Directory of Researchers

WAKE Hiroaki
Center of Optical Scattering Image Science
Professor
Medicine
Last Updated :2022/10/04

Researcher Profile and Settings

Affiliation

  • <Faculty / Graduate School / Others>

    Center of Optical Scattering Image Science
  • <Related Faculty / Graduate School / Others>

    School of Medicine, Graduate School of Medicine

Research at Kobe

  • 10 Oct. 2019, Illumination of abnormal neuronal activities caused by myelin impairment suggests possible contribution to learning deficits

Research Activities

Research Interests

  • 脳梗塞
  • ミクログリア
  • シナプス
  • 2光子励起顕微鏡
  • 神経-グリア相関
  • 生体

Research Areas

  • Life sciences / Clinical pharmacy
  • Life sciences / Physiology
  • Life sciences / Neuroscience - general
  • Life sciences / Neuroscience - general
  • Life sciences / Neuroscience - general

Awards

  • 2017 神戸大学, 神戸大学優秀若手研究賞・学長賞, 高次脳機能の解明と操作に光を当てる

    WAKE HIROAKI

    Others

Published Papers

  • Xiangyu Quan, Daisuke Kato, Vincent Daria, Osamu Matoba, Hiroaki Wake

    Holographic structured illumination combined with optogenetics enables patterned stimulation of neurons and glial cells in an intact living brain. Moreover, in vivo functional imaging of cellular activity with recent advanced microscope technologies allows for visualization of the cellular responses during learning, emotion and cognition. Integrating these techniques can be used to verify the link between cell function and behavior output. However, there are technical limitations to stimulate multiple cells with high spatial and temporal resolution with available techniques of optogenetic stimulation. Here, we summarized a two-photon microscope combined with holographic system to stimulate multiple cells with high spatial and temporal resolution for living mice and their biological application.

    02 Nov. 2021, Neuroscience research, English, International magazine

    Scientific journal

  • Ako Ikegami, Hiroaki Wake

    The central nervous system (CNS) is an immune-privileged area. The blood-brain barrier (BBB) is thought to separate the CNS from any systemic inflammatory states to maintain homeostasis within this specialized, vulnerable organ. However, accumulating studies have challenged this concept by demonstrating systemic inflammatory effects on brain. Moreover, the coronavirus disease pandemic caused by severe acute respiratory syndrome coronavirus 2 in 2019 has rapidly evoked attention toward the BBB as the systemic-CNS immunological interface. In this review, we focus on microglia, the sole immune cells in the CNS, and briefly introduce our new findings regarding microglial BBB regulation in systemic inflammation. With a close eye on associated literature, we carefully rethink the traditional immune system in the CNS and suggest a new possible mechanism of systemic-CNS immune cell interaction, while an understanding of the BBB develops.

    Aug. 2021, Brain and nerve = Shinkei kenkyu no shinpo, 73 (8), 913 - 919, Japanese, Domestic magazine

    Scientific journal

  • Yuko Arioka, Daisuke Kato, Hiroaki Wake, Norio Ozaki

    The pathophysiology of mental disorders remains unknown. This causes many gaps in pathophysiology, diagnosis, and treatment of mental disorders. To close these gaps, a new perspective, which is not bound by the existing diagnostic classifications or pathological hypotheses for mental disorders, is required. Recently, it has been reported that glial cells play active roles in normal brain function and circuit formation, and their disruption results in the onset of mental disorders. Here, we discuss mental disorders from the perspective of glial cell-related pathophysiology, along with our current efforts and research.

    Jul. 2021, Brain and nerve = Shinkei kenkyu no shinpo, 73 (7), 787 - 794, Japanese, Domestic magazine

    Scientific journal

  • Takuya Okada, Daisuke Kato, Yuki Nomura, Norihiko Obata, Xiangyu Quan, Akihito Morinaga, Hajime Yano, Zhongtian Guo, Yuki Aoyama, Yoshihisa Tachibana, Andrew J. Moorhouse, Osamu Matoba, Tetsuya Takiguchi, Satoshi Mizobuchi, Hiroaki Wake

    Sustained neuropathic pain from injury or inflammation remains a major burden for society. Rodent pain models have informed some cellular mechanisms increasing neuronal excitability within the spinal cord and primary somatosensory cortex (S1), but how activity patterns within these circuits change during pain remains unclear. We have applied multiphoton in vivo imaging and holographic stimulation to examine single S1 neuron activity patterns and connectivity during sustained pain. Following pain induction, there is an increase in synchronized neuronal activity and connectivity within S1, indicating the formation of pain circuits. Artificially increasing neuronal activity and synchrony using DREADDs reduced pain thresholds. The expression of N-type voltage-dependent Ca2+ channel subunits in S1 was increased after pain induction, and locally blocking these channels reduced both the synchrony and allodynia associated with inflammatory pain. Targeting these S1 pain circuits, via inhibiting N-type Ca2+ channels or other approaches, may provide ways to reduce inflammatory pain.

    American Association for the Advancement of Science (AAAS), Mar. 2021, Science Advances, 7 (12), eabd8261 - eabd8261, English, International magazine

    Scientific journal

  • Daisuke Kato, Hiroaki Wake

    Oligodendrocytes, which form the myelin sheaths that insulate axons, regulate conduction velocity. Myelinated axons make up the brain's white matter and contribute to the efficiency of information processing by regulating the timing of neural activity. Traditionally, it has been thought that myelin is a static, inactive insulator around the axon. However, recent studies in humans using magnetic resonance imaging have shown that structural changes in the white matter occur during learning and training, suggesting that 1) white matter change depends on neural activity and 2) activity-dependent changes in white matter are essential for learning and behavior. Furthermore, suppression of oligodendrocytes and their progenitor cells leads to deficits in motor learning and remote fear memory consolidation, suggesting a causal relationship between glial function and the learning process. However, for technical reasons, it remains unclear how myelin-generating glia modulate neural circuitry and what underlying mechanisms they employ to affect learning and behavior. Recent advances in optical and genetic techniques have helped elucidate this mechanism. In this review, we highlight evidence that neural activities regulated by myelin plasticity play a pivotal role in learning and behavior and provide further insight into possible therapeutic targets for treating diseases accompanied by myelin impairment.

    05 Jan. 2021, Neuroscience research, 167, 11 - 16, English, International magazine

    Scientific journal

  • Kana Ozaki, Daisuke Kato, Ako Ikegami, Akari Hashimoto, Shouta Sugio, Zhongtian Guo, Midori Shibushita, Tsuyako Tatematsu, Koichiro Haruwaka, Andrew J Moorhouse, Hideto Yamada, Hiroaki Wake

    Maternal infection or inflammation causes abnormalities in brain development associated with subsequent cognitive impairment and in an increased susceptibility to schizophrenia and autism spectrum disorders. Maternal immune activation (MIA) and increases in serum cytokine levels mediates this association via effects on the fetal brain, and microglia can respond to maternal immune status, but consensus on how microglia may respond is lacking and no-one has yet examined if microglial process motility is impaired. In this study we investigated how MIA induced at two different gestational ages affected microglial properties at different developmental stages. Immune activation in mid-pregnancy increased IL-6 expression in embryonic microglia, but failed to cause any marked changes in morphology either at E18 or postnatally. In contrast MIA, particularly when induced earlier (at E12), caused sustained alterations in the patterns of microglial process motility and behavioral deficits. Our research has identified an important microglial property that is altered by MIA and which may contribute to the underlying pathophysiological mechanisms linking maternal immune status to subsequent risks for cognitive disease.

    07 Dec. 2020, Scientific reports, 10 (1), 21378 - 21378, English, International magazine

    Scientific journal

  • Ana Badimon, Hayley J Strasburger, Pinar Ayata, Xinhong Chen, Aditya Nair, Ako Ikegami, Philip Hwang, Andrew T Chan, Steven M Graves, Joseph O Uweru, Carola Ledderose, Munir Gunes Kutlu, Michael A Wheeler, Anat Kahan, Masago Ishikawa, Ying-Chih Wang, Yong-Hwee E Loh, Jean X Jiang, D James Surmeier, Simon C Robson, Wolfgang G Junger, Robert Sebra, Erin S Calipari, Paul J Kenny, Ukpong B Eyo, Marco Colonna, Francisco J Quintana, Hiroaki Wake, Viviana Gradinaru, Anne Schaefer

    Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.

    Oct. 2020, Nature, 586 (7829), 417 - 423, English, International magazine

    Scientific journal

  • ニコチン性アセチルコリン受容体アゴニストによるシグナル毒性と2光子顕微鏡を用いた検出手法の開発

    平井 杏梨, 杉尾 翔太, 池中 良徳, Collins Nimako, 中山 翔太, 星 信彦, 和氣 弘明, 石塚 真由美

    (一社)日本毒性学会, Jun. 2020, The Journal of Toxicological Sciences, 45 (Suppl.), S86 - S86, Japanese

  • Yuki Hattori, Yu Naito, Yoji Tsugawa, Shigenori Nonaka, Hiroaki Wake, Takashi Nagasawa, Ayano Kawaguchi, Takaki Miyata

    In the developing cortex, postmigratory neurons accumulate in the cortical plate (CP) to properly differentiate consolidating subtype identities. Microglia, despite their extensive surveying activity, temporarily disappear from the midembryonic CP. However, the mechanism and significance of this absence are unknown. Here, we show that microglia bidirectionally migrate via attraction by CXCL12 released from the meninges and subventricular zone and thereby exit the midembryonic CP. Upon nonphysiological excessive exposure to microglia in vivo or in vitro, young postmigratory and in vitro-grown CP neurons showed abnormal differentiation with disturbed expression of the subtype-associated transcription factors and genes implicated in functional neuronal maturation. Notably, this effect is primarily attributed to interleukin 6 and type I interferon secreted by microglia. These results suggest that "sanctuarization" from microglia in the midembryonic CP is required for neurons to appropriately fine-tune the expression of molecules needed for proper differentiation, thus securing the establishment of functional cortical circuit.

    02 Apr. 2020, Nature communications, 11 (1), 1631 - 1631, English, International magazine

    [Refereed]

    Scientific journal

  • Takahiro Tsuji, Hiroaki Ozasa, Wataru Aoki, Shunsuke Aburaya, Tomoko Yamamoto Funazo, Koh Furugaki, Yasushi Yoshimura, Masatoshi Yamazoe, Hitomi Ajimizu, Yuto Yasuda, Takashi Nomizo, Hironori Yoshida, Yuichi Sakamori, Hiroaki Wake, Mitsuyoshi Ueda, Young Hak Kim, Toyohiro Hirai

    Despite the promising clinical efficacy of the second-generation anaplastic lymphoma kinase (ALK) inhibitor alectinib in patients with ALK-rearranged lung cancer, some tumor cells survive and eventually relapse, which may be an obstacle to achieving a cure. Limited information is currently available on the mechanisms underlying the initial survival of tumor cells against alectinib. Using patient-derived cell line models, we herein demonstrate that cancer cells survive a treatment with alectinib by activating Yes-associated protein 1 (YAP1), which mediates the expression of the anti-apoptosis factors Mcl-1 and Bcl-xL, and combinatorial inhibition against both YAP1 and ALK provides a longer tumor remission in ALK-rearranged xenografts when compared with alectinib monotherapy. These results suggest that the inhibition of YAP1 is a candidate for combinatorial therapy with ALK inhibitors to achieve complete remission in patients with ALK-rearranged lung cancer.

    Springer Science and Business Media {LLC}, 03 Jan. 2020, Nature communications, 11 (1), 74 - 74, English, International magazine

    [Refereed]

    Scientific journal

  • Daisuke Kato, Hiroaki Wake, Philip R Lee, Yoshihisa Tachibana, Riho Ono, Shouta Sugio, Yukio Tsuji, Yasuyo H Tanaka, Yasuhiro R Tanaka, Yoshito Masamizu, Riichiro Hira, Andrew J Moorhouse, Nobuaki Tamamaki, Kazuhiro Ikenaka, Noriyuki Matsukawa, R Douglas Fields, Junichi Nabekura, Masanori Matsuzaki

    Myelination increases the conduction velocity in long-range axons and is prerequisite for many brain functions. Impaired myelin regulation or impairment of myelin itself is frequently associated with deficits in learning and cognition in neurological and psychiatric disorders. However, it has not been revealed what perturbation of neural activity induced by myelin impairment causes learning deficits. Here, we measured neural activity in the motor cortex during motor learning in transgenic mice with a subtle impairment of their myelin. This deficit in myelin impaired motor learning, and was accompanied by a decrease in the amplitude of movement-related activity and an increase in the frequency of spontaneous activity. Thalamocortical axons showed variability in axonal conduction with a large spread in the timing of postsynaptic cortical responses. Repetitive pairing of forelimb movements with optogenetic stimulation of thalamocortical axon terminals restored motor learning. Thus, myelin regulation helps to maintain the synchrony of cortical spike-time arrivals through long-range axons, facilitating the propagation of the information required for learning. Our results revealed the pathological neuronal circuit activity with impaired myelin and suggest the possibility that pairing of noninvasive brain stimulation with relevant behaviors may ameliorate cognitive and behavioral abnormalities in diseases with impaired myelination.

    Jan. 2020, Glia, 68 (1), 193 - 210, English, International magazine

    [Refereed]

    Scientific journal

  • Koichiro Haruwaka, Ako Ikegami, Yoshihisa Tachibana, Nobuhiko Ohno, Hiroyuki Konishi, Akari Hashimoto, Mami Matsumoto, Daisuke Kato, Riho Ono, Hiroshi Kiyama, Andrew J Moorhouse, Junichi Nabekura, Hiroaki Wake

    Microglia survey brain parenchyma, responding to injury and infections. Microglia also respond to systemic disease, but the role of blood-brain barrier (BBB) integrity in this process remains unclear. Using simultaneous in vivo imaging, we demonstrated that systemic inflammation induces CCR5-dependent migration of brain resident microglia to the cerebral vasculature. Vessel-associated microglia initially maintain BBB integrity via expression of the tight-junction protein Claudin-5 and make physical contact with endothelial cells. During sustained inflammation, microglia phagocytose astrocytic end-feet and impair BBB function. Our results show microglia play a dual role in maintaining BBB integrity with implications for elucidating how systemic immune-activation impacts neural functions.

    20 Dec. 2019, Nature communications, 10 (1), 5816 - 5816, English, International magazine

    [Refereed]

    Scientific journal

  • Jumpei Murakami, Yoshihisa Tachibana, Shigehisa Akiyama, Takafumi Kato, Aya Taniguchi, Yoshiaki Nakajima, Mao Shimoda, Hiroaki Wake, Yukiko Kano, Masahiko Takada, Atsushi Nambu, Atsushi Yoshida

    Oct. 2019, Movement disorders : official journal of the Movement Disorder Society, 34 (10), 1577 - 1578, English, International magazine

    [Refereed]

  • Ako Ikegami, Koichiro Haruwaka, Hiroaki Wake

    Microglia, the sole immune cells in the brain, are the key player for synaptic regulation required for our brain function in both developing and adult brain. They have highly motile processes to detect synaptic functions. Recent accumulated studies have unveiled the mechanism underlying synapse detection and pruning / formation by microglia. In this review, we summarize the current knowledge of various microglial machinery recruited in synaptic modulation in the different life stages and contexts.

    Jun. 2019, Neuropathology : official journal of the Japanese Society of Neuropathology, 39 (3), 173 - 180, English, International magazine

    [Refereed]

    Scientific journal

  • Hiroaki Wake, Hiroshi Horiuchi, Daisuke Kato, Andrew J Moorhouse, Junichi Nabekura

    Microglia are the sole immune responding cells in the central nervous system. Their role as neuroimmune cells in the pathogenesis of various neurodegenerative and infectious diseases of the brain have been extensively studied. Upon brain disease and infection, they adopt an activated phenotype associated with the release of cytokines and neurotrophic factors and resulting in neuroprotective or neurotoxic outcomes. However, microglia are resident also in the healthy or physiological brain, but much less is known about their role(s) in the healthy brain, partly due to technical limitations regarding investigation of these highly reactive cells in the intact brain. Recent developments in molecular probes and in vivo optical imaging techniques has now helped to characterize microglia in the physiological or healthy brain. In vivo two-photon imaging of fluorescently labeled microglia have revealed that they are highly motile cells in the healthy brain, extending and retracting their processes that extend from a largely stationary cell soma. In this chapter, we briefly summarize some of the physiological functions of microglia in the uninjured brain, with a focus on interactions they have with synapses.

    2019, Methods in molecular biology (Clifton, N.J.), 2034, 69 - 80, English, International magazine

    [Refereed]

    Scientific journal

  • Daisuke Kato, Ako Ikegami, Hiroshi Horiuchi, Andrew J Moorhouse, Junichi Nabekura, Hiroaki Wake

    Microglia are traditionally known as immune sentinels of the brain and as key player in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson disease, or amyotrophic lateral sclerosis. Recently, they were also identified as synaptic organizer, promoting formation and maturation of synapses as well as modifying synaptic activity. Interestingly, microglia-mediated synaptic pruning and microglia-mediated changes in synaptic plasticity were observed both during brain development and in neurodegenerative diseases, stressing the key role of microglia-synapse interaction in these processes. Here we descried a technique for noninvasive in vivo monitoring of microglia-synapse interactions by means of two-photon microscopy.

    2019, Methods in molecular biology (Clifton, N.J.), 2034, 281 - 286, English, International magazine

    [Refereed]

    Scientific journal

  • Daisuke Kato, Hiroaki Wake

    Oligodendrocyte form myelin around the axons to regulate the conduction velocity. Myelinated axons are composed of white matter to act as cables to connect distinct brain regions. Recent human MRI studies showed that the signal from white matter change in the people with special skills such as taxi driver, piano player, and juggling. The change of the white matter suggested that (1) The plasticity of myelination depends on neuronal activity (activity-dependent myelination) and (2) White matter plasticity is essential for brain functions. In this session, we discussed that how the un-electrical components, oligodendrocytes, and its precursor cells receive the signal from electrically active neurons and differentiate, proliferate, and myelinate the axons to modulate the activity of neuronal circuits, ultimately affect on their behaviors. In this review, we highlight the physiological functions of oligodendrocyte and their neuronal activity-dependent functions and thus show new insight for their contribution to brain functions.

    2019, Advances in experimental medicine and biology, 1190, 43 - 51, English, International magazine

    [Refereed]

    Scientific journal

  • Dipankar J Dutta, Dong Ho Woo, Philip R Lee, Sinisa Pajevic, Olena Bukalo, William C Huffman, Hiroaki Wake, Peter J Basser, Shahriar SheikhBahaei, Vanja Lazarevic, Jeffrey C Smith, R Douglas Fields

    The speed of impulse transmission is critical for optimal neural circuit function, but it is unclear how the appropriate conduction velocity is established in individual axons. The velocity of impulse transmission is influenced by the thickness of the myelin sheath and the morphology of electrogenic nodes of Ranvier along axons. Here we show that myelin thickness and nodal gap length are reversibly altered by astrocytes, glial cells that contact nodes of Ranvier. Thrombin-dependent proteolysis of a cell adhesion molecule that attaches myelin to the axon (neurofascin 155) is inhibited by vesicular release of thrombin protease inhibitors from perinodal astrocytes. Transgenic mice expressing a dominant-negative fragment of VAMP2 in astrocytes, to reduce exocytosis by 50%, exhibited detachment of adjacent paranodal loops of myelin from the axon, increased nodal gap length, and thinning of the myelin sheath in the optic nerve. These morphological changes alter the passive cable properties of axons to reduce conduction velocity and spike-time arrival in the CNS in parallel with a decrease in visual acuity. All effects were reversed by the thrombin inhibitor Fondaparinux. Similar results were obtained by viral transfection of tetanus toxin into astrocytes of rat corpus callosum. Previously, it was unknown how the myelin sheath could be thinned and the functions of perinodal astrocytes were not well understood. These findings describe a form of nervous system plasticity in which myelin structure and conduction velocity are adjusted by astrocytes. The thrombin-dependent cleavage of neurofascin 155 may also have relevance to myelin disruption and repair.

    13 Nov. 2018, Proceedings of the National Academy of Sciences of the United States of America, 115 (46), 11832 - 11837, English, International magazine

    [Refereed]

    Scientific journal

  • Xiangyu Quan, Manoj Kumar, Osamu Matoba, Yasuhiro Awatsuji, Yoshio Hayasaki, Satoshi Hasegawa, Hiroaki Wake

    A new type of functional optical microscope system called three-dimensional (3D) stimulation and imaging-based functional optical microscopy (SIFOM) is proposed, to the best of our knowledge. SIFOM can precisely stimulate user-defined targeted biological cells and can simultaneously record the volumetric fluorescence distribution in a single acquisition. Precise and simultaneous stimulation of fluorescent-labeled biological cells is achieved by multiple 3D spots generated by digital holograms displayed on a phase-mode spatial light modulator. Single-shot 3D acquisition of the fluorescence distribution is accomplished by common-path off-axis incoherent digital holographic microscopy in which a diffraction grating with a focusing lens is displayed on another phase-mode spatial light modulator. The effectiveness of the proposed functional microscope system was verified in experiments using fluorescent microbeads and human lung cancer cells located at various defocused positions. The system can be used for manipulating the states of cells in optogenetics.

    01 Nov. 2018, Optics letters, 43 (21), 5447 - 5450, English, International magazine

    [Refereed]

    Scientific journal

  • Akiko Takeda, Youichi Shinozaki, Kenji Kashiwagi, Nobuhiko Ohno, Kei Eto, Hiroaki Wake, Junichi Nabekura, Schuichi Koizumi

    Excitotoxicity is well known in the neuronal death in the brain and is also linked to neuronal damages in the retina. Recent accumulating evidence show that microglia greatly affect excitotoxicity in the brain, but their roles in retina have received only limited attention. Here, we report that retinal excitotoxicity is mediated by microglia. To this end, we employed three discrete methods, that is, pharmacological inhibition of microglia by minocycline, pharmacological ablation by an antagonist for colony stimulating factor 1 receptor (PLX5622), and genetic ablation of microglia using Iba1-tTA::DTAtetO/tetO mice. Intravitreal injection of NMDA increased the number of apoptotic retinal ganglion cells (RGCs) followed by reduction in the number of RGCs. Although microglia did not respond to NMDA directly, they became reactive earlier than RGC damages. Inhibition or ablation of microglia protected RGCs against NMDA. We found up-regulation of proinflammatory cytokine genes including Il1b, Il6 and Tnfa, among which Tnfa was selectively blocked by minocycline. PLX5622 also suppressed Tnfa expression. Tumor necrosis factor α (TNFα) signals were restricted in microglia at very early followed by spreading into other cell types. TNFα up-regulation in microglia and other cells were significantly attenuated by minocycline and PLX5622, suggesting a central role of microglia for TNFα induction. Both inhibition of TNFα and knockdown of TNF receptor type 1 by siRNA protected RGCs against NMDA. Taken together, our data demonstrate that a phenotypic change of microglia into a neurotoxic one is a critical event for the NMDA-induced degeneration of RGCs, suggesting an importance of non-cell-autonomous mechanism in the retinal neuronal excitotoxicity.

    Nov. 2018, Glia, 66 (11), 2366 - 2384, English, International magazine

    [Refereed]

    Scientific journal

  • Microglia Enhance Synapse Activity to Promote Local Network Synchronization

    Akiyoshi R, Wake Hiroaki, Kato D, Horiuchi H, Ono R, Ikegami A, Haruwaka K, Omori T, Tachibana Y, Moorhouse AJ, Nabekura J

    Oct. 2018, eNeuro, 5 (5), English

    [Refereed]

    Scientific journal

  • Tatsuya Ishikawa, Kei Eto, Sun Kwang Kim, Hiroaki Wake, Ikuko Takeda, Hiroshi Horiuchi, Andrew J Moorhouse, Hitoshi Ishibashi, Junichi Nabekura

    Peripheral nerve injury causes maladaptive plasticity in the central nervous system and induces chronic pain. In addition to the injured limb, abnormal pain sensation can appear in the limb contralateral to the injury, called mirror image pain. Because synaptic remodeling in the primary somatosensory cortex (S1) has critical roles in the induction of chronic pain, cortical reorganization in the S1 ipsilateral to the injured limb may also accompany mirror image pain. To elucidate this, we conducted in vivo 2-photon calcium imaging of neuron and astrocyte activity in the ipsilateral S1 after a peripheral nerve injury. We found that cross-callosal inputs enhanced the activity of both S1 astrocytes and inhibitory neurons, whereas activity of excitatory neurons decreased. When local inhibitory circuits were blocked, astrocyte-dependent spine plasticity and allodynia were revealed. Thus, we propose that cortical astrocytes prime the induction of spine plasticity and mirror image pain after peripheral nerve injury. Moreover, this result suggests that cortical synaptic rewiring could be sufficient to cause allodynia on the uninjured periphery.

    Aug. 2018, Pain, 159 (8), 1592 - 1606, English, International magazine

    [Refereed]

    Scientific journal

  • Three-dimensional stimulation and imaging-based functional optical microscopy of biological cells

    Xiangyu Quan, Manoj Kumar, MATOBA Osamu, Yasuhiro Awatsuji, Yoshio Hayasaki, Satoshi Hasegawa, WAKE Hiroki

    2018, Optics Letters, Vol. 43 (No. 21), pp. 5447 - 5480, English

    [Refereed]

    Scientific journal

  • Y. Fukushima-Nakayama, Takehito Ono, M. Hayashi, M. Inoue, H. Wake, Takashi Ono, T. Nakashima

    Mastication is an indispensable oral function related to physical, mental, and social health throughout life. The elderly tend to have a masticatory dysfunction due to tooth loss and fragility in the masticatory muscles with aging, potentially resulting in impaired cognitive function. Masticatory stimulation has influence on the development of the central nervous system (CNS) as well as the growth of maxillofacial tissue in children. Although the relationship between mastication and cognitive function is potentially important in the growth period, the cellular and molecular mechanisms have not been sufficiently elucidated. Here, we show that the reduced mastication resulted in impaired spatial memory and learning function owing to the morphological change and decreased activity in the hippocampus. We used an in vivo model for reduced masticatory stimuli, in which juvenile mice were fed with powder diet and found that masticatory stimulation during the growth period positively regulated long-term spatial memory to promote cognitive function. The functional linkage between mastication and brain was validated by the decrease in neurons, neurogenesis, neuronal activity, and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. These findings taken together provide in vivo evidence for a functional linkage between mastication and cognitive function in the growth period, suggesting a need for novel therapeutic strategies in masticatory function-related cognitive dysfunction.

    SAGE PUBLICATIONS INC, Aug. 2017, JOURNAL OF DENTAL RESEARCH, 96 (9), 1058 - 1066, English

    [Refereed]

    Scientific journal

  • Akiko Miyamoto, Hiroaki Wake, Ayako Wendy Ishikawa, Kei Eto, Keisuke Shibata, Hideji Murakoshi, Schuichi Koizumi, Andrew J Moorhouse, Yumiko Yoshimura, Junichi Nabekura

    Microglia are the immune cells of the central nervous system that play important roles in brain pathologies. Microglia also help shape neuronal circuits during development, via phagocytosing weak synapses and regulating neurogenesis. Using in vivo multiphoton imaging of layer 2/3 pyramidal neurons in the developing somatosensory cortex, we demonstrate here that microglial contact with dendrites directly induces filopodia formation. This filopodia formation occurs only around postnatal day 8-10, a period of intense synaptogenesis and when microglia have an activated phenotype. Filopodia formation is preceded by contact-induced Ca(2+) transients and actin accumulation. Inhibition of microglia by genetic ablation decreases subsequent spine density, functional excitatory synapses and reduces the relative connectivity from layer 4 neurons. Our data provide the direct demonstration of microglial-induced spine formation and provide further insights into immune system regulation of neuronal circuit development, with potential implications for developmental disorders of immune and brain dysfunction.

    25 Aug. 2016, Nature communications, 7, 12540 - 12540, English, International magazine

    [Refereed]

    Scientific journal

  • Go Kato, Hiroyuki Inada, Hiroaki Wake, Ryohei Akiyoshi, Akiko Miyamoto, Kei Eto, Tatsuya Ishikawa, Andrew J. Moorhouse, Andrew M. Strassman, Junichi Nabekura

    Microglia survey and directly contact neurons in both healthy and damaged brain, but the mechanisms and functional consequences of these contacts are not yet fully elucidated. Combining two-photon imaging and patch clamping, we have developed an acute experimental model for studying the role of microglia in CNS excitotoxicity induced by neuronal hyperactivity. Our model allows us to simultaneously examine the effects of repetitive supramaximal stimulation on axonal morphology, neuronal membrane potential, and microglial migration, using cortical brain slices from Iba-1 eGFP mice. We demonstrate that microglia exert an acute and highly localized neuroprotective action under conditions of neuronal hyperactivity. Evoking repetitive action potentials in individual layer 2/3 pyramidal neurons elicited swelling of axons, but not dendrites, which was accompanied by a large, sustained depolarization of soma membrane potential. Microglial processes migrated to these swollen axons in a mechanism involving both ATP and glutamate release via volume-activated anion channels. This migration was followed by intensive microglial wrapping of affected axons and, in some cases, the removal of axonal debris that induced a rapid soma membrane repolarization back to resting potentials. When the microglial migration was pharmacologically blocked, the activity-induced depolarization continued until cell death ensued, demonstrating that the microglia-axon contact served to prevent pathological depolarization of the soma and maintain neuronal viability. This is a novel aspect of microglia surveillance: detecting, wrapping, and rescuing neuronal soma from damage due to excessive activity.

    Society for Neuroscience, 2016, eNeuro, 3 (3), 9133 - 9144, English

    [Refereed]

    Scientific journal

  • Hiroaki Wake, Fernando C Ortiz, Dong Ho Woo, Philip R Lee, María Cecilia Angulo, R Douglas Fields

    The myelin sheath on vertebrate axons is critical for neural impulse transmission, but whether electrically active axons are preferentially myelinated by glial cells, and if so, whether axo-glial synapses are involved, are long-standing questions of significance to nervous system development, plasticity and disease. Here we show using an in vitro system that oligodendrocytes preferentially myelinate electrically active axons, but synapses from axons onto myelin-forming oligodendroglial cells are not required. Instead, vesicular release at nonsynaptic axo-glial junctions induces myelination. Axons releasing neurotransmitter from vesicles that accumulate in axon varicosities induces a local rise in cytoplasmic calcium in glial cell processes at these nonsynaptic functional junctions, and this signalling stimulates local translation of myelin basic protein to initiate myelination.

    04 Aug. 2015, Nature communications, 6, 7844 - 7844, English, International magazine

    [Refereed]

    Scientific journal

  • [Frontiers in Live Bone Imaging Researches. In vivo imaging of neuron and glia].

    Hiroaki Wake, Daisuke Kato

    Glial cells originate the Greek word'glue'had traditionally been only thought as supporting cells for neurons. Because glial cells are electrically non-excitable, neuroscience researchers have focused on elucidation of excitable cell properties, neuron. Recent advanced optical methods lead us to observe glial structure, motility and their function in normal physiological conditions. These approaches let us to know that they are not just the supporting cells for neuron but could receive signal from neurons through receptors for neurotransmitters and to regulate neuronal functions, thus modulating behavior phenotype. Such studies also suggest that glial cells are highly dynamic and actively maintain brain homeostasis. Here, we review physiological function of glial cells through a new perspective clarified by innovations of imaging technology including two-photon microscope.

    Jun. 2015, Clinical calcium, 25 (6), 859 - 70, Japanese, Domestic magazine

    [Refereed]

    Scientific journal

  • Hiroaki Wake, Daisuke Kato

    Accumulated evidence shows that neural information processing takes place in superficial layers of the brain called the gray matter. Synapses, which connect different neurons reside in the gray matter and are considered the major components of information processing and plasticity. On the other hand, myelinated axons lie beneath the gray matter. These bundles of cables connect neurons in the different brain regions to form functional neural circuits. Myelinated axons were of little of interest to neuroscientists and have long been ignored in the formation of functional neuronal circuits. Recent evidence shows that myelin formed by oligodendrocytes shows plastic changes depending on neuronal activity. In this issue, we discuss the plastic changes of myelin and its functional role in learning and training.

    Apr. 2015, Brain and nerve = Shinkei kenkyu no shinpo, 67 (4), 505 - 12, Japanese, Domestic magazine

    [Refereed]

    Scientific journal

  • R Douglas Fields, Alfonso Araque, Heidi Johansen-Berg, Soo-Siang Lim, Gary Lynch, Klaus-Armin Nave, Maiken Nedergaard, Ray Perez, Terrence Sejnowski, Hiroaki Wake

    Neurons are exquisitely specialized for rapid electrical transmission of signals, but some properties of glial cells, which do not communicate with electrical impulses, are well suited for participating in complex cognitive functions requiring broad spatial integration and long-term temporal regulation. Astrocytes, microglia, and oligodendrocytes all have biological properties that could influence learning and cognition. Myelination by oligodendrocytes increases conduction velocity, affecting spike timing and oscillations in neuronal activity. Astrocytes can modulate synaptic transmission and may couple multiple neurons and synapses into functional assemblies. Microglia can remove synapses in an activity-dependent manner altering neural networks. Incorporating glia into a bicellular mechanism of nervous system function may help answer long-standing questions concerning the cellular mechanisms of learning and cognition.

    SAGE PUBLICATIONS INC, Oct. 2014, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 20 (5), 426 - 31, English, International magazine

    [Refereed]

    Scientific journal

  • ミクログリアとシナプス

    宮本愛喜子, 和気弘明, 鍋倉淳一

    2014, 生体の科学, 65 (1), 32 - 36, Japanese

    Scientific journal

  • [The mechanism for activity dependent regulation of myelin].

    Hiroaki Wake

    Nov. 2013, Seikagaku. The Journal of Japanese Biochemical Society, 85 (11), 999 - 1002, Japanese, Domestic magazine

    [Refereed]

    Scientific journal

  • Hiroaki Wake, Andrew J Moorhouse, Akiko Miyamoto, Junichi Nabekura

    The traditional role of microglia has been in brain infection and disease, phagocytosing debris and secreting factors to modify disease progression. Recent evidence extends their role to healthy brain homeostasis, including the regulation of cell death, synapse elimination, neurogenesis, and neuronal surveillance. These actions contribute to the maturation and plasticity of neural circuits that ultimately shape behavior. Here we review microglial contributions to the development, plasticity, and maintenance of neural circuits with a focus on interactions with synapses. We introduce this topic by reviewing recent studies on the migration and proliferation of microglia within the brain, and conclude with the proposal that microglia dysfunction may adversely affect brain function, and thereby contribute to the development of psychiatric and neurological disorders.

    ELSEVIER SCIENCE LONDON, Apr. 2013, Trends in neurosciences, 36 (4), 209 - 17, English, International magazine

    [Refereed]

    Scientific journal

  • Akiko Miyamoto, Hiroaki Wake, Andrew J Moorhouse, Junichi Nabekura

    Brain function depends critically on the interactions among the underlying components that comprise neural circuits. This includes coordinated activity in pre-synaptic and postsynaptic neuronal elements, but also in the non-neuronal elements such as glial cells. Microglia are glial cells in the central nervous system (CNS) that have well-known roles in neuronal immune function, responding to infections and brain injury and influencing the progress of neurodegenerative disorders. However, microglia are also surveyors of the healthy brain, continuously extending and retracting their processes and making contacts with pre- and postsynaptic elements of neural circuits, a process that clearly consumes considerable energy. Pruning of synapses during development and in response to injury has also been documented, and we propose that this extensive surveillance of the brain parenchyma in adult healthy brain results in similar "fine-tuning" of neural circuits. A reasonable extension is that a dysfunction of such a homeostatic role of microglia could be a primary cause of neuronal disease. Indeed, neuronal functions including cognition, personality, and information processing are affected by immune status. In this review we focus on the interactions between microglia and synapses, the possible cellular and molecular mechanisms that mediate such contacts, and the possible implications these interactions may have in the fine tuning of neural circuits that is so important for physiological brain function.

    Frontiers Research Foundation, 2013, Frontiers in cellular neuroscience, 7 (MAY), 70 - 70, English, International magazine

    [Refereed]

    Scientific journal

  • Jacqueline Y K Leung, William R Bennett, Rosalind P Herbert, Adrian K West, Philip R Lee, Hiroaki Wake, R Douglas Fields, Meng Inn Chuah, Roger S Chung

    Prior studies have reported that metallothionein I/II (MT) promote regenerative axonal sprouting and neurite elongation of a variety of central nervous system neurons after injury. In this study, we evaluated whether MT is capable of modulating regenerative axon outgrowth of neurons from the peripheral nervous system. The effect of MT was firstly investigated in dorsal root ganglion (DRG) explants, where axons were scratch-injured in the presence or absence of exogenous MT. The application of MT led to a significant increase in regenerative sprouting of neurons 16 h after injury. We show that the pro-regenerative effect of MT involves an interaction with the low-density lipoprotein receptor megalin, which could be blocked using the competitive antagonist RAP. Pre-treatment with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 also completely abrogated the effect of exogenous MT in promoting axonal outgrowth. Interestingly, we only observed megalin expression in neuronal soma and not axons in the DRG explants. To investigate this matter, an in vitro injury model was established using Campenot chambers, which allowed the application of MT selectively into either the axonal or cell body compartments after scratch injury was performed to axons. At 16 h after injury, regenerating axons were significantly longer only when exogenous MT was applied solely to the soma compartment, in accordance with the localized expression of megalin in neuronal cell bodies. This study provides a clear indication that MT promotes axonal regeneration of DRG neurons, via a megalin- and MAPK-dependent mechanism.

    SPRINGER BASEL AG, Mar. 2012, Cellular and molecular life sciences : CMLS, 69 (5), 809 - 17, English, International magazine

    [Refereed]

    Scientific journal

  • Toyoda T, Matsukawa N, Sagisaka T, Uematsu N, Kanamori T, Kato D, Wake H, Hida H, Borlongan CV, Ojika K

    2012, Cell Transplant, 21 (10), 2159 - 69

    [Refereed]

  • Takanari Toyoda, Noriyuki Matsukawa, Takafumi Sagisaka, Norihiko Uematsu, Tetsuko Kanamori, Daisuke Kato, Masayuki Mizuno, Hiroaki Wake, Hideki Hida, Cesario V Borlongan, Kosei Ojika

    Hippocampal cholinergic neurostimulating peptide (HCNP) is known to promote differentiation of septohippocampal cholinergic neurons. The HCNP precursor protein (HCNP-pp) may play several roles, for example, as an ATP-binding protein, a Raf kinase inhibitor protein, and a phosphatidylethanolamine-binding protein, as well as a precursor for HCNP. This study therefore aimed to elucidate the involvement of HCNP-pp in specific neural lineages after stroke using a hypoxic-ischemic (HI) rat model of brain ischemia. The specific neural lineages in the hippocampus were investigated 14 days after ischemia. Some bromodeoxyuridine (BrdU)(+) neural progenitor cells in the hippocampus of hypoxic, HI, or sham-operated rats expressed HCNP-pp. Almost half of the BrdU(+)/HCNP-pp(+) cells also expressed the oligodendrocyte lineage marker 2',3'-cyclic nucleotide 3'-phosphodiesterase, whereas only a few BrdU(+)/HCNP-pp(+) cells in the hippocampus in HI brains expressed the neuronal lineage marker, doublecortin (DCX). Interestingly, no BrdU(+)/HCNP-pp(+) progenitor cells in hypoxic, HI, or sham-operated brains expressed the astrocyte lineage marker, glial fibrillary acidic protein. Together with previous in vitro data, the results of this study suggest that the expression level of HCNP-pp regulates the differentiation of neural progenitor cells into specific neural lineages in the HI hippocampus, indicating that neural stem cell fate can be controlled via the HCNP-pp mediating pathway.

    COGNIZANT COMMUNICATION CORP, 2012, Cell transplantation, 21 (10), 2159 - 69, English, International magazine

    [Refereed]

    Scientific journal

  • Marie-Ève Tremblay, Beth Stevens, Amanda Sierra, Hiroaki Wake, Alain Bessis, Axel Nimmerjahn

    Microglia were recently shown to play unexpected roles in normal brain development and adult physiology. This has begun to dramatically change our view of these resident "immune" cells. Here, we briefly review topics covered in our 2011 Society for Neuroscience minisymposium "The Role of Microglia in the Healthy Brain." This summary is not meant to be a comprehensive review of microglia physiology, but rather to share new results and stimulate further research into the cellular and molecular mechanisms by which microglia influence postnatal development, adult neuronal plasticity, and circuit function.

    SOC NEUROSCIENCE, 09 Nov. 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience, 31 (45), 16064 - 9, English, International magazine

    [Refereed]

    Scientific journal

  • Hiroaki Wake, Philip R Lee, R Douglas Fields

    Formation of myelin, the electrical insulation on axons produced by oligodendrocytes, is controlled by complex cell-cell signaling that regulates oligodendrocyte development and myelin formation on appropriate axons. If electrical activity could stimulate myelin induction, then neurodevelopment and the speed of information transmission through circuits could be modified by neural activity. We find that release of glutamate from synaptic vesicles along axons of mouse dorsal root ganglion neurons in culture promotes myelin induction by stimulating formation of cholesterol-rich signaling domains between oligodendrocytes and axons, and increasing local synthesis of the major protein in the myelin sheath, myelin basic protein, through Fyn kinase-dependent signaling. This axon-oligodendrocyte signaling would promote myelination of electrically active axons to regulate neural development and function according to environmental experience.

    AMER ASSOC ADVANCEMENT SCIENCE, 16 Sep. 2011, Science (New York, N.Y.), 333 (6049), 1647 - 51, English, International magazine

    [Refereed]

    Scientific journal

  • Masato Sawada, Naoko Kaneko, Hiroyuki Inada, Hiroaki Wake, Yasuko Kato, Yuchio Yanagawa, Kazuto Kobayashi, Tomomi Nemoto, Junichi Nabekura, Kazunobu Sawamoto

    Throughout life, new neurons are added and old ones eliminated in the adult mouse olfactory bulb. Previous studies suggested that olfactory experience controls the process by which new neurons are integrated into mature circuits. Here we report novel olfactory-experience-dependent mechanisms of neuronal turnover. Using two-photon laser-scanning microscopy and sensory manipulations in adult live mice, we found that the neuronal turnover was dynamically controlled by olfactory input in a neuronal subtype-specific manner. Olfactory input enhanced this turnover, which was characterized by the reiterated use of the same positions in the glomeruli by new neurons. Our results suggest that olfactory-experience-dependent modification of neuronal turnover confers structural plasticity and stability on the olfactory bulb.

    SOC NEUROSCIENCE, 10 Aug. 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience, 31 (32), 11587 - 96, English, International magazine

    [Refereed]

    Scientific journal

  • Kei Eto, Hiroaki Wake, Miho Watanabe, Hitoshi Ishibashi, Mami Noda, Yuchio Yanagawa, Junichi Nabekura

    Multiple cortical areas are involved in pain processing, including the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC). Although accumulations of evidence suggest that the S1 activity increases under chronic pain conditions, whether plastic change occurs or not within the S1, and whether and how the plastic change contributes to chronic pain behavior, is unknown. Here, we provide the first evidence that intra-regional remodeling within the mouse S1 accelerates chronic pain behavior by modulating neuronal activity in the ACC, one of the important cortical areas for chronic pain. Using two-photon Ca(2+) imaging, we found that the spontaneous activity of layer 2/3 neurons in the S1 and then response to sensory and layer 4 stimulations increased under chronic pain conditions. In addition, pharmacological attenuation and facilitation of S1 activity attenuated and facilitated the chronic pain behavior, respectively. Furthermore, electrical response of the ACC to peripheral stimulation successfully correlated with S1 neuronal activity, and inhibition of ACC activity alleviated the mechanical allodynia. The present results will provide development of efficient therapeutic strategies against chronic pain by focusing on the S1 and ACC.

    21, 25 May 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience, 31 (21), 7631 - 6, English, International magazine

    [Refereed]

    Scientific journal

  • Hiroaki Wake, R Douglas Fields

    Broad interest in the rapidly advancing field of microglial involvement in forming neural circuits is evident from the fresh findings published in leading journals. This special issue of Neuron Glia Biology contains a special collection of research articles and reviews concerning the new appreciation of microglial function in the normal physiology of the brain that extends beyond their traditionally understood role in pathology.

    CAMBRIDGE UNIV PRESS, Feb. 2011, Neuron glia biology, 7 (1), 1 - 3, English, International magazine

    [Refereed]

    Scientific journal

  • Hiroaki Wake, Andrew J Moorhouse, Junichi Nabekura

    Microglia cells are the immune cells of the central nervous system and consequently play important roles in brain infections and inflammation. Recent in vivo imaging studies have revealed that in the resting healthy brain, microglia are highly dynamic, moving constantly to actively survey the brain parenchyma. These active microglia can rapidly respond to pathological insults, becoming activated to induce a range of effects that may contribute to both pathogenesis, or to confer neuronal protection. However, interactions between microglia and neurons are being recognized as important in shaping neural circuit activity under more normal, physiological conditions. During development and neurogenesis, microglia interactions with neurons help to shape the final patterns of neural circuits important for behavior and with implications for diseases. In the mature brain, microglia can respond to changes in sensory activity and can influence neuronal activity acutely and over the long term. Microglia seem to be particularly involved in monitoring the integrity of synaptic function. In this review, we discuss some of these new insights into the involvement of microglia in neural circuits.

    CAMBRIDGE UNIV PRESS, Feb. 2011, Neuron glia biology, 7 (1), 47 - 53, English, International magazine

    [Refereed]

    Scientific journal

  • Hiroyuki Inada, Miho Watanabe, Taku Uchida, Hitoshi Ishibashi, Hiroaki Wake, Tomomi Nemoto, Yuchio Yanagawa, Atsuo Fukuda, Junichi Nabekura

    Cortical GABAergic interneurons originate from ganglionic eminences and tangentially migrate into the cortical plate at early developmental stages. To elucidate the characteristics of this migration of GABAergic interneurons in living animals, we established an experimental design specialized for in vivo time-lapse imaging of the neocortex of neonate mice with two-photon laser-scanning microscopy. In vesicular GABA/glycine transporter (VGAT)-Venus transgenic mice from birth (P0) through P3, we observed multidirectional tangential migration of genetically-defined GABAergic interneurons in the neocortical marginal zone. The properties of this migration, such as the motility rate (distance/hr), the direction moved, and the proportion of migrating neurons to stationary neurons, did not change through P0 to P3, although the density of GABAergic neurons at the marginal zone decreased with age. Thus, the characteristics of the tangential motility of individual GABAergic neurons remained constant in development. Pharmacological block of GABA(A) receptors and of the Na⁺-K⁺-Cl⁻ cotransporters, and chelating intracellular Ca²⁺, all significantly reduced the motility rate in vivo. The motility rate and GABA content within the cortex of neonatal VGAT-Venus transgenic mice were significantly greater than those of GAD67-GFP knock-in mice, suggesting that extracellular GABA concentration could facilitate the multidirectional tangential migration. Indeed, diazepam applied to GAD67-GFP mice increased the motility rate substantially. In an in vitro neocortical slice preparation, we confirmed that GABA induced a NKCC sensitive depolarization of GABAergic interneurons in VGAT-Venus mice at P0-P3. Thus, activation of GABA(A)R by ambient GABA depolarizes GABAergic interneurons, leading to an acceleration of their multidirectional motility in vivo.

    PUBLIC LIBRARY SCIENCE, 2011, PloS one, 6 (12), e27048, English, International magazine

    [Refereed]

    Scientific journal

  • Toshiyuki Marumo, Kei Eto, Hiroaki Wake, Tomohiro Omura, Junichi Nabekura

    BACKGROUND AND PURPOSE: 20-Hydroxyeicosatetraenoic acid is a potent vasoconstrictor that contributes to cerebral ischaemia. An inhibitor of 20-Hydroxyeicosatetraenoic acid synthesis, TS-011, reduces infarct volume and improves neurological deficits in animal stroke models. However, little is known about how TS-011 affects the microvessels in ischaemic brain. Here, we investigated the effect of TS-011 on microvessels after cerebral ischaemia. EXPERIMENTAL APPROACH: TS-011 (0.3 mg·kg(-1) ) or a vehicle was infused intravenously for 1 h every 6 h in a mouse model of stroke, induced by transient occlusion of the middle cerebral artery occlusion following photothrombosis. The cerebral blood flow velocity and the vascular perfusion area of the peri-infarct microvessels were measured using in vivo two-photon imaging. KEY RESULTS: The cerebral blood flow velocities in the peri-infarct microvessels decreased at 1 and 7 h after reperfusion, followed by an increase at 24 h after reperfusion in the vehicle-treated mice. We found that TS-011 significantly inhibited both the decrease and the increase in the blood flow velocities in the peri-infarct microvessels seen in the vehicle-treated mice after reperfusion. In addition, TS-011 significantly inhibited the reduction in the microvascular perfusion area after reperfusion, compared with the vehicle-treated group. Moreover, TS-011 significantly reduced the infarct volume by 40% at 72 h after middle cerebral artery occlusion. CONCLUSIONS AND IMPLICATIONS: These findings demonstrated that infusion of TS-011 improved defects in the autoregulation of peri-infarct microcirculation and reduced the infarct volume. Our results could be relevant to the treatment of cerebral ischaemia.

    6, Nov. 2010, British journal of pharmacology, 161 (6), 1391 - 402, English, International magazine

    [Refereed]

    Scientific journal

  • Takafumi Sagisaka, Noriyuki Matsukawa, Takanari Toyoda, Norihiko Uematsu, Tetsuko Kanamori, Hiroaki Wake, Cesario V Borlongan, Kosei Ojika

    Hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, has been known to promote the differentiation of septo-hippocampal cholinergic neurons. Recently, the precursor protein of HCNP (HCNP-pp) has also received attention as a multifunctional protein with roles, in addition to serving as the HCNP precursor, such as acting as an ATP-binding protein, a Raf kinase inhibitor protein (RKIP), and phosphatidylethanolamine-binding protein (PEBP). In particular, the function of RKIP has attracted attention over several years for its role in controlling cellular proliferation and metastasis in cancer cells. HCNP-pp is also thought to be important in regulating the proliferation and differentiation of neuronal cells in vitro and in vivo by modification of the MAPK cascade. In the present study, we used cultured adult rat hippocampal progenitor cells (AHPs), which are thought to be important for memory formation, and focused on the role of HCNP-pp in adult neurogenesis, namely, the production of new neurons from neural stem/progenitor cells. We found that HCNP-pp expression in AHPs was closely associated with differentiation into MAP2ab-positive neurons and RIP-positive oligodendrocytes, but not into GFAP-positive astrocytes. By contrast, a down-regulated HCNP-pp expression in AHPs accompanied differentiation into GFAP-positive astrocytes. Direct manipulations of HCNP-pp via viral over-expression or siRNA downregulation further confirmed the HCNP-pp contribution to specific neural lineage commitment of AHPs. Our results show that the expression level of HCNP-pp acts as a key regulator for differentiation of cultured AHPs into specific neural lineages, indicating that the control of neural stem cell fate can be achieved via the HCNP-pp pathway.

    ELSEVIER SCIENCE BV, 23 Apr. 2010, Brain research, 1327, 107 - 17, English, International magazine

    [Refereed]

    Scientific journal

  • Miho Watanabe, Hiroaki Wake, Andrew J Moorhouse, Junichi Nabekura

    The neuronal K(+)-Cl(-) cotransporter (KCC2) is a membrane transport protein that extrudes Cl(-) from neurons and helps maintain low intracellular [Cl(-)] and hyperpolarizing GABAergic synaptic potentials. Depolarizing gamma-aminobutyric acid (GABA) responses in neonatal neurons and following various forms of neuronal injury are associated with reduced levels of KCC2 expression. Despite the importance for plasticity of inhibitory transmission, less is known about cellular mechanisms involved in more dynamic changes in KCC2 function. In this study, we investigated the role of tyrosine phosphorylation in KCC2 localization and function in hippocampal neurons and in cultured GT1-7 cells. Mutation to the putative tyrosine phosphorylation site within the long intracellular carboxyl terminus of KCC2(Y1087D) or application of the tyrosine kinase inhibitor genistein shifted the GABA reversal potential (E(GABA)) to more depolarized values, indicating reduced KCC2 function. This was associated with a change in the expression pattern of KCC2 from a punctate distribution to a more uniform distribution, suggesting that functional tyrosine-phosphorylated KCC2 forms clusters in restricted membrane domains. Sodium vanadate, a tyrosine phosphatase inhibitor, increased the proportion of KCC2 associated with lipid rafts membrane domains. Loss of tyrosine phosphorylation also reduced oligomerization of KCC2. A loss of the punctuate distribution and oligomerization of KCC2 and a more depolarized E(GABA) were seen when the 28-amino-acid carboxyl terminus of KCC2 was deleted. These results indicate that direct tyrosine phosphorylation of KCC2 results in membrane clusters and functional transport activity, suggesting a mechanism by which intracellular Cl(-) concentrations and GABA responses can be rapidly modulated.

    AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 09 Oct. 2009, The Journal of biological chemistry, 284 (41), 27980 - 8, English, International magazine

    [Refereed]

    Scientific journal

  • Hiroaki Wake, Andrew J Moorhouse, Shozo Jinno, Shinichi Kohsaka, Junichi Nabekura

    Recent studies have identified the important contribution of glial cells to the plasticity of neuronal circuits. Resting microglia, the primary immune effector cells in the brain, dynamically extend and retract their processes as if actively surveying the microenvironment. However, just what is being sampled by these resting microglial processes has not been demonstrated in vivo, and the nature and function of any interactions between microglia and neuronal circuits is incompletely understood. Using in vivo two-photon imaging of fluorescent-labeled neurons and microglia, we demonstrate that the resting microglial processes make brief (approximately 5 min) and direct contacts with neuronal synapses at a frequency of about once per hour. These contacts are activity-dependent, being reduced in frequency by reductions in neuronal activity. After transient cerebral ischemia, the duration of these microglia-synapse contacts are markedly prolonged (approximately 1 h) and are frequently followed by the disappearance of the presynaptic bouton. Our results demonstrate that at least part of the dynamic motility of resting microglial processes in vivo is directed toward synapses and propose that microglia vigilantly monitor and respond to the functional status of synapses. Furthermore, the striking finding that some synapses in the ischemic areas disappear after prolonged microglial contact suggests microglia contribute to the subsequent increased turnover of synaptic connections. Further understanding of the mechanisms involved in the microglial detection of the functional state of synapses, and of their role in remodeling neuronal circuits disrupted by ischemia, may lead to novel therapies for treating brain injury that target microglia.

    SOC NEUROSCIENCE, 01 Apr. 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience, 29 (13), 3974 - 80, English, International magazine

    [Refereed]

    Scientific journal

  • Masato Sawada, Naoko Kaneko, Hiroaki Wake, Hiroyuki Inada, Yasuko Kato, Yuchio Yanagawa, Kazuto Kobayashi, Tomomi Nemoto, Junichi Nabekura, Kazunobu Sawamoto

    ELSEVIER IRELAND LTD, 2009, Neurosci. Res, 65, S54 - S54, English

  • Koichiro Iohara, Li Zheng, Hiroaki Wake, Masataka Ito, Junichi Nabekura, Hideaki Wakita, Hiroshi Nakamura, Takeshi Into, Kenji Matsushita, Misako Nakashima

    Cell therapy with stem cells and endothelial progenitor cells (EPCs) to stimulate vasculogenesis as a potential treatment for ischemic disease is an exciting area of research in regenerative medicine. EPCs are present in bone marrow, peripheral blood, and adipose tissue. Autologous EPCs, however, are obtained by invasive biopsy, a potentially painful procedure. An alternative approach is proposed in this investigation. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. We isolated a highly vasculogenic subfraction of side population (SP) cells based on CD31 and CD146, from dental pulp. The CD31(-);CD146(-) SP cells, demonstrating CD34+ and vascular endothelial growth factor-2 (VEGFR2)/Flk1+, were similar to EPCs. These cells were distinct from the hematopoietic lineage as CD11b, CD14, and CD45 mRNA were not expressed. They showed high proliferation and migration activities and multilineage differentiation potential including vasculogenic potential. In models of mouse hind limb ischemia, local transplantation of this subfraction of SP cells resulted in successful engraftment and an increase in the blood flow including high density of capillary formation. The transplanted cells were in proximity of the newly formed vasculature and expressed several proangiogenic factors, such as VEGF-A, G-CSF, GM-CSF, and MMP3. Conditioned medium from this subfraction showed the mitogenic and antiapoptotic activity on human umbilical vein endothelial cells. In conclusion, subfraction of SP cells from dental pulp is a new stem cell source for cell-based therapy to stimulate angiogenesis/vasculogenesis during tissue regeneration.

    ALPHAMED PRESS, Sep. 2008, Stem cells (Dayton, Ohio), 26 (9), 2408 - 18, English, International magazine

    [Refereed]

    Scientific journal

  • Hiroaki Wake, Miho Watanabe, Andrew J Moorhouse, Takashi Kanematsu, Shoko Horibe, Noriyuki Matsukawa, Kiyofumi Asai, Kosei Ojika, Masato Hirata, Junichi Nabekura

    The K+ Cl- cotransporter KCC2 plays an important role in chloride homeostasis and in neuronal responses mediated by ionotropic GABA and glycine receptors. The expression levels of KCC2 in neurons determine whether neurotransmitter responses are inhibitory or excitatory. KCC2 expression is decreased in developing neurons, as well as in response to various models of neuronal injury and epilepsy. We investigated whether there is also direct modulation of KCC2 activity by changes in phosphorylation during such neuronal stressors. We examined tyrosine phosphorylation of KCC2 in rat hippocampal neurons under different conditions of in vitro neuronal stress and the functional consequences of changes in tyrosine phosphorylation. Oxidative stress (H2O2) and the induction of seizure activity (BDNF) and hyperexcitability (0 Mg2+) resulted in a rapid dephosphorylation of KCC2 that preceded the decreases in KCC2 protein or mRNA expression. Dephosphorylation of KCC2 is correlated with a reduction of transport activity and a decrease in [Cl-]i, as well as a reduction in KCC2 surface expression. Manipulation of KCC2 tyrosine phosphorylation resulted in altered neuronal viability in response to in vitro oxidative stress. During continued neuronal stress, a second phase of functional KCC2 downregulation occurs that corresponds to decreases in KCC2 protein expression levels. We propose that neuronal stress induces a rapid loss of tyrosine phosphorylation of KCC2 that results in translocation of the protein and functional loss of transport activity. Additional understanding of the mechanisms involved may provide means for manipulating the extent of irreversible injury resulting from different neuronal stressors.

    SOC NEUROSCIENCE, 14 Feb. 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience, 27 (7), 1642 - 50, English, International magazine

    [Refereed]

    Scientific journal

  • Hiroaki Wake, Tomomi Nemoto, Junichi Nabekura

    ELSEVIER IRELAND LTD, 2007, Neurosci. Res, 58, S12 - S12, English

    [Refereed]

  • Yoshito Mizoguchi, Akihiko Kitamura, Hiroaki Wake, Hitoshi Ishibashi, Miho Watanabe, Takuya Nishimaki, Junichi Nabekura

    During the development of the rat hippocampus, both gamma-aminobutyric acid (GABA)(B) autoreceptors and brain-derived neurotrophic factor (BDNF) play important roles in the formation of GABAergic synapses as well as in the GABA(A) receptor-mediated transmissions. While a number of studies have reported rapid effects of BDNF on GABA(A) receptor-mediated responses, the interactions between GABA(B) autoreceptors and BDNF are less clear. Using conventional whole-cell patch-clamp recordings, we demonstrated here that BDNF significantly occludes baclofen-induced suppression of GABA(A) receptor-mediated transmissions in each of the preparations including hippocampal slices prepared from P14 rats, hippocampal CA1 pyramidal neurons isolated from P14 and P21 rats, and cultured hippocampal pyramidal neurons. This effect of BDNF was rapid and reversible, and was mediated via the activation of presynaptic TrkB receptor tyrosine kinases, and subsequent activation of phospholipase C and protein kinase C. On the contrary, in hippocampal CA1 pyramidal neurons isolated from P7 rats, BDNF failed to occlude the GABA(B) receptor-mediated inhibition of GABA release. Thus, the ability of BDNF to occlude the GABA(B) receptor-mediated inhibition of GABA release develops between P7 and P14. This demonstrates a novel aspect of the effects of BDNF on inhibitory transmissions in rat hippocampus, which may have some functional roles in the induction of developmental plasticity and/or pathophysiology of epilepsy.

    BLACKWELL PUBLISHING, Oct. 2006, The European journal of neuroscience, 24 (8), 2135 - 44, English, International magazine

    [Refereed]

    Scientific journal

  • Yu Hirata, Kazuhiro Nomura, Daisuke Kato, Yoshihisa Tachibana, Takahiro Niikura, Kana Uchiyama, Tetsuya Hosooka, Tomoaki Fukui, Keisuke Oe, Ryosuke Kuroda, Yuji Hara, Takahiro Adachi, Koji Shibasaki, Hiroaki Wake, Wataru Ogawa

    American Society for Clinical Investigation, 15 Mar. 2022, Journal of Clinical Investigation

    Scientific journal

  • Misaki NISHI, Shouta SUGIO, Tetsushi HIRANO, Daisuke KATO, Hiroaki WAKE, Asuka SHODA, Midori MURATA, Yoshinori IKENAKA, Yoshiaki TABUCHI, Youhei MANTANI, Toshifumi YOKOYAMA, Nobuhiko HOSHI

    Neonicotinoid pesticides (NNs) cause behavioral abnormalities in mammals, raising concerns about their effects on neural circuit activity. We herein examined the neurological effects of the NN clothianidin (CLO) by in vivo Ca2+ imaging using two-photon microscopy. Mice were fed the no-observed-adverse-effect-level (NOAEL) dose of CLO for 2 weeks and their neuronal activity in the primary somatosensory cortex (S1) was observed weekly for 2 weeks. CLO exposure caused a sustained influx of Ca2+ in neurons in the S1 2/3 layers, indicating hyperactivation of neurons. In addition, microarray gene expression analysis suggested the induction of neuroinflammation and changes in synaptic activity. These results demonstrate that exposure to the NOAEL dose of CLO can overactivate neurons and disrupt neuronal homeostasis.

    Japanese Society of Veterinary Science, 2022, Journal of Veterinary Medical Science, 84 (4), 585 - 592, English, Domestic magazine

    Scientific journal

  • Ikuko Takeda, Kohei Yoshihara, Dennis L Cheung, Tomoko Kobayashi, Masakazu Agetsuma, Makoto Tsuda, Kei Eto, Schuichi Koizumi, Hiroaki Wake, Andrew J Moorhouse, Junichi Nabekura

    Chronic pain is a major public health problem that currently lacks effective treatment options. Here, a method that can modulate chronic pain-like behaviour induced by nerve injury in mice is described. By combining a transient nerve block to inhibit noxious afferent input from injured peripheral nerves, with concurrent activation of astrocytes in the somatosensory cortex (S1) by either low intensity transcranial direct current stimulation (tDCS) or via the chemogenetic DREADD system, we could reverse allodynia-like behaviour previously established by partial sciatic nerve ligation (PSL). Such activation of astrocytes initiated spine plasticity to reduce those synapses formed shortly after PSL. This reversal from allodynia-like behaviour persisted well beyond the active treatment period. Thus, our study demonstrates a robust and potentially translational approach for modulating pain, that capitalizes on the interplay between noxious afferents, sensitized central neuronal circuits, and astrocyte-activation induced synaptic plasticity.

    14 Jul. 2022, Nature communications, 13 (1), 4100 - 4100, English, International magazine

    Scientific journal

  • An alternative method to control and monitor neural activity in 2 photon imaging

    Xiangyu Quan, Daisuke Kato, Hiroaki Wake, Yasuhiro Awatsuji, Osamu Matoba

    2021, Optics InfoBase Conference Papers

    International conference proceedings

  • Yuki Hattori, Daisuke Kato, Futoshi Murayama, Sota Koike, Yu Naito, Ayano Kawaguchi, Hiroaki Wake, Takaki Miyata

    Summary The relationships between microglia and macrophages, especially their lineage segregation outside the yolk sac, have been recently explored, providing a model in which a conversion from macrophages seeds microglia during brain development. However, spatiotemporal evidence to support such microglial seeding and to explain how it occurs has not been obtained. By cell tracking via slice culture, intravital imaging, and Flash tag-mediated labeling, we found that a group of intraventricular macrophages belonging to border-associated macrophages (BAMs), which were abundantly observed along the inner surface of the mouse cerebral wall at embryonic day 12, frequently entered the brain wall. Immunohistochemistry of the tracked cells showed that postinfiltrative BAMs acquired microglial properties while losing a macrophage phenotype. We also found that the intraventricular BAMs were supplied transepithelially from the roof plate. Thus, this study demonstrates that the “roof plate→ventricle→cerebral wall” route is an essential path for microglial colonization into the embryonic mouse brain.

    Cold Spring Harbor Laboratory, 29 Jul. 2022

MISC

  • オリゴデンドロサイトおよびその前駆細胞の生体内カルシウムイメージング

    尾野里穂, 加藤大輔, 杉尾翔太, 橘吉寿, 和氣弘明

    2020, 日本生理学雑誌(Web), 82 (1)

  • 行動毒性試験および二光子イメージングによるアセタミプリドの神経毒性評価

    平井杏梨, 杉尾翔太, 池中良徳, COLLINS Nimako, 中山翔太, 星信彦, 和氣弘明, 石塚真由美

    2020, 日本獣医学会学術集会講演要旨集, 163rd

  • Real-time visualization of brain metastasis in vivo

    Takahiro Tsuji, Hiroaki Wake, Hiroaki Ozasa, Koichiro Haruwaka, Hitomi Ajimizu, Yuto Yasuda, Yuichi Sakamori, Takashi Nomizo, Young Hak Kim, Toyohiro Hirai

    Apr. 2019, AACR Annual Meeting 2019, April 1, 2019, English

    [Refereed]

    Summary international conference

  • Simple intensity equalization methods in SLM generated multispots

    Xiangyu Quan, Manoj Kumar, Osamu Matoba, Yasuhiro Awatsuji, Hiroaki Wake

    © 2019 SPIE. Multispots in three-dimensions generated by phase mode spatial light modulators (SLMs) are very useful in laser processing or light induced biological treatments, such as optogenetics. So far, the intensity of the focus spots varies depending to the distance from optical axis. In order to equalize intensities in all generated spots, simple feedback method was applied. Further, look up table was created by dividing imaging area in sectors. Experiment results show improvement in the random spots at some degree, however, further analyzation is required.

    2019, Proceedings of SPIE - The International Society for Optical Engineering, 11140

  • Daisuke Kato, Kei Eto, Junichi Nabekura, Hiroaki Wake

    Electrical activity is essential for brain function. However, neurons, the electrically active cells, are less numerous than the non-electrical glial cells in the central nervous system. The non-electrical components modify the function of neural circuits, depending on the electrical neuronal activity, by wrapping synapses, myelinating axons and phagocytozing the neuronal components. Moreover, recent evidence has suggested that they contribute to neurological and psychiatric disease by regulating neuronal circuits, ultimately affecting their behaviour. In this review, we highlight the physiological functions of glial cells, particularly the electrical activity-dependent processes, to provide further insight into their role in brain function.

    01 Jun. 2018, Journal of biochemistry, 163 (6), 457 - 464, English, International magazine

    [Refereed]

  • イオンイメージセンサによる脳内pHイメージング

    堀内浩, 石田順子, 中村友亮, 稲田浩之, 揚妻正和, 和氣弘明, 澤田和明, 鍋倉淳一

    Feb. 2018, 日本生理学雑誌(Web), 80 (1), WEB ONLY, Japanese

  • ミクログリア 正常機能 ミクログリアによるシナプス修飾機構

    和氣弘明, 宮本愛喜子, 堀内浩, 鍋倉淳一

    01 Dec. 2015, Clin Neurosci, 33 (12), 1346 - 1349, Japanese

  • Amanda Sierra, Marie-Ève Tremblay, Hiroaki Wake

    FRONTIERS RESEARCH FOUNDATION, 2014, Frontiers in cellular neuroscience, 8, 240 - 240, English, International magazine

    [Refereed]

  • グリア細胞が心を動かす!神経活動に依存した髄鞘化 オリゴデンドロサイトによる情報処理効率化のメカニズム

    和氣弘明, 和氣弘明, 加藤大輔, FIELDS R. Douglas

    01 Jul. 2013, 実験医学, 31 (11), 1729 - 1735, Japanese

  • グリア細胞が心を動かす!概論 もはや“脇役”ではないグリア研究への新しい戦略 見えてきた神経回路の恒常性維持機構とその破綻による精神・神経疾患

    和氣弘明

    01 Jul. 2013, 実験医学, 31 (11), 1698 - 1704, Japanese

  • 感覚入力による成体嗅球新生ニューロンの位置決定

    澤田雅人, 金子奈穂子, 稲田浩之, 和氣弘明, 加藤康子, 柳川右千夫, 小林和人, 根本知己, 鍋倉淳一, 澤本和延

    01 Feb. 2012, Nagoya Med J, 52 (2), 163, Japanese

  • Masato Sawada, Naoko Kaneko, Hiroyuki Inada, Hiroaki Wake, Yasuko Kato, Yuchio Yanagawa, Kazuto Kobayashi, Tomomi Nemoto, Jyunichi Nabekura, Kazunobu Sawamoto

    ELSEVIER IRELAND LTD, 2010, NEUROSCIENCE RESEARCH, 68, E366 - E367, English

    Summary international conference

  • Junichi Nabekura, Hiroaki Wake, Yusuke Takatsuru, Kei Eto, Hiroyuki Inada, Sun Kwang Kim

    ELSEVIER IRELAND LTD, 2009, NEUROSCIENCE RESEARCH, 65, S3 - S3, English

    Summary international conference

  • シナプスのin vivoイメージング

    江藤圭, 和氣弘明, 鍋倉淳一

    2009, 日本自律神経学会総会プログラム・抄録集, 62nd, 158 - 159, Japanese

  • Resting microglia directly monitor synapses in vivo and determine the fate of ischemic terminals

    Hiroaki Wake, Andrew Moorhouse, Shozo Jinno, Shinichi Kohsaka, Junichi Nabekura

    ELSEVIER IRELAND LTD, 2008, NEUROSCIENCE RESEARCH, 61, S152 - S152, English

    Summary international conference

  • 2光子励起顕微鏡によるin vivo imaging

    和氣弘明, 高鶴裕介, 根本知己, 鍋倉淳一

    2007, エクストリームフォトニクス研究-バイオイメージング 第5回理研・分子研合同シンポジウム 平成19年, 17 - 19, Japanese

  • The disruption of brain function in mice administered with nicotinic acetylcholine receptor agonists~The development of the detection method using two-photon microscopy~

    平井杏梨, 杉尾翔太, NIMAKO Collins, 中山翔太, 加藤恵介, 高橋圭介, 有薗幸司, 平野哲史, 星信彦, 石塚真由美, 和氣弘明, 池中良徳

    2021, 環境化学討論会要旨集(CD-ROM), 29th

  • 妊娠中の母体炎症による児ミクログリアへの影響

    尾崎可奈, 春若航一郎, 橘吉寿, 加藤大輔, 和氣弘明

    2020, 日本生理学雑誌(Web), 82 (1)

  • ADULT RAT HIPPOCAMIPAL PROGENITOR CELLS ALTER THE EXPRESSION LEVEL OF HIPPOCAMPAL CHOLINERGIC NEUROSTIMULATING PEPTIDE PRECURSOR PROTEIN WITH DIFFERENTIATION

    SAGISAKA TAKAFUMI, MATSUKAWA NORIYUKI, TOYODA TAKANARI, UEMATSU NORIHIKO, KANAMORI TETSUKO, WAKE HIROAKI, OJIKA KOSEI

    Hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, has been known to promote the differentiation of septo-hippocampal cholinergic neurons. Recently, the precursor protein of HCNP (HCNP-pp) has also received attention as a multifunctional protein. HCNP-pp is thought to be important in regulating the proliferation and differentiation of neuronal cells in vitro and in vivo by modification of the MARK cascade. In the present study, we used cultured adult rat hippocampal progenitor cells (AHPs), which are thought to be important for memory formation, and forcused on the role of HCNP-pp in adult neurogenesis. We found that HCNP-pp was intensely expressed in these cells in vitro cell culture and that HCNP-pp expression changed depending on cell lineage by immunocytochemical analysis. The expression level of HCNP-pp was positively correlated with that of microtubule-associated protein 2ab (MAP2ab) as a neuron marker (Pearson's correlation test; r=0.60, p<0.01), but not with that of receptor interacting protein (RIP) as an oligodendrocyte marker. Conversely, tha rate of reduction in the fluorescence intensity of HCNP-pp with differentitation was correlated with the rate of the increase in glial fibrillary acidic protein (GFAP) as an astrocyte marker (Pearson's correlation test; r=-0.69, p<0.01). Our results show the expression level of HCNP-pp involves, directly or indirectly, in the differentiation of cultured AHPs into some lineages.

    Nagoya City University, 06 May 2010, Nagoya medical journal, 51 (1), 21 - 29, English

  • Kei Eto, Hiroaki Wake, Hitoshi Ishibashi, Miho Watanabe, Junichi Nabekura

    ELSEVIER IRELAND LTD, 2011, NEUROSCIENCE RESEARCH, 71, E80 - E81, English

    Summary international conference

  • Kei Eto, Hiroaki Wake, Hitoshi Ishibashi, Mami Noda, Junichi Nabekura

    ELSEVIER IRELAND LTD, 2009, NEUROSCIENCE RESEARCH, 65, S179 - S179, English

    Summary international conference

  • In vivo two-photon calcium imaging of somatosensory cortex in a mouse model of inflammatory pain

    Kei Eto, Hiroaki Wake, Hitoshi Ishibashi, Mami Noda, Junichi Nabekura

    ELSEVIER IRELAND LTD, 2008, NEUROSCIENCE RESEARCH, 61, S65 - S65, English

    Summary international conference

Presentations

  • The response to whisker stimulation in the visual cortex of monocular deprived mice in vivo

    橋本 明香里, MIYAMOTO AKIKO, TACHIBANA YOSHIHISA, 春若航一路, WAKE HIROAKI

    9th FAOPS, Mar. 2019, English, 神戸, International conference

    Poster presentation

  • Physiologiacl function of microglia and their effect on neuronal circuits

    Hiroaki Wake

    第9回アジアオセアニア生理学会(神戸市), Mar. 2019, English, 神戸, International conference

    Public symposium

  • 生体 in Vivoイメージング

    WAKE HIROAKI

    第2回ニコンイメージングフォーラム, Feb. 2019, Japanese, 東京, Domestic conference

    Nominated symposium

  • ミクログリアの新規生理機能の可視化

    WAKE HIROAKI

    北海道大学医学部免疫代謝内科学セミナー, Feb. 2019, Japanese, 札幌, Domestic conference

    Public discourse

  • ミクログリアの新規生理機能とその破綻による病態の表出

    WAKE HIROAKI

    第11回先端脳科学セミナー, Feb. 2019, Japanese, 中央, Domestic conference

    Oral presentation

  • High Temporal and Spatial Pattern Stimulation to Manipulate Brain Function

    Hiroaki Wake

    International Workshop on Bioimaging2019, Feb. 2019, English, 宇都宮, International conference

    [Invited]

    Invited oral presentation

  • High Temporal and Spatial Pattern Stimulation to Manipulate Brain Function

    Hiroaki Wake

    ABiS International Symposium, Feb. 2019, Japanese, 岡崎, International conference

    Oral presentation

  • 全身炎症時におけるミクログリアによる血液脳関門の制御

    春若航一路, WAKE HIROAKI

    シグナル伝達医学研究展開センター若手道場, Jan. 2019, Japanese, 淡路, Domestic conference

    Oral presentation

  • 全身炎症時におけるミクログリアによる血液脳関門の制御

    春若航一路, WAKE HIROAKI

    第6回先進イメージング医学研究会・学術集会, Jan. 2019, Japanese, 神戸, Domestic conference

    Oral presentation

  • 光による高次脳機能の計測と操作を目指して

    WAKE HIROAKI

    レーザー学会第39回年次大会, Jan. 2019, Japanese, 東京, Domestic conference

    Invited oral presentation

  • ミクログリアによる神経機能修飾

    WAKE HIROAKI

    Neurovascular Unit研究会2019, Jan. 2019, Japanese, 東京, Domestic conference

    Oral presentation

  • オリゴデンドロサイトおよびその前駆細胞のin vivo カルシウムイメージング

    尾野 里穂, SUGIO SHOUTA, TACHIBANA YOSHIHISA, WAKE HIROAKI

    シグナル伝達医学研究展開センター若手道場, Jan. 2019, Japanese, 淡路, Domestic conference

    Oral presentation

  • 2光子励起を用いたホログラフィック光刺激法の開発:現状と展望

    SUGIO SHOUTA, TACHIBANA YOSHIHISA, WAKE HIROAKI

    シグナル伝達医学研究展開センター若手道場, Jan. 2019, Japanese, 淡路, Domestic conference

    Oral presentation

  • 中枢神経系免疫細胞ミクログリアの新規生理機能とその病態への関与

    WAKE HIROAKI

    日本薬学会北陸支部特別講演会, Dec. 2018, Japanese, 金沢, Domestic conference

    Public discourse

  • Physiclogocal function of microglia and their role for disease formation

    WAKE HIROAKI

    武田薬品社内シンポジウム, Dec. 2018, Japanese, 藤沢, Domestic conference

    Public discourse

  • Microglia in physiological brain—Focusing on microglia—synapse interactions

    Hiroaki Wake

    Cold Spring Harbor Asia Conferences, Dec. 2018, English, 蘇州, International conference

    [Invited]

    Invited oral presentation

  • Change of lipid profile in myelin associated with motor learning affect on neuronal activity pattern in primary motor cortex.

    Kazuki Nishida, Yoshihisa Tachibana, Shumpei Sato, Fumiyoshi Yamazaki, Mitsutoshi Setou, Hiroaki Wake

    第23 回グリア研究会, Dec. 2018, Japanese, 名古屋, Domestic conference

    Oral presentation

  • Ca2+ imaging of oligodendrocyte and oligodendrocyte precursor cell in vivo

    Shouta Sugio, Riho Ono, Yoshihisa Tachibana, Hiroaki Wake

    次世代脳プロジェクト 冬のシンポジウム, Dec. 2018, English, 東京, Domestic conference

    Poster presentation

  • 2光子励起を用いたホログラフィック光刺激の現状:生体試料への適用を目指して

    SUGIO SHOUTA, TACHIBANA YOSHIHISA, WAKE HIROAKI

    CREST第2回シンポジウム, Dec. 2018, Japanese, 西尾, Domestic conference

    Oral presentation

  • 大脳皮質感覚野の生体イメージングによる疼痛発症機構解明へのアプローチ

    岡田 卓也, TACHIBANA YOSHIHISA, NOMURA YUKI, OBATA NORIHIKO, MIZOBUCHI SATOSHI, WAKE HIROAKI

    第111回 近畿生理学談話会, Nov. 2018, Japanese, 和歌山, Domestic conference

    Oral presentation

  • 運動学習と関連した白質における脂質の変化が一次運動野の神経活動に及ぼす影響

    西田 一貴, TACHIBANA YOSHIHISA, 佐藤 駿平, 山崎 文義, 瀬藤 光利, WAKE HIROAKI

    第111回 近畿生理学談話会, Nov. 2018, Japanese, 和歌山, Domestic conference

    Oral presentation

  • ホログラフィック光照射による蛍光励起の強度均一化"

    小管啓仁, Xiangyu Quan, MATOBA Osamu, 早崎芳夫, 粟辻安浩, WAKE Hiroaki

    日本光学会年次学術講演会(Optics & Photonics Japan 2018), Nov. 2018, Japanese, 筑波大学東京キャンパス文京校舎,東京, Domestic conference

    Oral presentation

  • グリア細胞の生理機能と神経回路機能

    WAKE HIROAKI

    第48回小児神経セミナー, Nov. 2018, Japanese, 大阪, Domestic conference

    Invited oral presentation

  • The scrap and build of oligodendrocyte function and myelin components

    WAKE HIROAKI

    スクラップ&ビルド領域会議, Nov. 2018, Japanese, 大阪, Domestic conference

    Oral presentation

  • Multimodal Digital Holographic Microscopy

    Xiangyu Quan, Manoj Kumar, MATOBA Osamu, Yasuhiro Awatsuji, Yoshio Hayasaki, Satoshi Hasegawa, WAKE Hiroaki, Mitsuhiro Morita

    The 8th Japana-Korea workshop on digital holography and information photonics (DHIP 2018), Nov. 2018, English, DHIP2018, Osaka; Japan, International conference

    [Invited]

    Invited oral presentation

  • In vivo tracing of single neuron activity with Ca2+ imaging of primary somatosensory cortex in mouse models of postoperative pain and inflammatory pain

    Takuya Okada, Yoshihisa Tachibana, Yuki Nomura, Norihiko Obata, Satoshi Mizobuchi, Hiroaki Wake

    Neuroscience 2018, Nov. 2018, English, San Diego, CA, International conference

    Poster presentation

  • Ca2+ imaging of oligodendrocyte and oligodendrocyte precursor cell in vivo

    Riho Ono, Shouta Sugio, Yoshihisa Tachibana, Hiroaki Wake

    新学術領域研究 スクラップ&ビルドによる脳機能の動的制御 第3回領域会議, Nov. 2018, Japanese, 大阪, Domestic conference

    Poster presentation

  • A New Type of Microscopy for Light Stimulation and 3D Imaging;

    Xiangyu Quan, Manoj Kumar, MATOBA Osamu, Yasuhiro Awatsuji, Yoshio Hayasaki, Satoshi Hasegawa, WAKE Hiroaki, Mitsuhiro Morita

    International Workshop on Holography and Related Technologies 2018 (IWH2018), Nov. 2018, English, IWH2018, Suzhou; China;, International conference

    [Invited]

    Invited oral presentation

  • 脳科学について

    WAKE HIROAKI

    santec社内講演会, Oct. 2018, Japanese, 小牧, Domestic conference

    Public discourse

  • ミクログリアの生理機能とその破綻による疾患について

    WAKE HIROAKI

    東京女子医科大セミナー, Oct. 2018, Japanese, 東京, Domestic conference

    Public discourse

  • ミクログリアの生理・病態を踏まえた認知症治療戦略

    WAKE HIROAKI

    第37回日本認知症学会学術集会, Oct. 2018, Japanese, 札幌, Domestic conference

    [Invited]

    Nominated symposium

  • Visualization and manipulation of glial cell functions in vivo

    Hiroaki Wake

    glial heterogeneity SPP1757, Oct. 2018, English, シュパイヤー, International conference

    Oral presentation

  • Two-photon in vivo imaging of oligodendrocyte Ca2+ activity in mice

    Riho Ono, Shouta Sugio, Yoshihisa Tachibana, Hiroaki Wake

    Young glia, Oct. 2018, English, シュパイヤー, International conference

    Poster presentation

  • 単眼遮蔽による視覚野のヒゲ刺激への応答変化のin vivoイメージング

    橋本 明香里, MIYAMOTO AKIKO, TACHIBANA YOSHIHISA, 春若航一路, WAKE HIROAKI

    関西5医科大学コンソーシアム合宿, Sep. 2018, Japanese, 大阪, Domestic conference

    Poster presentation

  • 生体イメージング最前線

    WAKE HIROAKI

    小野薬品工業「脳移転治療について考える会」, Sep. 2018, Japanese, 京都, Domestic conference

    Public discourse

  • Neurochemistry of neuron-glia interaction

    Hiroaki Wake

    WFSBP2018 The ISN-JSN, Sep. 2018, English, 神戸, International conference

    [Invited]

    Nominated symposium

  • Microglia in Health and Disease.- Interaction with synapses-

    Hiroaki Wake

    日本生化学大会, Sep. 2018, Japanese, 京都, Domestic conference

    [Invited]

    Invited oral presentation

  • Microglia and Synapses

    Hiroaki Wake

    ICN2018 世界神経病理学会, Sep. 2018, English, 東京, International conference

    [Invited]

    Nominated symposium

  • In vivo tracing of single neuron activity with Ca2+ imaging of primary somatosensory cortex in mouse models of postoperative pain and inflammatory pain

    岡田 卓也, 橘 吉寿, NOMURA YUKI, OBATA NORIHIKO, MIZOBUCHI SATOSHI, WAKE HIROAKI

    Cold Spring Harbor Asia Confference, Sep. 2018, English, 淡路, International conference

    Poster presentation

  • What we see in microglia about schizophrenia

    池上暁湖, 春若航一路, TACHIBANA YOSHIHISA, WAKE HIROAKI

    第5回先進イメージング医学研究会, Aug. 2018, Japanese, 京都, Domestic conference

    Oral presentation

  • 単眼遮蔽による、高次視覚野のヒゲ刺激への応答変化のin vivo イメージング

    橋本 明香里, MIYAMOTO AKIKO, TACHIBANA YOSHIHISA, 春若航一路, WAKE HIROAKI

    第41回日本神経科学大会, Jul. 2018, English, 神戸, Domestic conference

    Poster presentation

  • 術後痛モデルマウスにおける第一次体性感覚野のin vivoカルシウムイメージング

    岡田 卓也, TACHIBANA YOSHIHISA, NOMURA YUKI, OBATA NORIHIKO, MIZOBUCHI SATOSHI, WAKE HIROAKI

    第41回日本神経科学大会, Jul. 2018, English, 神戸, Domestic conference

    Poster presentation

  • 術後痛モデルマウスにおける第一次体性感覚野 in vivo カルシウムイメージング

    岡田 卓也, 橘 吉寿, NOMURA YUKI, OBATA NORIHIKO, MIZOBUCHI SATOSHI, WAKE HIROAKI

    第5回イメージング数理研究会, Jul. 2018, Japanese, 神戸, Domestic conference

    Poster presentation

  • 術後痛モデルマウスにおける第一次体性感覚野 in vivo カルシウムイメージング

    岡田 卓也, 橘 吉寿, NOMURA YUKI, OBATA NORIHIKO, MIZOBUCHI SATOSHI, WAKE HIROAKI

    第41回日本神経科学大会, Jul. 2018, Japanese, 神戸, Domestic conference

    Poster presentation

  • 高精度時空間分解能を持つ光による脳機能計測・操作を目指して

    WAKE HIROAKI

    イメージング数理研究会, Jul. 2018, Japanese, 神戸, Domestic conference

    Oral presentation

  • Microglia in health and disease -lesson from schizophreniamodel mice

    WAKE HIROAKI

    第41回日本神経科学大会, Jul. 2018, Japanese, 神戸, Domestic conference

    [Invited]

    Nominated symposium

  • グリアの生理機能とその破綻による精神疾患の可能性

    WAKE HIROAKI

    動的恒常性研究会, Jun. 2018, Japanese, 東京, Domestic conference

    Oral presentation

  • Fetal microglia changes by maternal immune activation

    Kana Ozaki, Wake Hiroaki, Hideto Yamada

    第70回日本産科婦人科学会学術講演会, May 2018, English, 仙台, Domestic conference

    Public symposium

  • High Temporal and Spatial Pattern Stimulation to Manipulate Brain Function

    Hiroaki Wake, Koichiro Haruwaka, Xiangyu Quan, Osamu Matoba

    OPIC2018, Apr. 2018, English, 横浜, International conference

    Oral presentation

  • High Temporal and Spatial Pattern Stimulation to Manipulate Brain Function

    WAKE Hiroaki, Koichiro Haruwaka, Xiangyu Quan, MATOBA Osamu

    BISC, Apr. 2018, English, OPIC2018, 神奈川、横浜, International conference

    Oral presentation

  • Microglia sense systemic immune status to modify activity of neuronal circuit

    Koichiro Haruwaka, Junichi Nabekura, Wake Hiroaki

    第95回日本生理学会大会, Mar. 2018, Japanese, 日本生理学会大会, 香川, Domestic conference

    Oral presentation

  • Abnormal Behavior and Malformation of Microglia in Schizophrenic Mice

    Ako Ikegami, Koichiro Haruwaka, Wake Hiroaki

    第2回神戸大学・ワシントン大学・オスロ大学国際合同シンポジウム, Mar. 2018, English, 神戸大学・ワシントン大学・オスロ大学国際合同シンポジウム, ハワイ, 米国, International conference

    Poster presentation

  • 生体イメージングが明らかにする脳-免疫系の相互作用

    春若 航一路, 鍋倉 淳一, Wake Hiroaki

    岡崎信用金庫先端奨学金制度 成果発表会, Feb. 2018, Japanese, 岡崎信用金庫先端奨学金制度 成果発表会, 愛知, Domestic conference

    Oral presentation

  • Optical control of neuron and glial cells by the 3D multi-points stimulation

    春若 航一路, 全 香玉, 森田 光洋, Miyamoto Akiko, 的場 修, Wake Hiroaki

    CREST「光の特性を活用した生命機能の時空間制御技術の開発と応用」研究領域 第2回領域会議, Jan. 2018, Japanese, CREST「光の特性を活用した生命機能の時空間制御技術の開発と応用」研究領域 第2回領域会議, 東京, Domestic conference

    Poster presentation

  • 統合失調症モデルマウスにおけるミクログリア動態・形態の変容

    Ako Ikegami, Koichiro Haruwaka, Wake Hiroaki

    次世代脳冬のシンポジウム, Dec. 2017, Japanese, 次世代脳冬のシンポジウム, 東京, Domestic conference

    Poster presentation

  • 統合失調症モデルマウスにおけるミクログリア動態・形態の変容

    Ako Ikegami, Koichiro Haruwaka, Wake Hiroaki

    第7回ニューロサイエンス研究会, Dec. 2017, Japanese, ニューロサイエンス研究会, 兵庫, Domestic conference

    Oral presentation

  • 髄鞘のスクラップアンドビルドによる脳情報処理の効率化

    Wake Hiroaki

    次世代脳冬のシンポジウム, Dec. 2017, Japanese, 次世代脳冬のシンポジウム, 東京, Domestic conference

    Oral presentation

  • Microglia sense systemic immune activation in autoimmune disease model.

    Koichiro Haruwaka, Junichi Nabekura, Wake Hiroaki

    次世代脳冬のシンポジウム, Dec. 2017, Japanese, 次世代脳冬のシンポジウム, 東京, Domestic conference

    Poster presentation

  • 統合失調症モデルマウスにおけるミクログリア動態・形態の変容

    Ako Ikegami, Koichiro Haruwaka, Wake Hiroaki

    第110回近畿生理学談話会, Nov. 2017, Japanese, 近畿生理学談話会, 兵庫, Domestic conference

    Oral presentation

  • 自己免疫疾患におけるミクログリアの変化

    春若 航一路, 鍋倉 淳一, Wake Hiroaki

    第111回近畿生理学談話会, Nov. 2017, Japanese, 近畿生理学談話会, 兵庫, Domestic conference

    Oral presentation

  • 高次脳機能に関わる中枢神経系免疫細胞の生理機能

    Wake Hiroaki

    東京大学大学院医学研究科, Nov. 2017, Japanese, 東京大学大学院医学研究科, 東京, Domestic conference

    [Invited]

    Invited oral presentation

  • 髄鞘制御不全による情報処理異常の可視化

    Wake Hiroaki

    神経組織培養研究会, Oct. 2017, Japanese, 神経組織培養研究会, 愛知, Domestic conference

    [Invited]

    Invited oral presentation

  • 光で迫る脳免疫細胞の機能について

    Wake Hiroaki

    第49回藤田学園医学会シンポジウム(愛知県豊名市), Oct. 2017, Japanese, 藤田学園医学会シンポジウム, 愛知, Domestic conference

    [Invited]

    Invited oral presentation

  • 光で照らし出すグリアの新機能および脳機能への寄与

    Wake Hiroaki

    (株)ファイザー 第12回緑内障若手研究者の会(東京), Oct. 2017, Japanese, (株)ファイザー 緑内障若手研究者の会, 東京, Domestic conference

    [Invited]

    Invited oral presentation

  • Microglia sense systemic immune status to modify activity of neuronal circuit

    Koichiro Haruwaka, Wake Hiroaki, Junichi Nabekura

    Life Science Retreat 2017, Oct. 2017, English, Life Science Retreat 2017, 山梨, Domestic conference

    Poster presentation

  • Physiology of microglia -New Insights-

    Wake Hiroaki

    Physiology of microglia XXIII World Congres of Neurology, Sep. 2017, English, Physiology of microglia XXIII World Congres of Neurology, 京都, International conference

    [Invited]

    Nominated symposium

  • Physiology of microglia

    Wake Hiroaki

    九州大学歯学部, Sep. 2017, English, 九州大学歯学部, 福岡, Domestic conference

    [Invited]

    Invited oral presentation

  • Myelination for information processing

    Wake Hiroaki

    第90回日本神経化学会大会, Sep. 2017, English, 日本神経化学会大会, 仙台, Domestic conference

    Oral presentation

  • Microglial contribute to dendritic spine formation in postnatal mice somatosensory cortex

    Miyamoto Akiko, Wake Hiroaki, Ayako Ishikawa, Hideji Murakoshi, Kei Eto, Yumiko Yoshimura, Junichi Nabekura

    日本神経化学学会, Sep. 2017, English, 日本神経化学学会, 仙台, Domestic conference

    [Invited]

    Nominated symposium

  • 2光子顕微鏡による生体イメージング

    Wake Hiroaki

    京都大学呼吸器内科, Sep. 2017, Japanese, 京都大学呼吸器内科, 京都, Domestic conference

    Oral presentation

  • 統合失調症モデルマウスにおけるミクログリア動態・形態の変容

    Ako Ikegami, Koichiro Haruwaka, Wake Hiroaki

    新学術領域 S&B第2回班会議, Aug. 2017, Japanese, 新学術領域 S&B班会議, 山梨, Domestic conference

    Poster presentation

  • 高精度時空間分解能を持つ光刺激法による脳機能操作

    Wake Hiroaki

    第14回生体イメージング研究会, Aug. 2017, Japanese, 生体イメージング研究会, 京都, Domestic conference

    Oral presentation

  • oligodendrocyte and myelin remodeking in information processing

    Wake Hiroaki

    第2回「スクラップビルド」領域会議, Aug. 2017, English, 新学術領域 S&B班会議, 山梨, Domestic conference

    Oral presentation

  • Activity dependent myelin regulation in information processing

    Wake Hiroaki

    第115回IIISセミナー, Aug. 2017, Japanese, IIISセミナー, 茨城, Domestic conference

    Oral presentation

  • 2光子顕微鏡による生体イメージング

    Wake Hiroaki

    京都大学セミナー, Aug. 2017, Japanese, 京都大学, 京都, Domestic conference

    Public discourse

  • 髄鞘制御不全による情報処理異常の可視化

    Wake Hiroaki

    大阪大学生命機能セミナー, Jul. 2017, Japanese, 大阪大学, 大阪, Domestic conference

    Oral presentation

  • 光で迫る脳免疫細胞の機能

    Wake Hiroaki

    第40回日本神経科学大会, Jul. 2017, Japanese, 日本神経科学大会, 千葉, Domestic conference

    [Invited]

    Nominated symposium

  • Microglia sense systemic immune status to modify activity of neuronal circuit; 免疫状態依存的なミクログリアによる神経回路活動の制御

    Koichiro Haruwaka, Wake Hiroaki, Junichi Nabekura

    第40回日本神経科学大会, Jul. 2017, Japanese, 日本神経科学大会, 千葉, Domestic conference

    Poster presentation

  • Lipid composition of frontal white matter is altered with motor learning.

    Yukio Tsuji, Tachibana Yoshihisa, Fumiyoshi Yamazaki, Daisuke Kato, Shinohara Masakazu, Miyamoto Akiko, Ikuko Yao, Toda Tatsushi, Mitsutoshi Setou, Wake Hiroaki

    第40回日本神経科学大会, Jul. 2017, English, 日本神経科学大会, 千葉, Domestic conference

    Poster presentation

  • 身体疾患で惹起される免疫変容が起こす神経回路恒常性の破綻と精神症状の解明

    Wake Hiroaki

    さきがけ領域会議, Jun. 2017, Japanese, さきがけ領域会議, 秋田, Domestic conference

    Oral presentation

  • 光で迫る脳免疫細胞の機能

    Wake Hiroaki

    脳科学の達人2017, Jun. 2017, Japanese, 脳科学の達人2017市民講座プレ企画@未来館, 東京, Domestic conference

    Public symposium

  • 光で照らし出すグリアの新機能および脳機能表出

    Wake Hiroaki

    Glial assembly, The 5th Summer Workshop, Jun. 2017, Japanese, Glial assembly, 新潟, Domestic conference

    Oral presentation

  • Microglia Sense Systemic Immune Status to Modify Activity of Neuronal Circuit

    Koichiro Haruwaka, Wake Hiroaki, Junichi Nabekura

    Glial assembly, The 4th Summer Workshop, Jun. 2017, English, Glial assembly, 新潟, Domestic conference

    Poster presentation

  • 革新的予防・診断・治療法開発に向けたシグナル伝達医学研究

    Wake Hiroaki

    神戸大学先端融合研究環新規プロジェクトキックオフシンポジウム, May 2017, Japanese, 神戸大学先, 神戸, Domestic conference

    Oral presentation

  • 横浜市立大学「神経医科学序説」における講義

    Wake Hiroaki

    神経医科学序説, May 2017, Japanese, 横浜市立大学, 横浜, Domestic conference

    Public discourse

  • 生体適合性マイクロチップレーザーを用いた高次脳機能の4次元操作

    Wake Hiroaki

    融合発展促進研究プロジェクト中間実績報告会, Apr. 2017, Japanese, 融合発展促進研究プロジェクト, 東京, Domestic conference

    Oral presentation

  • 髄鞘制御不全による情報処理異常の可視化

    Wake Hiroaki

    第29回臨床MR脳機能研究会, Apr. 2017, Japanese, 臨床MR脳機能研究会, 東京, Domestic conference

    [Invited]

    Invited oral presentation

Research Projects

  • 脳と免疫系相互作用の観点からの多階層的研究による精神疾患病態解明

    尾崎 紀夫, 和氣 弘明, 野田 幸裕, 大野 欽司, 財津 桂

    日本学術振興会, 科学研究費助成事業 基盤研究(A), 基盤研究(A), 名古屋大学, 05 Apr. 2021 - 31 Mar. 2024

  • ミクログリアによる感覚モダリティーの制御と精神病態への寄与

    和氣 弘明

    日本学術振興会, 科学研究費助成事業 基盤研究(B), 基盤研究(B), 名古屋大学, 01 Apr. 2021 - 31 Mar. 2024

  • 母体低栄養が新発見のGABA作動性CRH放出経路を介して仔の脳発達に与える影響

    福田 敦夫, 才津 浩智, 和氣 弘明

    日本学術振興会, 科学研究費助成事業 基盤研究(B), 基盤研究(B), 浜松医科大学, 01 Apr. 2021 - 31 Mar. 2024

  • Glia decoding: deciphering information critical for brain-body interactions

    岡部 繁男, 星野 歩子, 松田 道行, 小泉 修一, 石井 優, 田中 謙二, 津田 誠, 史 蕭逸, 小山 隆太, 和氣 弘明

    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Transformative Research Areas (A), Grant-in-Aid for Transformative Research Areas (A), The University of Tokyo, 19 Nov. 2020 - 31 Mar. 2025

    脳の広範な機能の理解には神経細胞以外の細胞要素、特に神経細胞と接して存在するグリア細胞の情報を読み出す必要がある。本領域の目標はグリア細胞の状態・機能・細胞間シグナル伝達を包括的に読み出す技術(デコーディング技術)を開発し、脳と身体の間での生体情報の統合を理解する所にある。このような研究を推進するため、従来の脳科学研究の成果を踏まえつつも、全く異なるアイディアや計測技術を取り込み、異分野との連携を開始した。総括班では研究の新規性、技術的優位性、異野連携の実現に特に力を入れ、具体的には(A)グリア細胞内での情報伝達の過程を読み出す技術(グリアデコーディング技術)の推進とデータ駆動型研究への適用、(B)神経回路とグリアの形成する機能単位の個体の内部環境の変化に対応した制御例の提示、(C)挑戦的かつ明確な問題設定を持った共同研究の推進、の3点を実現するための班員の連携強化を実施した。具体的には継続中および新規の共同研究の加速により、班員間の共同研究による論文成果の発表が行われ、また新しいグリア計測システムが導入されてグリア細胞のシグナル伝達検出を実現する新しい技術開発の基盤が得られた。技術支援のためのワーキンググループを設置し、どのような技術提供が可能であるのか、方針が確定した。また領域内の共同研究を加速し、領域外の研究者および市民に対してグリア研究の意義を紹介するための活動として、情報交換のためのウェブサイトの新設、ニュースレターの発行を実施した。

  • 全身臓器の生理的・病理的免疫状態遷移の脳による検出機構

    和氣 弘明, 足澤 悦子

    日本学術振興会, 科学研究費助成事業 学術変革領域研究(A), 学術変革領域研究(A), 名古屋大学, 19 Nov. 2020 - 31 Mar. 2025

    認知機能・学習・情動などの高次脳機能に障害を呈する発達障害・精神疾患の病態を理解することは喫緊の課題である。近年発達した光学技術によってグリア細胞の新しい生理機能の理解が得られ、高次脳機能とその病態の理解にはグリア細胞は不可欠であるという共通認識が広がりつつある。本研究では本研究では中枢神経系免疫細胞であるミクログリアに着目し、そのシナプスや血管などの脳環境に対する生理機能を明らかにする。さらに遺伝的・環境要因によるミクログリア変容のメカニズム及びその結果として引き起こされる異常による病態を精神疾患と組み合わせて解き明かすことを目的とした。これまでミクログリアは全身炎症時に血管に集積することで、炎症初期にはタイトジャンクション関連分子を発現することで、血管内皮細胞と結合し、血液脳関門の透過性を保護すること、炎症後期にはアストロサイトの足突起を貪食することで血液脳関門を障害することを明らかにした。そこで、さらに体循環系の環境及び脳環境の相互作用を免疫系に着目して、検証するために硬膜及び側脳室脈絡叢に着目した。全身炎症においてはこれらのマクロファージおよびTリンパ球の挙動が変化し、脳内環境と連動することがわかった。そこで、この組織の中に含まれる免疫細胞成分特にTリンパ球の成分に着目して解析を進めている。また神経疾患であるアルツハイマー型認知機能障害や精神疾患である統合失調症などにおいても硬膜及び側脳室脈絡叢の変化さらに中枢神経系との相互作用の解析を進めていく。

  • 感覚モダリティ理解のためのミクログリア・シナプス接触の多角的解析

    和氣 弘明, 大野 伸彦, 加藤 大輔, 竹田 育子

    日本学術振興会, 科学研究費助成事業 国際共同研究加速基金(国際共同研究強化(B)), 国際共同研究加速基金(国際共同研究強化(B)), 名古屋大学, 27 Oct. 2020 - 31 Mar. 2024

    認知機能・学習・情動などの高次脳機能に障害を呈する発達障害・精神疾患の病態を理解することは喫緊の課題である。近年発達した光学技術によってグリア細胞の新しい生理機能の理解が得られ、高次脳機能とその病態の理解にはグリア細胞は不可欠であるという共通認識が広がりつつある。本研究では中枢神経系免疫細胞であるミクログリアに着目し、そのシナプスや血管などの脳環境に対する生理機能を明らかにする。さらに遺伝的・環境要因によるミクログリア変容のメカニズム及びその結果として引き起こされる異常による病態を精神疾患と組み合わせて解き明かすことを目的とした。ミクログリアのシナプス活動に対する修飾メカニズムを検証するために、生体イメージングとトランスクリプトーム解析を用いて、シナプスから放出されるATPにミクログリアの突起上のP2YR12を介した応答があることでシナプスに誘引され、その活動を修飾する。てんかんなどの過剰興奮時にはミクログリアがシナプスに誘引されることによってシナプス活動を抑制し、神経保護的作用を示すことを明らかにした。さらにこれらのシナプスの領域間への作用を検証するために、異種感覚の可塑性に着目し、視覚遮断マウスにおける第一次感覚野(S1)から高次視覚野(V2)への投射に着目した。髭に応答するS1軸索はV2においても髭に同期した活動を示し、視覚遮断マウスにおいては複雑な物体提示に対するV2神経細胞の活動上昇が認められ、ミクログリアを遺伝学的に除去することでこの活動上昇が損なわれることがわかった。ミクログリアを解析することで、ミクログリアがV2領域興奮性神経細胞体に存在する抑制性シナプス終末を除去することで、この興奮性上昇が認められ、これが異種感覚領域を用いた学習の向上に寄与することを明らかにした。

  • Local response of oligodendrocyte progenitor cell regulate axonal activity

    和氣 弘明

    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), 01 Apr. 2019 - 31 Mar. 2021

    オリゴデンドロサイト(OC)は軸索周囲に髄鞘を形成することで軸索を伝導する活動電位の伝搬速度を制御する。私たちはこれまで、細胞培養系を用いて、神経活動依存的にOCが軸索形成を行うメカニズムを明らかにしてきた。 本年度はレバー引きによる水報酬学習を用いて、この神経活動依存的な髄鞘化が損なわれることで、学習過程が損なわれることおよびその異常な神経回路基盤を同定し、オプトジェネティックスを用いて異常な神経回路活動を補正することで学習過程が改善することを報告した。このような神経活動依存性の髄鞘化を担う要素として、OCおよびその前駆細胞の細胞応答があげられる。そこで上記に加えて、この神経活動依存的な髄鞘化を担うOCの機能応答を生体で明らかにした。OCおよびその前駆細胞にカルシウム感受性蛍光タンパク質が発現するマウスを用いて、2光子顕微鏡によってその機能応答を生体で可視化した。神経活動を麻酔下およびDREAAD法を用いて操作することでその応答の差異を抽出した。これらの応答を担う分子を同定するため、電気生理学的に検証を行った。OCおよびその前駆細胞からパッチクランプ記録を行い、神経伝達物質などに対する薬理学的な検証を行い、その機能応答の差異を検出した。さらにこれを生体に当てはめ、生体脳表に薬剤を投与することでその機能応答の変化を抽出している。この機能応答を踏まえ、アルツハイマー型認知機能障害(AD)などの神経疾患において応答性の変化を抽出するためにADモデルマウスのオリゴデンドロサイトの機能応答を可視化できるマウスを作成し、現在解析を行っている。

  • 免疫異常の記憶から捉える精神疾患の階層的理解

    和氣 弘明

    日本学術振興会, 科学研究費助成事業 新学術領域研究(研究領域提案型), 新学術領域研究(研究領域提案型), 01 Apr. 2019 - 31 Mar. 2021

    本研究では精神疾患発症におけるミクログリアの関与について検討する。 統合失調症などの精神疾患では血液脳関門(BBB)の透過性が増大することが知られている。そこで本研究ではまずミクログリアのBBB透過性に対する寄与を検討した 全身炎症時において、ミクログリアが血管周囲に集積することを明らかにした。また炎症早期にはミクログリアは血管基底膜に浸潤し、血管内皮細胞と結合しタイトジャンクションを形成することでBBBの透過性に保護的に作用し、炎症後期にはアストロサイトの足突起を貪食することでBBBの透過性増大を引き起こすこと、さらにその分子メカニズムを明らかにした(Haruwaka et al., Nature Commun, 2019)。つぎに胎生期における炎症が精神疾患の発症に寄与することに着目し、胎生期の炎症が免疫細胞であるミクログリアのエピジェネティックな変化を引き起こし、思春期のストレス負荷によって統合失調症が発症すると言う仮説のもと、胎生期の炎症モデルマウスの5週齢に拘束ストレスを負荷したところ野生型のマウスでは鬱様症状が出現し、オープンフィールド試験で行動量が減少するのに対し、胎生期炎症モデルマウスでは行動量が増加することがわかった。領域内共同研究により、現在このDNAメチルかを検証している。さらにこのマウスのシナプス変化・神経回路活動変化を2光子顕微鏡による生体イメージングで検証中である。

  • Development of cell function editing technology with fast 3D measurement and local-field light perturbation

    清末 優子, 和氣 弘明, 川崎 善博, 的場 修, ARJUNAN SATYA

    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Research (Pioneering), Grant-in-Aid for Challenging Research (Pioneering), Institute of Physical and Chemical Research, 29 Jun. 2018 - 31 Mar. 2021

    本研究課題では、かつてない時空間分解能での3Dライブイメージングを可能とする『格子光シート顕微鏡(Chen et al., 2014, Science)』に、任意の細胞内領域をナノスケールレベルで光刺激する技術を導入することで、精密な細胞機能制御技術の開発を目指す。これまでに格子光シート顕微鏡の構築を完了している。さらに、1ミクロン以下の太さのベッセルビームで細胞内を照射してそのビーム形状を観察し、細胞内部の任意の領域にナノスケールサイズのスポットの形成が可能であることを確認した。 3次元的に配置された複数の刺激対象を多点同時に高速で刺激するためには、刺激スポットの数と形状および速度が不十分であった従来の光刺激技術に代わる技術の導入が必要である。そこでレーザーを自在に成型できるデジタルホログラフィック技術の導入を試みる。これまでに、複数の脳神経細胞に対し多点同時に高速で刺激するために、ホログラフィック刺激および2光子顕微鏡による計測の一体化した試作機の作成が完了し、これを用いて生体組織および生体の神経細胞の活動の計測・操作の同時記録に成功している(Quan et al., 2018, Opt lett)。この技術を今後、格子光シート顕微鏡に応用する。 また、開発したシステムを用いて発がん機構を解明するため、CRISPR/Cas9ゲノム編集システムを用いて、がん幹細胞マーカーLgr5のプロモーター制御下で蛍光蛋白質が発現するヒト大腸がんオルガノイドを作成した。これを用いれば大腸がんオルガノイドにおける個々のがん幹細胞のふるまいを追跡することができる。今後、更なるゲノム編集技術によってがん関連遺伝子の欠損や増幅を行い、がん幹細胞のダイナミクス(細胞分裂や分化が起こる場所・タイミングなど)を詳細に解析することで、がんの発生機序や病態の理解につながる新しい知見の獲得を目指す。

  • WAKE Hiroaki

    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Scientific Research (B), 01 Apr. 2018 - 31 Mar. 2021, Principal investigator

    In this study, we focused on microglia and aimed to elucidate psychiatric pathology from their physiological functions on synapses and blood vessels. Using in vivo imaging, we found that microglia migrate into cerebral blood vessels during systemic inflammation and contribute to the permeability of the blood-brain barrier in a time-specific manner by altering the expression of tight junction-related factors and phagocytic factors. In addition, we found that microglia modulate their synaptic effects by regulating their projection dynamics during higher brain functions (motor learning). These synaptic modulation mechanisms are dependent on the sensory input in the sensory cortex, suggesting a role for microglia in heterogeneous sensory plasticity.

    Competitive research funding

  • WAKE Hiroaki

    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Research (Exploratory), Grant-in-Aid for Challenging Research (Exploratory), Kobe University, 30 Jun. 2017 - 31 Mar. 2019

    Microglia survey brain parenchyma and respond to any disruptions. Microglia also respond to systemic disease, but how this relates to blood brain barrier (BBB) integrity is largely unknown. Here we use simultaneous in vivo imaging to demonstrate that systemic inflammation induces migration of brain resident microglia to cerebral vessels. Vessel-associated microglia initially maintain BBB integrity, associated with expression of the tight junction protein Claudin-5. Further sustained inflammation results in microglia phagocytosing astrocytic end-feet and impairing BBB function. Our results show dual microglial role for BBB and have important implications for understanding how systemic immune-activation can impact on neural circuit functions.

  • 和氣 弘明

    日本学術振興会, 科学研究費助成事業 新学術領域研究(研究領域提案型), 新学術領域研究(研究領域提案型), 神戸大学, 01 Apr. 2017 - 31 Mar. 2019, Principal investigator

    オリゴデンドロサイトは髄鞘を形成する細胞で、これまで神経活動依存的に髄鞘化することが知られている。これまで私たちはオリゴデンドロサイトが神経活動依存的に髄鞘化する分子メカニズムを示し、さらに軸索との結合様式を明らかにしてきた。本研究ではこの神経活動依存的髄鞘化を担う、オリゴデンドロサイトの活動を生体で可視化するとともに、その髄鞘を構成する脂質成分を捉えるべく研究を行った。 1.生体でオリゴデンドロサイトおよびその前駆細胞を可視化するために、PLPプロモーターの下流にカルシウム感受性蛍光タンパク質がテトラサイクリン依存的に発現するマウスを用いて、これを2光子顕微鏡によって生体覚醒下で可視化した。神経細胞活動を操作するために覚醒下、麻酔下の2条件で比較した。細胞体のカルシウム上昇頻度はオリゴデンドロサイトおよびその前駆細胞すべての例において覚醒下氏比して麻酔下では有意に低下した。さらにその突起の活動も有意に低下することを明らかにした。一方でDREAAD法を用いて神経細胞活動を上昇させたところ細胞体の活動は大きく変化せず、突起活動は突起によるバリエーションを認めた。この中からカルシウム上昇が高頻度に起こる部位をホットスポットと定義し、ホットスポットにおけるカルシウム上昇頻度が有意に上昇するのを認めた。またこのホットスポットが学習などの負荷によって高頻度にターンオーバーすることがわかり、現在結果をまとめている。またこのような髄鞘は脂質で構成されていることが知られている。このような脂質変化を神経回路活動の変化と結びつけるため、マウスにレバー引き水報酬学習を行わせ、神経細胞集団の活動を可視化した後、質量分析顕微鏡で脂質成分の変化を検出し、その相関を得られることができた。

    Competitive research funding

  • 和氣 弘明

    学術研究助成基金助成金/挑戦的研究(萌芽), Apr. 2017 - Mar. 2019, Principal investigator

    Competitive research funding

  • ホログラム光刺激による神経回路再編の人為的創出

    和氣 弘明

    国立研究開発法人科学技術振興機構, 戦略的創造研究推進事業(CREST), 2017, Principal investigator

    Competitive research funding

  • ミクログリアによるシナプス活動修飾と神経回路の空間的活動制御

    和氣 弘明

    日本学術振興会, 科学研究費助成事業 新学術領域研究(研究領域提案型), 新学術領域研究(研究領域提案型), 神戸大学, 01 Apr. 2016 - 31 Mar. 2018

    本課題では、感覚刺激、運動学習において生理学的なミクログリア突起の動きによるシナプスへの接触でシナプス活動ひいては神経回路活動にどのように影響し、シナプス機能、可塑性、数を制御するかを検証する。次にこの制御機構の破綻で発達障害、精神・神経疾患を惹起しうるかを考える。これまで、2光子顕微鏡を用いた生体イメージングによってシナプス活動とミクログリアを同時に可視化し、ミクログリアの接触時にシナプス活動が増加することを示し、さらにこのミクログリアによるシナプス活動の修飾はミクログリアをリポ多糖類で活性化させることで消失することを明らかにした。またミクログリアをジフテリア毒素によって遺伝的に時期特異的に除去できるマウス(Iba1-tTa::TetO-DTA)を用いることで、ミクログリアを除去すると神経細胞活動の同期性が減少することから、ミクログリアによるシナプス活動の修飾は神経細胞集団の同期性に寄与していることを示した(論文投稿中)。またミクログリアがシナプス活動を修飾するのであれば、学習過程によってその動態が変化し、シナプス活動の修飾機構が変化する可能性がある。そこでレバー引きによる水報酬学習を用いてその前後でミクログリア突起の動態の比較をしたところ、学習前に比べて、学習後ではミクログリア突起の動態の複雑性が低下し、より定型的になっていることを明らかにした。またこのようなミクログリア突起動態の変化が精神疾患などのモデルでも認められるかどうか検証するために統合失調症モデル(Shn2-KO)で同様に比較したところ統合失調症モデルではミクログリア突起の動態の複雑性が増していることがわかった。そこで、これらを踏まえ、今後ミクログリアのシナプス修飾機構から精神疾患を考察していく。

  • 身体疾患で惹起される免疫変容が起こす神経回路恒常性の破綻と精神症状の解明

    和氣 弘明

    国立研究開発法人科学技術振興機構, 戦略的創造研究推進事業(さきがけ), 2016, Principal investigator

    Competitive research funding

  • 和氣 弘明

    日本学術振興会, 科学研究費助成事業 新学術領域研究(研究領域提案型), 新学術領域研究(研究領域提案型), 01 Apr. 2015 - 31 Mar. 2017, Principal investigator

    多様化する現代社会において、高次脳機能に異常を呈する発達障害・精神疾患の病態の解明および治療法の開発は喫緊の課題である。本課題では統合失調症モデルマウスにおける神経回路基盤の変化を脳内免疫と結びつけて検証する。すなわち統合失調症モデルとしてSchnurri-2 欠損マウスを用い、Schnurri-2 欠損マウスの中枢神経系炎症反応の増大の結果としてミクログリアにおけるシナプス制御分子、髄鞘制御分子の変化を検出し、これを、2光子顕微鏡によるin vivoイメージングを組み合わせることにより行動異常と神経回路動作の相関を神経細胞の発火パターン、シナプスの活動パターンを可視化することによって明らかにする。これまでSchnurri-2 欠損マウスにおける神経細胞の発火率、発火パターンを検証するためにカルシウム感受性蛍光タンパク質であるGCaMP6fをコードする遺伝子をアデノ随伴ウィルス(AAV)の大脳皮質感覚野・運動野への注入によって発現させ、その神経細胞集団音発火を解析することによって覚醒下の神経細胞活動の協調性の低下が認められていることを明らかにした。さらに中枢神経系免疫細胞であるミクログリアを免疫染色することによってその突起の短縮および複雑性の低下を認めた。さらにSchnurri-2 欠損マウスのミクログリアにGFPが発現するマウスを作成し、2光子顕微鏡を用いて突起の動きを解析したところ、その動きのランダムさが亢進していることがわかった(Haruwaka et al., in preparation)。これはシナプス活動のランダムさを反映するものであると考えている。今後この変化を担う分子の同定を行うとともに、行動との相関を検証する予定である

    Competitive research funding

  • 和氣 弘明

    科学研究費補助金/新学術領域研究, Apr. 2015 - Mar. 2018, Principal investigator

    Competitive research funding

  • 髄鞘恒常性の破綻による精神症状発症機序の解明(国際共同研究強化)

    和氣 弘明

    日本学術振興会, 科学研究費助成事業 国際共同研究加速基金(国際共同研究強化), 国際共同研究加速基金(国際共同研究強化), 神戸大学, 2015 - 2015

  • WAKE Hiroaki, KATO Daisuke, AKIYOSHI Ryohei

    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (A), Grant-in-Aid for Young Scientists (A), 01 Apr. 2014 - 31 Mar. 2018, Principal investigator

    Myelination increases conduction velocity and promotes brain functions. Myelin dysregulation is frequently associated with learning and cognition deficits, ultimately causing neurological and psychiatric disorders. However, it has not been revealed what perturbation of neural activity induced by myelin dysregulation impairs learning. Here, we measured neural activity in the motor cortex during motor learning in transgenic mice with a subtle impairment of their myelin regulation.This myelin dysregulation impaired motor learning and was accompanied by a decrease in the amplitude of movement-related activity, an increase in the frequency of spontaneous activity, and a widening in the timing of cortical responses to thalamic stimulation. Repetitive pairing of forelimb movements with optogenetic stimulation of thalamocortical axon terminals partially restored learning.

    Competitive research funding

  • 統合失調症モデルにおける神経回路の動作原理

    和氣 弘明

    日本学術振興会, 科学研究費助成事業 新学術領域研究(研究領域提案型), 新学術領域研究(研究領域提案型), 01 Apr. 2013 - 31 Mar. 2015

    近年、統合失調症患者のスクリーニングで、統合失調症患者では髄鞘関連タンパク質の発現変化を認めることがわかっている。そこで本研究課題では統合失調症モデルであるSchnurri2-KO(Sch2KO)マウスを用いてその神経回路基盤を明らかにし、髄鞘の恒常性に異常を認めるマウス(PLP-tg)との相関を検討することによって、学習行動異常の原因を明らかにすることを目的とした。まずSch2KOマウスに対して前肢レバー引きによる水報酬課題を行わせるも学習が成立しないため、覚醒下での神経細胞活動及び麻酔下での神経細胞活動を第一次運動野で比較した。覚醒下、麻酔下での神経細胞活動の細胞間での相互相関は発火数の減少に関わらず一定であるが、Sch2KOでは覚醒下での細胞活動の相互相関が有意に低いことがわかった。これらの細胞活動の相互相関活動の意義を考えるため、また学習行動異常の神経回路基盤をより詳細に検討するためにPLP-tgに対して前肢レバー引きによる水報酬タスクを運動学習課題とし、2週間連日でマウスに行わせた。正常群に比し、PLP-tgでは初期の成功率は差を認めないが後期の施行率は低かった。そこで2光子顕微鏡下でカルシウム感受性蛍光タンパク質を導入したマウスに運動学習を行わせ、運動学習中の神経活動を蛍光輝度変化として捉え、第一次運動野2/3層の活動パターンを数理学的に解析した。PLP-tgでは訓練期間を通してレバー引きとは関係のない神経細胞活動(自発活動)が認められた。またこれらの自発活動に相互相関は認めなかった。さらにこの自発活動の高い細胞は入れ替わりながら領域全体の自発活動の高さを維持するのに寄与することがわかった。これらの結果から行動に関連した細胞間の相関した活動が隔週に寄与することが示唆された。

  • ミクログリアによる神経回路修飾とその破綻による精神疾患

    和氣 弘明

    日本学術振興会, 科学研究費助成事業 新学術領域研究(研究領域提案型), 新学術領域研究(研究領域提案型), 01 Apr. 2013 - 31 Mar. 2015

    生体イメージング技術の革新によりグリア細胞の様々な新規生理的機能が明らかとなってきた。その中でも我々はミクログリアに着目して研究を行ってきた。ミクログリアは中枢神経系唯一の免疫細胞で、病態に対するその役割のほかに、私たちは成熟動物においてシナプスに直接接触することによってその活動を監視することを見出した。またさらに発達、障害期においてシナプスを貪食することによって、シナプス除去過程に関与し、その数を制御することを見出してきた。そこで本課題ではミクログリアによってどのような神経回路活動制御が行われるかに着目して研究を行った。まず発達期に着目してミクログリアが発達早期に樹状突起に接触することによってスパインの形成を促進し、成熟シナプス数の制御に寄与することを見出した(Miyamoto,Wake et al., in revision)。さらに成熟動物においてミクログリアがシナプス活動を修飾することで学習などの生理的機能に寄与しうるかどうか検討した。まずミクログリアがスパインに接触することでその活動を変化させるかどうかを検証するために、ミクログリアにGFPが発現するマウスにカルシウム感受性蛍光タンパク質及び赤色蛍光タンパク質を神経細胞に発現させ、ミクログリアが接触した際のシナプス活動の変化をとらえた。ミクログリアの接触によって、シナプスのカルシウム上昇の頻度が増加することがわかった。全身炎症の際に引き起こされる学習障害の神経飽回路基盤を検討するため、SLEモデルマウスに運動学習行動を適用した。正常群に比べ学習効率の低下を認めたため、神経回路活動の変容をカルシウム感受性タンパク質を発現させたマウスに2光子顕微鏡下で運動学習を行わせること検討した。さらに全身炎症におけるミクログリアは活性化していることを明らかにし、その際のシナプス活動修飾機構の変化も示した。

  • 和氣 弘明

    文部科学省, 科学研究費補助金(新学術領域研究(研究領域提案型)), 2013 - 2014, Principal investigator

    Competitive research funding

  • 和氣 弘明

    文部科学省, 科学研究費補助金(新学術領域研究(研究領域提案型)), 2013 - 2014, Principal investigator

    Competitive research funding

  • グリア細胞の神経回路修飾機構

    和氣 弘明

    日本学術振興会, 科学研究費助成事業 研究活動スタート支援, 研究活動スタート支援, 基礎生物学研究所, 31 Aug. 2012 - 31 Mar. 2014

    研究目的(1)オリゴデンドロサイトによる神経細胞の協調活動の変化を観察する 運動学習課題かにおける多細胞活動の観察を第一次運動野の2、3層で行ったところ、正常の動物では運動に同期する神経細胞の活動が観察されるのに対し、オリゴデンドロサイトによる髄鞘の恒常性が損なわれたマウスではその同期性成分が著しく失われ、非同期成分が自発活動として数多く観察されるようになった。これに伴い、運動学習効率は正常動物に比して非常に低いことがわかった。またこの同期性の消失は学習1日目から観察され、それが10日目までは続くことがわかった。運動の詳細な検討により、この運動学習障害は位置覚、協調運動の低下によるものであることがわかった。これに伴い詳細な電気生理学的な検討を継続して行っているところである。 (2)ミクログリアによる回路修飾 ミクログリアにGFPが発現しているような動物に赤色カルシウム感受性タンパク質を神経細胞に導入することにに成功し、運動学習課題下で、神経細胞の活動とミクログリアの動きを観察することに成功した。これによりミクログリアのシナプスへの接触は神経細胞活動にどのように相関していくかを今後検討していく予定である。またミクログリアを特異的に光刺激することにより、運動学習行動との比較を行った結果、ミクログリアの光による脱分極は学習効率を低下させることがわかった。これも今後詳細な電気生理学的な検討が必要であることがわかった。

  • 和氣 弘明

    文部科学省, 科学研究費補助金(研究活動スタート支援), 2012 - 2013, Principal investigator

    Competitive research funding

  • 多光子励起法による障害による神経回路再編およびグリア動態のin vivo観察

    和氣 弘明

    日本学術振興会, 科学研究費助成事業 若手研究(B), 若手研究(B), 名古屋市立大学, 2008 - 2009

    本研究課題において申請者はミクログリア細胞の神経可塑性に対する関与を検討した。 申請者はまず大脳皮質第5層錐体細胞にEGFPを発現する遺伝子改変マウスとionized calcium-binding adaptor molecule 1(IBA-1)promotorの下流にEGFPを導入した遺伝子改変マウスを交配させ、得られた遺伝子改変マウスは錐体細胞およびマイクログリアに選択的に蛍光標識される個体を用い、2光子励起顕微鏡を適用し同動物脳を生体麻酔科において観察を行った。またミクログリア細胞の障害脳における神経可塑性への関与も検討するため、レーザーを用いた脳虚血モデルマウスの作成を行い、正常動物との比較を行った。 (結果) 正常脳においてミクログリア細胞は1時間に一度5分間神経シナプス部に接触し、この接触は神経活動に依存し、低体温や感覚除去により神経活動を減弱させるとその接触頻度は低下することを証明した。またシナプス特異的に接触することを、同一樹状突起状のシナプス接触を観察することにより証明した。この接触様式が障害の際にはどのように変化するかを検討するため、レーザーフォトスロンボーシスを用いて、マウスの中大脳動脈に脳梗塞を非侵襲的に作成し、そのペナンブラ領域における接触様式を観察した。ペナンブラ領域においてミクログリアーシナプス結合は正常脳に比較して接触時間が延長することを見いだした。この延長の結果を検討するため継続して観察を行ったところ、しばしば接触後のシナプスの消失を観察することに成功し、シナプス可塑性のミクログリア細胞の関与を示唆することに成功した。 本実験において脳障害時におけるあらたな治療標的としてミクログリア細胞の存在を見いだすこととなった。

  • 和氣 弘明

    文部科学省, 科学研究費補助金(若手研究(B)), 2008 - 2009, Principal investigator

    本研究課題において申請者はミクログリア細胞の神経可塑性に対する関与を検討した。申請者はまず大脳皮質第5層錐体細胞にEGFPを発現する遺伝子改変マウスとionized calcium-binding adaptor molecule 1(IBA-1)promotorの下流にEGFPを導入した遺伝子改変マウスを交配させ、得られた遺伝子改変マウスは錐体細胞およびマイクログリアに選択的に蛍光標識される個体を用い、2光子励起顕微鏡を適用し同動物脳を生体麻酔科において観察を行った。またミクログリア細胞の障害脳における神経可塑性への関与も検討するため、レーザーを用いた脳虚血モデルマウスの作成を行い、正常動物との比較を行った。(結果)正常脳においてミクログリア細胞は1時間に一度5分間神経シナプス部に接触し、この接触は神経活動に依存し、低体温や感覚除去により神経活動を減弱させるとその接触頻度は低下することを証明した。またシナプス特異的に接触することを、同一樹状突起状のシナプス接触を観察することにより

    Competitive research funding

  • スキャンレス3D ホログラフィック計測・刺激顕微鏡の開発と生体応用

    国立研究開発法人科学技術振興機構, A-STEP産学共同【本格型】