併用

    南部 匡範, 谷口 隆晴, YOKOKAWA MITSUO

    第46回数値解析シンポジウム, 2017, Japanese, Domestic conference

    Oral presentation

  • 離散外積解析における離散 Hodge スター作用素の誤差評価

    佐藤 智久, 谷口 隆晴

    第46回数値解析シンポジウム, 2017, Japanese, Domestic conference

    Oral presentation

  • 離散外積解析から導かれる有限積分法のマルチシンプレクティック性について

    佐藤 智久, 谷口 隆晴

    日本応用数理学会2017年度年会, 2017, Japanese, Domestic conference

    Oral presentation

  • 速度比例減衰項をもつ系に対する変分原理を利用した数値解法とその比較

    石川 歩惟, 谷口 隆晴

    第46回数値解析シンポジウム, 2017, Japanese, Domestic conference

    Oral presentation

  • 指数ランダムグラフモデルに基づくネットワークに対するARモデル

    谷口 隆晴

    日本応用数理学会2017年度年会, 2017, Japanese, Domestic conference

    Poster presentation

  • Regression model on statistical manifolds and its application to evolutionary network analysis

    Yaguchi Takaharu

    the International Conference on Scientific Computation And Differential Equations 2017 (SciCADE 2017), 2017, English, International conference

    Oral presentation

  • Discrete partial derivative method with numerical integrations

    Nanbu Masanori, Yaguchi Takaharu, Yokokawa Mitsuo

    the International Conference on Scientific Computation And Differential Equations 2017 (SciCADE 2017), 2017, English, International conference

    Oral presentation

  • curl-curl型偏微分方程式に対する有限要素外積解析の応用

    佐藤 智久, 谷口 隆晴

    2017年度応用数学合同研究集会, 2017, Japanese, Domestic conference

    Oral presentation

  • Automatic discrete differentiation and its applications

    Ishikawa Ai, Yaguchi Takaharu

    the International Conference on Scientific Computation And Differential Equations 2017 (SciCADE 2017), 2017, English, International conference

    Oral presentation

  • 変分原理に基づくエネルギー保存数値解法の一般のHamilton系への拡張

    石川 歩惟, 谷口 隆晴

    日本応用数理学会2016年度年会, Sep. 2016, Japanese, Domestic conference

    Oral presentation

  • 離散化した heavy-ball-with-friction method のパラメータについて

    石川 歩惟, 今村 成吾, 谷口 隆晴

    研究集会「常微分方程式の数値解法とその周辺2016」, Jul. 2016, Japanese, Domestic conference

    Oral presentation

  • 波動方程式に対するシンプレクティックかつエネルギー保存スキームについて

    石川 歩惟, 谷口 隆晴

    第45回数値解析シンポジウム, Jun. 2016, Japanese, Domestic conference

    Oral presentation

  • 散逸型偏微分方程式に対するある種の変分原理に基づく散逸スキームの導出法

    宮武 勇登, 谷口 隆晴

    第45回数値解析シンポジウム, Jun. 2016, Japanese, Domestic conference

    Oral presentation

  • 曲面上の熱方程式に対する散逸性保存型数値解法の導出と評価

    南部 匡範, 谷口 隆晴

    第45回数値解析シンポジウム, Jun. 2016, Japanese, Domestic conference

    Oral presentation

  • Webster方程式に対するある数値解法の長時間挙動について

    岩井 真理恵, 谷口 隆晴

    第45回数値解析シンポジウム, Jun. 2016, Japanese, Domestic conference

    Oral presentation

  • 地域コミュニティ構造の変化と改善に対する統計解析手法

    KAWASAKI SONOMI, YAGUCHI TAKAHARU, MASUMOTO KOUHEI, KONDO NARIHIKO, OKADA SHUICHI

    日本応用数理学会第12回研究部会連合発表会, Mar. 2016, Japanese, 神戸学院大学, Domestic conference

    Oral presentation

  • 自動離散微分とその応用

    ISHIKAWA Ai, YAGUCHI Takaharu

    日本応用数理学会研究部会連合発表会, Mar. 2016, Japanese, 神戸学院大学, Domestic conference

    Oral presentation

  • 散逸型構造保存型数値解法の多層パーセプトロン学習法への応用

    YAGUCHI TAKAHARU, ISHIKAWA AI

    日本数学会2016年度年会, Mar. 2016, Japanese, 筑波大学, Domestic conference

    Oral presentation

  • 地域コミュニティの構造変化に対する検定理論

    KAWASAKI Sonomi, YAGUCHI Takaharu, MASUMOTO Kouhei, KONDO Narihiko, OKADA Shuichi

    応用数学合同研究集会, Dec. 2015, Japanese, 龍谷大学, Domestic conference

    Oral presentation

  • Caldirola-Kanai型変分原理に基づく構造保存型数値解法と多層パーセプトロン学習法への応用について

    YAGUCHI Takaharu, ISHIKAWA Ai

    研究会「数理構造保存を接点とした数学・HPC・実科学のクロスオーバー」, Dec. 2015, Japanese, 電気通信大学, Domestic conference

    Oral presentation

  • 対称性を利用した離散勾配法におけるLegendre変換に関する考察

    ISHIKAWA Ai, YAGUCHI Takaharu

    日本応用数理学会2015年度年会, Sep. 2015, Japanese, 金沢大学, Domestic conference

    [Invited]

    Invited oral presentation

  • ハミルトン方程式に対する時間対称性を用いた離散勾配スキームの導出法

    ISHIKAWA Ai, YAGUCHI Takaharu

    日本応用数理学会2015年度年会, Sep. 2015, Japanese, 金沢大学, Domestic conference

    Oral presentation

  • シンプレクティック数値積分法による力学的摂動

    IRIE Rini, YAGUCHI Takaharu

    日本応用数理学会2015年度年会, Sep. 2015, Japanese, 金沢大学, Domestic conference

    Oral presentation

  • ある種の散逸型微分方程式に対する構造保存型数値解法

    YAGUCHI Takaharu, ISHIKAWA Ai

    日本応用数理学会2015年度年会, Sep. 2015, Japanese, 金沢大学, Domestic conference

    Oral presentation

  • Structure-preserving method for a certain class of dissipative differential equations

    YAGUCHI Takaharu, ISHIKAWA Ai

    the International Conference on Scientific Computation And Differential Equations 2015 (SciCADE 2015), Sep. 2015, English, University of Potsdam, International conference

    Oral presentation

  • Energy-preserving discrete gradient schemes for the Hamilton equation based on the variational principle

    ISHIKAWA Ai, YAGUCHI Takaharu

    the International Conference on Scientific Computation And Differential Equations 2015 (SciCADE 2015), Sep. 2015, English, University of Potsdam, International conference

    Oral presentation

  • Numerical integrations that preserve energy behaviors using the variational principle

    YAGUCHI Takaharu, ISHIKAWA Ai

    Computational and Geometric Approaches for Nonlinear Phenomena, Aug. 2015, English, 早稲田大学, International conference

    Oral presentation

  • Structure-preserving numerical integrators for the KdV equation using an almost complex structure

    YAGUCHI Takaharu, ISHIKAWA Ai

    Recent developments in numerical analysis with special emphasis on complex analysis, Jul. 2015, English, 東京大学, International conference

    Oral presentation

  • 地域高齢者を対象とした健康教室による参加者間交流ネットワーク形成に関する研究

    MASUMOTO KOUHEI, KONDO NARIHIKO, MATHUDA HIROSHI, TANI HIDEAKI, YAGUCHI TAKAHARU, TAKENAKA YUKO, TOZUKA KEISUKE, OKADA SHUICHI

    日本老年社会科学会第57回大会, Jun. 2015, Japanese, Domestic conference

    Poster presentation

  • 大規模ネットワークにおける複数ノード組に対する重要度の特徴付け

    IRIE Rini, KOBAYASHI Teruyoshi, YAGUCHI Takaharu

    第44回数値解析シンポジウム, Jun. 2015, Japanese, ぶどうの丘, Domestic conference

    Oral presentation

  • ピアノの物理モデルとその効率的な数値計算法の検討

    ISHIKAWA Ai, Dominik L. Michels, YAGUCHI Takaharu

    第44回数値解析シンポジウム, Jun. 2015, Japanese, ぶどうの丘, Domestic conference

    Oral presentation

  • L2射影を用いた離散偏導関数法による弦のサウンドレンダリング

    HASESAKA Yuta, YAGUCHI Takaharu

    第44回数値解析シンポジウム, Jun. 2015, Japanese, ぶどうの丘, Domestic conference

    Oral presentation

  • 測地線方程式に対する離散勾配法の適用とアインシュタイン方程式の数値解を用いるための基礎検討

    IRIE Rin, YAGUCHI Takaharu

    日本応用数理学会研究部会連合発表会, Mar. 2015, Japanese, 東京, Domestic conference

    Oral presentation

  • 境界付き多様体上における有限要素外積解析の弱形式の適切性について

    YAGUCHI TAKAHARU, 土屋 卓也

    日本数学会2014年度年会, Mar. 2014, Japanese, 東京, Domestic conference

    Oral presentation

  • 楽器シミュレーションに対する構造保存型数値解法の応用と関連する数理的課題

    芦辺 健太郎, 石川 歩惟, 上田 怜奈, YAGUCHI TAKAHARU

    研究集会「常微分方程式の数値解法とその周辺2014」, Mar. 2014, Japanese, 静岡, Domestic conference

    Oral presentation

  • 離散勾配法のRiemann構造不変性とシンプレクティック幾何学的再構築

    ISHIKAWA Ai, YAGUCHI Takaharu

    RIMS研究集会「新時代の科学技術を牽引する数値解析学」, 2014, Japanese, 京都, Domestic conference

    [Invited]

    Invited oral presentation

  • 数値相対論のための測地線方程式に対する構造保存型数値解法の適用

    IRIE Rin, YAGUCHI Takaharu

    応用数学合同研究集会, 2014, Japanese, 滋賀, Domestic conference

    Oral presentation

  • 幾何学的構造保存型数値解法に対する力学理論的アプローチ

    YAGUCHI Takaharu

    第3回岐阜数理科学研究会, 2014, Japanese, 岐阜, Domestic conference

    [Invited]

    Invited oral presentation

  • 異なる内積により得られる Webster 方程式の2つのハミルトン構造

    ISHIKAWA Ai, YAGUCHI Takaharu

    第43回数値解析シンポジウム, 2014, Japanese, 沖縄, Domestic conference

    Oral presentation

  • 異なるRiemann構造をもつWebster方程式に対する離散変分導関数法の不変性

    ISHIKAWA Ai, YAGUCHI Takaharu

    日本応用数理学会2014年度年会, 2014, Japanese, 東京, Domestic conference

    Oral presentation

  • ハミルトン偏微分方程式に対する構造保存型数値解法

    YAGUCHI Takaharu

    日本学術会議第4回計算力学シンポジウム, 2014, Japanese, 東京, Domestic conference

    [Invited]

    Invited oral presentation

  • シンプレクティック法による摂動を用いた太陽系の安定性検証

    IRIE Rin, YAGUCHI Takaharu

    第43回数値解析シンポジウム, 2014, Japanese, 沖縄, Domestic conference

    Oral presentation

  • シンプレクティック空間上の離散勾配法

    ISHIKAWA Ai, YAGUCHI Takaharu

    応用数学合同研究集会, 2014, Japanese, 滋賀, Domestic conference

    Oral presentation

  • グラフに対するOllivier-Ricci曲率の数値計算

    YAGUCHI Takaharu

    日本応用数理学会2014年度年会, 2014, Japanese, 東京, Domestic conference

    Oral presentation

  • Simulation of Wind Instruments and a Geometric Invariance of the Discrete Gradient Method

    ISHIKAWA Ai, YAGUCHI Takaharu

    Foundations of Computational Mathematics Conference 2014, 2014, English, ウルグアイ, International conference

    [Invited]

    Invited oral presentation

  • On the well-posedness of the weak form of the finite element exterior calculus on manifolds

    YAGUCHI Takaharu

    流体方程式の構造と特異性に迫る数値解析・数値計算, 2014, English, 愛知, International conference

    [Invited]

    Invited oral presentation

  • Application of Structure-Preserving Numerical Methods to Simulation of Musical Instruments

    ISHIKAWA Ai, UEDA Reina, YAGUCHI Takaharu

    2nd International Workshop on Numerical Linear Algebra and Its Applications, 2014, English, 中国, International conference

    [Invited]

    Invited oral presentation

  • 有限要素外積解析に基づく波動型方程式に対するエネルギー保存型数値解法

    YAGUCHI TAKAHARU

    日本数学会 秋季総合分科会, Sep. 2013, Japanese, 愛媛, Domestic conference

    [Invited]

    Invited oral presentation

  • ホロノーム拘束をもつハミルトン系に対する離散勾配法

    北祐樹, YAGUCHI TAKAHARU

    日本応用数理学会 2013 年度年会, Sep. 2013, Japanese, 福岡, Domestic conference

    Oral presentation

  • シンプレクティック数値積分法における修正ハミルトニアンの存在定理について

    YAGUCHI TAKAHARU

    日本応用数理学会 2013 年度年会, Sep. 2013, Japanese, 福岡, Domestic conference

    Oral presentation

  • Lagrangian approach of the discrete gradient method based on finite element methods

    YAGUCHI TAKAHARU

    the International Conference on Scientific Computation And Differential Equations 2013 (SciCADE 2013), Sep. 2013, English, Valladolid, Spain, International conference

    Oral presentation

  • シンプレクティックフローとしてのシンプレクティック数値積分法

    YAGUCHI TAKAHARU

    ワークショップ「有限体積法の数学的基盤理論の確立III」, Aug. 2013, Japanese, 愛媛, Domestic conference

    Oral presentation

  • On the finite element exterior calculus for parabolic equations

    Takaharu Yaguchi

    2013 Tokyo Workshop on Structure-Preserving Methods, Jan. 2013, English, Tokyo, International conference

    Oral presentation

  • 放物型方程式に対する有限要素外積解析の誤差評価について

    YAGUCHI Takaharu

    応用数学合同研究集会, Dec. 2012, Japanese, 滋賀, Domestic conference

    Oral presentation

  • Application of the Lagrangian Approach of the Discrete Gradient Method to Scleronomic Holonomic Systems

    Takaharu Yaguchi

    10th International Conference of Numerical Analysis and Applied Mathematics, Sep. 2012, English, Greece, International conference

    Oral presentation

  • ホロノミック系に対するラグランジュ力学的離散勾配法

    Takaharu Yaguchi

    日本応用数理学会 2012年度年会, Aug. 2012, Japanese, 北海道, Domestic conference

    Oral presentation

  • A Lagrangian Approach to Deriving Local-Energy-Preserving Numerical Schemes for the Euler-Lagrange Partial Differential Equations

    Takaharu Yaguchi

    15th International Congress on Computational and Applied Mathematics, Jul. 2012, English, Gent, Belgium, International conference

    Oral presentation

  • ラグランジュ力学に基づく保存型数値解法導出法とその応用

    谷口 隆晴

    有限体積法の数学的基盤理論の確立II, Mar. 2012, Japanese, 福岡, Domestic conference

    Oral presentation

  • Newton法の Parareal Algorithm による並列化

    若林 岳人, 谷口 隆晴, 山本 有作

    常微分方程式の数値解法とその周辺 2012, Mar. 2012, Japanese, 静岡, Domestic conference

    Oral presentation

  • Euler-Lagrange 偏微分方程式に対する局所エネルギー保存スキーム導出法

    谷口 隆晴

    日本応用数理学会研究部会連合発表会, Mar. 2012, Japanese, 福岡, Domestic conference

    Oral presentation

  • Backward Error Analysis of the Scheme for the KdV Equation by the Discrete Variational Derivative Method

    Christopher Budd, Takaharu Yaguchi, Daisuke Furihata

    2012 Tokyo Workshop on Structure-Preserving Methods, Jan. 2012, English, Tokyo, International conference

    Oral presentation

  • KdV 方程式に対するある半離散スキームの後退誤差解析

    Christopher Budd, 谷口 隆晴, 降籏 大介

    応用数学合同研究集会, Dec. 2011, Japanese, 瀬田, Domestic conference

    Oral presentation

  • 時間依存固有値問題の数値解法に関する基礎検討

    Sindoh Yoshitaka, Yaguchi Takaharu, Yamamoto Yuusaku

    日本応用数理学会「行列・固有値問題の解法とその応用」研究部会第12回研究会, Nov. 2011, Japanese, 日本応用数理学会, 東京, Domestic conference

    Oral presentation

  • ある半離散スキームによるソリトンのシミュレーションについて

    Christopher Budd, 谷口 隆晴, 降籏 大介

    RIMS研究集会「科学技術計算における理論と応用の新展開」, Oct. 2011, Japanese, 京都, Domestic conference

    Others

  • 変分構造をもつ楕円型方程式に対する離散勾配法の応用

    谷口 隆晴

    日本応用数理学会 2011年度年会, Sep. 2011, Japanese, 京都, Domestic conference

    Oral presentation

  • The Discrete Variational Derivative Method Based on Discrete Differential Forms

    Takaharu Yaguchi, Takayasu Matsuo, Masaaki Sugihara

    International Workshop on Numerical Linear Algebra and Its Applications, Jul. 2011, English, China, International conference

    Invited oral presentation

  • A Lagrangian Approach to Deriving Energy-Preserving Numerical Schemes for the Euler-Lagrange Partial Differential Equations and Its Applications

    Takaharu Yaguchi

    the International Conference on Scientific Computation And Differential Equations 2011 (SciCADE 2011), Jul. 2011, English, Canada, International conference

    [Invited]

    Invited oral presentation

  • Geometric Deep Energy- Based Models for Physics

    Takashi Matsubara, Yuhan Chen, Takaharu Yaguchi

    Geometric Deep Energy- Based Models for Physics, Workshop on Functional Inference and Machine Intelligence (FIMI2022), 2022, 31 Mar. 2022, English

    [Invited]

    Invited oral presentation

  • Learning Physical Systems with Imbalance-Aware Deep Learning

    Takahito Yoshida, Takaharu Yaguchi, Takashi Matsubara

    電子情報通信学会技術研究報告 複雑コミュニケーションサイエンス研究会(CCS), 27 Mar. 2022, Japanese

    Oral presentation

  • 社会的つながりの次 数分布からの交流ネットワーク生成モデルの提案

    浅野広大, 谷口隆晴, 増本康平, 原田和弘, 近藤徳彦, 岡田修一

    日本応用数理学会第18 回研究 部会連合発表会, 09 Mar. 2022, Japanese

    Oral presentation

  • ニューラルシンプレクティック形式とその応用

    陳鈺涵, 徐百歌, 松原崇, 谷口隆晴

    日本応用数理学会第18 回研究部会連合発表会, 08 Mar. 2022, Japanese

    Oral presentation

  • 非平衡熱力学による摩擦付き質点バネ系に対する数値解法とその刻み幅条件

    搗本有望, 谷口隆晴

    日本応用数理学会環瀬戸内応用数理研究部会第25 回シンポジウ ム, 26 Dec. 2021, Japanese

    Oral presentation

  • シンプレクティック形式の学習による一般座標系での 深層物理モデル

    陳鈺涵, 松原崇, 谷口隆晴

    日本応用数理学会環瀬戸内応用数理研究部会第25 回シンポジウ ム, 25 Dec. 2021, Japanese

    Oral presentation

  • ハミルトニアンニューラルネットワークの安定性について

    小川乃愛, 谷口隆晴

    日本応用数理学会環瀬戸内応用数理研究部会第25 回シンポジウム, 25 Dec. 2021, Japanese

    Oral presentation

  • シンプレクティック随伴変数法に基づく省メモリな Neural ODE の学習

    松原崇, 宮武勇登, 谷口隆晴

    電子情報通信学会技術研究報告複雑コミュニケーションサイ エンス研究会(CCS), 18 Nov. 2021, Japanese

    Oral presentation

  • ハミルトニアンニューラルネットワークの理論評価と KAM 理論への応用

    陳鈺涵, 松原崇, 谷口隆晴

    第24 回情報論的学習理論ワークショップ(IBIS2021), 12 Nov. 2021, Japanese

    Oral presentation

  • シンプレクティック随伴変数法による高速省メモリ なNeural ODE の勾配計算

    松原崇, 宮武勇登, 谷口隆晴

    第24 回情報論的学習理論ワークショップ(IBIS2021), 12 Nov. 2021, Japanese

    Oral presentation

  • ニューラルシンプレクティック形式とそれによる一般座標系でのハミルトン方程式の学習

    陳鈺涵, 松原崇, 谷口隆晴

    第24 回情報論的学習理論ワークショップ (IBIS2021), 10 Nov. 2021, Japanese

    Oral presentation

  • Geometric Energy-Based Deep-Learning Models for Physics

    Takaharu Yaguchi

    DMV-OMG Annual Conference 2021, 28 Sep. 2021, English

    [Invited]

    Invited oral presentation

  • 同定不可能モデルの解析:パラメータ多様体とその展開

    小松瑞果, 谷口隆晴

    第 31 回日本数理生物学会大会(2021 年度年会), 13 Sep. 2021, Japanese

    Oral presentation

  • シンプレクティック数値積分法を用いたNeural ODE の学習

    松原崇, 宮武勇登, 谷口隆晴

    電子情報通信学会情報論的学習理論と機械学習研究会(IBISML), 28 Jun. 2021, Japanese

    Oral presentation

  • 離散時間ラグランジュ力学のニューラルネットワー クによるモデル化

    青嶋雄大, 松原崇, 谷口隆晴

    第35 回人工知能学会全国大会(JSAI2021), 09 Jun. 2021, Japanese

    Oral presentation

  • 物理現象のエネルギー挙動を離散時間で保証する深層学習シミュレーション

    松原崇, 青嶋雄大, 石川歩惟, 谷口隆晴

    2021 年度第35 回人工知能学会全国大会 (JSAI2021), 08 Jun. 2021, Japanese

    Oral presentation

Association Memberships

  • Institute of Electrical and Electronics Engineers

    May 2020 - Present
  • 情報処理学会

    Feb. 2020 - Present
  • Society for Industrial and Applied Mathematics

    Jan. 2017 - Present
  • American Institute of Aeronautics and Astronautics

  • 日本流体力学会

  • Mathematical Association of America

  • 日本数学会

  • 日本応用数理学会

Research Projects

  • ブラックボックス微分方程式モデルに対する保存則抽出手法とネットワーク解析への応用

    谷口 隆晴

    日本学術振興会, 科学研究費助成事業 基盤研究(C), 基盤研究(C), 神戸大学, 01 Apr. 2020 - 31 Mar. 2024

  • Structure ​Preserving​ System Modeling and Simulation Basis Based on Geometric Discrete Mechanics

    Japan Science and Technology Agency, Strategic Basic Research Programs (CREST), Oct. 2019 - Mar. 2025, Principal investigator

  • 岡田 修一

    科学研究費補助金/挑戦的研究(開拓), Jun. 2018 - Mar. 2021

    Competitive research funding

  • 情報幾何学と離散力学の融合と社会ネットワーク解析への応用

    谷口 隆晴

    国立研究開発法人科学技術振興機構, 戦略的創造研究推進事業(さきがけ), Oct. 2016 - Mar. 2020, Principal investigator

    Competitive research funding

  • 増本 康平

    科学研究費補助金/基盤研究(B), Apr. 2015 - Mar. 2018

    Competitive research funding

  • 谷口 隆晴

    学術研究助成基金助成金/基盤研究(C), Apr. 2014 - Mar. 2019, Principal investigator

    Competitive research funding

  • SAITO Norikazu, TSUCHIYA Takuya, YAGUCHI Masaharu, FURIHATA Daisuke, MURAKAWA Hideki, KIKUCHI Fumio, KAWARADA Hideo, USHIJIMA Teruo, MIYASHITA Masaru

    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Scientific Research (B), The University of Tokyo, 01 Apr. 2011 - 31 Mar. 2015

    This research project was aimed at development and application of the mathematical theory for the finite volume method that is a popular structure-preserving discretization method. From the mathematical stand-point, the discrete Sobolev inequality, interpolation error constants, discrete Rellich's theorem, discrete maximum principle, and discrete differential form were studied and many useful results were obtained. As an important application, results were applied to analysis of the finite volume method for the mathematical model describes the aggregation of slime molds resulting from their chemotactic features. In particular, the proof of the existence of a discrete free energy was succeeded. Another important application was an extension of energy-preserving numerical method based on Lagrange mechanics to the finite volume method by using the theory of the discrete differential form.

  • 谷口 隆晴

    科学研究費補助金/若手研究(B), 2011, Principal investigator

    Competitive research funding

  • YAGUCHI Takaharu

    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B), Grant-in-Aid for Young Scientists (B), The University of Tokyo, 2007 - 2009

    Nonreflecting boundary conditions are of importance in numerical simulations of compressive fluid. In this research I developed a new nonreflecting boundary condition based on the Riemann invariant manifold. An improvement of this boundary condition was found to be same as Thompson's boundary condition, and this provided a new derivation of Thompson's boundary condition and a stability analysis. Researches on the discrete variational method are also performed in order to stabilize this boundary condition. As a result, some extensions of the discrete variational method are achieved.

Media Coverage

  • 研究開発DX始動(下) AI操る「ロボ科学者」
    日本経済新聞, 08 Feb. 2021

    Paper

  • 深層学習研究の最高位を勝ち取った日本チーム、決め手は異分野研究者のタッグ
    23 Dec. 2020, 日経クロステック

    Internet